Search results for: fundamental particle
3367 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method
Authors: Felix Platzer, Eric Fimbinger
Abstract:
In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.Keywords: bonded particle model, DEM, filter cake, particle breakage
Procedia PDF Downloads 2103366 Physical Property Characterization of Adult Dairy Nutritional Products for Powder Reconstitution
Authors: Wei Wang, Martin Chen
Abstract:
The reconstitution behaviours of nutritional products could impact user experience. Reconstitution issues such as lump formation and white flecks sticking to bottles surfaces could be very unappealing for the consumers in milk preparation. The controlling steps in dissolving instant milk powders include wetting, swelling, sinking, dispersing, and dissolution as in the literature. Each stage happens simultaneously with the others during milk preparation, and it is challenging to isolate and measure each step individually. This study characterized three adult nutritional products for different properties including particle size, density, dispersibility, stickiness, and capillary wetting to understand the relationship between powder physical properties and their reconstitution behaviours. From the results, the formation of clumps can be caused by different factors limiting the critical steps of powder reconstitution. It can be caused by small particle size distribution, light particle density limiting powder wetting, or the rapid swelling and dissolving of particle surface materials to impede water penetration in the capillary channels formed by powder agglomerates. For the grain or white flecks formation in milk preparation, it was believed to be controlled by dissolution speed of the particles after dispersion into water. By understanding those relationship between fundamental powder structure and their user experience in reconstitution, this information provides us new and multiple perspectives on how to improve the powder characteristics in the commercial manufacturing.Keywords: characterization, dairy nutritional powder, physical property, reconstitution
Procedia PDF Downloads 1033365 Software Verification of Systematic Resampling for Optimization of Particle Filters
Authors: Osiris Terry, Kenneth Hopkinson, Laura Humphrey
Abstract:
Systematic resampling is the most popularly used resampling method in particle filters. This paper seeks to further the understanding of systematic resampling by defining a formula made up of variables from the sampling equation and the particle weights. The formula is then verified via SPARK, a software verification language. The verified systematic resampling formula states that the minimum/maximum number of possible samples taken of a particle is equal to the floor/ceiling value of particle weight divided by the sampling interval, respectively. This allows for the creation of a randomness spectrum that each resampling method can fall within. Methods on the lower end, e.g., systematic resampling, have less randomness and, thus, are quicker to reach an estimate. Although lower randomness allows for error by having a larger bias towards the size of the weight, having this bias creates vulnerabilities to the noise in the environment, e.g., jamming. Conclusively, this is the first step in characterizing each resampling method. This will allow target-tracking engineers to pick the best resampling method for their environment instead of choosing the most popularly used one.Keywords: SPARK, software verification, resampling, systematic resampling, particle filter, tracking
Procedia PDF Downloads 843364 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone
Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay
Abstract:
Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.
Procedia PDF Downloads 1473363 Influence of Processing Parameters on the Reliability of Sieving as a Particle Size Distribution Measurements
Authors: Eseldin Keleb
Abstract:
In the pharmaceutical industry particle size distribution is an important parameter for the characterization of pharmaceutical powders. The powder flowability, reactivity and compatibility, which have a decisive impact on the final product, are determined by particle size and size distribution. Therefore, the aim of this study was to evaluate the influence of processing parameters on the particle size distribution measurements. Different Size fractions of α-lactose monohydrate and 5% polyvinylpyrrolidone were prepared by wet granulation and were used for the preparation of samples. The influence of sieve load (50, 100, 150, 200, 250, 300, and 350 g), processing time (5, 10, and 15 min), sample size ratios (high percentage of small and large particles), type of disturbances (vibration and shaking) and process reproducibility have been investigated. Results obtained showed that a sieve load of 50 g produce the best separation, a further increase in sample weight resulted in incomplete separation even after the extension of the processing time for 15 min. Performing sieving using vibration was rapider and more efficient than shaking. Meanwhile between day reproducibility showed that particle size distribution measurements are reproducible. However, for samples containing 70% fines or 70% large particles, which processed at optimized parameters, the incomplete separation was always observed. These results indicated that sieving reliability is highly influenced by the particle size distribution of the sample and care must be taken for samples with particle size distribution skewness.Keywords: sieving, reliability, particle size distribution, processing parameters
Procedia PDF Downloads 6133362 A Numerical and Experimental Study on Fast Pyrolysis of Single Wood Particle
Authors: Hamid Rezaei, Xiaotao Bi, C. Jim Lim, Anthony Lau, Shahab Sokhansanj
Abstract:
A one-dimensional heat transfer model coupled with the kinetic information has been used to predict the overall pyrolysis mass loss of a single wood particle. The kinetic parameters were determined experimentally and the regime and characteristics of the conversion were evaluated in terms of the particle size and reactor temperature. The order of overall mass loss changed from n=1 at temperatures lower than 350 °C to n=0.5 at temperatures higher that 350 °C. Conversion time analysis showed that particles larger than 0.5 mm were controlled by internal thermal resistances. The valid range of particle size to use the simplified lumped model depends on the fluid temperature around the particles. The critical particle size was 0.6-0.7 mm for the fluid temperature of 500 °C and 0.9-1.0 mm for the fluid temperature of 100 °C. Experimental pyrolysis of moist particles did not show distinct drying and pyrolysis stages. The process was divided into two hypothetical drying and pyrolysis dominated zones and empirical correlations are developed to predict the rate of mass loss in each zone.Keywords: pyrolysis, kinetics, model, single particle
Procedia PDF Downloads 3203361 Feasibility of Weakly Interacting Massive Particles as Dark Matter Candidates: Exploratory Study on The Possible Reasons for Lack of WIMP Detection
Authors: Sloka Bhushan
Abstract:
Dark matter constitutes a majority of matter in the universe, yet very little is known about it due to its extreme lack of interaction with regular matter and the fundamental forces. Weakly Interacting Massive Particles, or WIMPs, have been contested to be one of the strongest candidates for dark matter due to their promising theoretical properties. However, various endeavors to detect these elusive particles have failed. This paper explores the various particles which may be WIMPs and the detection techniques being employed to detect WIMPs (such as underground detectors, LHC experiments, and so on). There is a special focus on the reasons for the lack of detection of WIMPs so far, and the possibility of limits in detection being a reason for the lack of physical evidence of the existence of WIMPs. This paper also explores possible inconsistencies within the WIMP particle theory as a reason for the lack of physical detection. There is a brief review on the possible solutions and alternatives to these inconsistencies. Additionally, this paper also reviews the supersymmetry theory and the possibility of the supersymmetric neutralino (A possible WIMP particle) being detectable. Lastly, a review on alternate candidates for dark matter such as axions and MACHOs has been conducted. The explorative study in this paper is conducted through a series of literature reviews.Keywords: dark matter, particle detection, supersymmetry, weakly interacting massive particles
Procedia PDF Downloads 1423360 A Simplified, Fabrication-Friendly Acoustophoretic Model for Size Sensitive Particle Sorting
Authors: V. Karamzadeh, J. Adhvaryu, A. Chandrasekaran, M. Packirisamy
Abstract:
In Bulk Acoustic Wave (BAW) microfluidics, the throughput of particle sorting is dependent on the complex interplay between the geometric configuration of the channel, the size of the particles, and the properties of the fluid medium, which therefore calls for a detailed modeling and understanding of the fluid-particle interaction dynamics under an acoustic field, prior to designing the system. In this work, we propose a simplified Bulk acoustophoretic system that can be used for size dependent particle sorting. A Finite Element Method (FEM) based analytical model has been developed to study the dependence of particle sizes on channel parameters, and the sorting efficiency in a given fluid medium. Based on the results, the microfluidic system has been designed to take into account all the variables involved with the underlying physics, and has been fabricated using an additive manufacturing technique employing a commercial 3D printer, to generate a simple, cost-effective system that can be used for size sensitive particle sorting.Keywords: 3D printing, 3D microfluidic chip, acoustophoresis, cell separation, MEMS (Microelectromechanical Systems), microfluidics
Procedia PDF Downloads 1713359 Effect of Alloying Elements on Particle Incorporation of Boron Carbide Reinforced Aluminum Matrix Composites
Authors: Steven Ploetz, Andreas Lohmueller, Robert F. Singer
Abstract:
The outstanding performance of aluminum matrix composites (AMCs) regarding stiffness/weight ratio makes AMCs attractive material for lightweight construction. Low-density boride compounds promise simultaneously an increase in stiffness and decrease in composite density. This is why boron carbide is chosen for composite manufacturing. The composites are fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum is adapted during particle feeding and stirring. Poor wettability of boron carbide with liquid aluminum hinders particle incorporation, but alloying elements such as magnesium and titanium could improve wettability and thus particle incorporation. Next to alloying elements, adapted stirring parameters and impeller geometries improve particle incorporation and enable homogenous particle distribution and high particle volume fractions of boron carbide. AMCs with up to 15 vol.% of boron carbide particles are produced via melt stirring, resulting in an increase in stiffness and strength.Keywords: aluminum matrix composites, boron carbide, stiffness, stir casting
Procedia PDF Downloads 3083358 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation
Authors: Diogo Silva, Fadul Rodor, Carlos Moraes
Abstract:
This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions
Procedia PDF Downloads 5893357 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm
Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang
Abstract:
In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm
Procedia PDF Downloads 1513356 Advanced Particle Characterisation of Suspended Sediment in the Danube River Using Automated Imaging and Laser Diffraction
Authors: Flóra Pomázi, Sándor Baranya, Zoltán Szalai
Abstract:
A harmonized monitoring of the suspended sediment transport along such a large river as the world’s most international river, the Danube River, is a rather challenging task. The traditional monitoring method in Hungary is obsolete but using indirect measurement devices and techniques like optical backscatter sensors (OBS), laser diffraction or acoustic backscatter sensors (ABS) could provide a fast and efficient alternative option of direct methods. However, these methods are strongly sensitive to the particle characteristics (i.e. particle shape, particle size and mineral composition). The current method does not provide sufficient information about particle size distribution, mineral analysis is rarely done, and the shape of the suspended sediment particles have not been examined yet. The aims of the study are (1) to determine the particle characterisation of suspended sediment in the Danube River using advanced particle characterisation methods as laser diffraction and automated imaging, and (2) to perform a sensitivity analysis of the indirect methods in order to determine the impact of suspended particle characteristics. The particle size distribution is determined by laser diffraction. The particle shape and mineral composition analysis is done by the Morphologi G3ID image analyser. The investigated indirect measurement devices are the LISST-Portable|XR, the LISST-ABS (Sequoia Inc.) and the Rio Grande 1200 kHz ADCP (Teledyne Marine). The major findings of this study are (1) the statistical shape of the suspended sediment particle - this is the first research in this context, (2) the actualised particle size distribution – that can be compared to historical information, so that the morphological changes can be tracked, (3) the actual mineral composition of the suspended sediment in the Danube River, and (4) the reliability of the tested indirect methods has been increased – based on the results of the sensitivity analysis and the previous findings.Keywords: advanced particle characterisation, automated imaging, indirect methods, laser diffraction, mineral composition, suspended sediment
Procedia PDF Downloads 1463355 A Comparative Study of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) for Airflow Measurement
Authors: Sijie Fu, Pascal-Henry Biwolé, Christian Mathis
Abstract:
Among modern airflow measurement methods, Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), as visualized and non-instructive measurement techniques, are playing more important role. This paper conducts a comparative experimental study for airflow measurement employing both techniques with the same condition. Velocity vector fields, velocity contour fields, voticity profiles and turbulence profiles are selected as the comparison indexes. The results show that the performance of both PIV and PTV techniques for airflow measurement is satisfied, but some differences between the both techniques are existed, it suggests that selecting the measurement technique should be based on a comprehensive consideration.Keywords: airflow measurement, comparison, PIV, PTV
Procedia PDF Downloads 4243354 Low-Cost Reusable Thermal Energy Storage Particle for Concentrating Solar Power
Authors: Kyu Bum Han, Eunjin Jeon, Kimberly Watts, Brenda Payan Medina
Abstract:
Gen3 Concentrating Solar Power (CSP) high-temperature thermal systems have the potential to lower the cost of a CSP system. When compared to the other systems (chloride salt blends and supercritical fluids), the particle transport system can avoid many of the issues associated with high fluid temperature systems at high temperature because of its ability to operate at ambient pressure with limited corrosion or thermal stability risk. Furthermore, identifying and demonstrating low-cost particles that have excellent optical properties and durability can significantly reduce the levelized cost of electricity (LCOE) of particle receivers. The currently available thermal transfer particle in the study and market is oxidized at about 700oC, which reduces its durability, generates particle loss by high friction loads, and causes the color change. To meet the CSP SunShot goal, the durability of particles must be improved by identifying particles that are less abrasive to other structural materials. Furthermore, the particles must be economically affordable and the solar absorptance of the particles must be increased while minimizing thermal emittance. We are studying a novel thermal transfer particle, which has low cost, high durability, and high solar absorptance at high temperatures. The particle minimizes thermal emittance and will be less abrasive to other structural materials. Additionally, the particle demonstrates reusability, which significantly lowers the LCOE. This study will contribute to two principal disciplines of energy science: materials synthesis and manufacturing. Developing this particle for thermal transfer will have a positive impact on the ceramic study and industry as well as the society.Keywords: concentrating solar power, thermal energy storage, particle, reusability, economics
Procedia PDF Downloads 2223353 An Experimental Study of the Influence of Particle Breakage on the Interface Friction Angle and Shear Strength of Carbonate Sands
Authors: Ruben Dario Tovar-Valencia, Eshan Ganju, Fei Han, Monica Prezzi, Rodrigo Salgado
Abstract:
Particle breakage occurs even in strong silica sand particles. There is compelling evidence that suggests that particle breakage causes changes in several properties such as permeability, peak strength, dilatancy and critical state friction angle. Current pile design methods that are based on soil properties do not account for particle breakage that occurs during driving or jacking of displacement piles. This may lead to significant overestimation of pile capacity in sands dominated by particles susceptible to breakage, such as carbonate sands. The objective of this paper is to study the influence of shear displacement on particle breakage and friction angle of carbonate sands, and to furthermore quantify the change in friction angle observed with different levels of particle breakage. To study the phenomenon of particle breakage, multiple ring shear tests have been performed at different levels of vertical confinement on a thoroughly characterized carbonate sand to find i) the shear displacement necessary to reach stable friction angles and ii) the effect of particle breakage on the mobilized friction angle of the tested sand. The findings of this study can potentially be used to update the current pile design methods by developing a friction angle which is a function of shear displacement and breakage characteristics of the sand instead of being a constant value.Keywords: breakage, carbonate sand, friction angle, pile design, ring shear test
Procedia PDF Downloads 3043352 An Improved Tracking Approach Using Particle Filter and Background Subtraction
Authors: Amir Mukhtar, Dr. Likun Xia
Abstract:
An improved, robust and efficient visual target tracking algorithm using particle filtering is proposed. Particle filtering has been proven very successful in estimating non-Gaussian and non-linear problems. In this paper, the particle filter is used with color feature to estimate the target state with time. Color distributions are applied as this feature is scale and rotational invariant, shows robustness to partial occlusion and computationally efficient. The performance is made more robust by choosing the different (YIQ) color scheme. Tracking is performed by comparison of chrominance histograms of target and candidate positions (particles). Color based particle filter tracking often leads to inaccurate results when light intensity changes during a video stream. Furthermore, background subtraction technique is used for size estimation of the target. The qualitative evaluation of proposed algorithm is performed on several real-world videos. The experimental results demonstrate that the improved algorithm can track the moving objects very well under illumination changes, occlusion and moving background.Keywords: tracking, particle filter, histogram, corner points, occlusion, illumination
Procedia PDF Downloads 3803351 Investigation Particle Behavior in Gas-Solid Filtration with Electrostatic Discharge in a Hybrid System
Authors: Flávia M. Oliveira, Marcos V. Rodrigues, Mônica L. Aguiar
Abstract:
Synthetic fibers are widely used in gas filtration. Previous attempts to optimize the filtration process have employed mixed fibers as the filter medium in gas-solid separation. Some of the materials most frequently used this purpose are composed of polyester, polypropylene, and glass fibers. In order to improve the retention of cement particles in bag filters, the present study investigates the use of synthetic glass fiber filters and polypropylene fiber for particle filtration, with electrostatic discharge of 0 to -2 kV in cement particles. The filtration curves obtained showed that charging increased the particle collection efficiency and lowered the pressure drop. Particle diameter had a direct influence on the formation of the dust cake, and the application of electrostatic discharge to the particles resulted in the retention of more particles, hence increasing the lifetime of fabric filters.Keywords: glass fiber filter, particle, electrostatic discharge, cement
Procedia PDF Downloads 3893350 Discrete Element Modeling of the Effect of Particle Shape on Creep Behavior of Rockfills
Authors: Yunjia Wang, Zhihong Zhao, Erxiang Song
Abstract:
Rockfills are widely used in civil engineering, such as dams, railways, and airport foundations in mountain areas. A significant long-term post-construction settlement may affect the serviceability or even the safety of rockfill infrastructures. The creep behavior of rockfills is influenced by a number of factors, such as particle size, strength and shape, water condition and stress level. However, the effect of particle shape on rockfill creep still remains poorly understood, which deserves a careful investigation. Particle-based discrete element method (DEM) was used to simulate the creep behavior of rockfills under different boundary conditions. Both angular and rounded particles were considered in this numerical study, in order to investigate the influence of particle shape. The preliminary results showed that angular particles experience more breakages and larger creep strains under one-dimensional compression than rounded particles. On the contrary, larger creep strains were observed in he rounded specimens in the direct shear test. The mechanism responsible for this difference is that the possibility of the existence of key particle in rounded particles is higher than that in angular particles. The above simulations demonstrate that the influence of particle shape on the creep behavior of rockfills can be simulated by DEM properly. The method of DEM simulation may facilitate our understanding of deformation properties of rockfill materials.Keywords: rockfills, creep behavior, particle crushing, discrete element method, boundary conditions
Procedia PDF Downloads 3133349 An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem
Authors: Takahiro Hino, Michiharu Maeda
Abstract:
Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms.Keywords: combinatorial optimization problems, particle swarm optimization, set-based particle swarm optimization, traveling salesman problem
Procedia PDF Downloads 5523348 Competitive Advantages of a Firm without Fundamental Technology: A Case Study of Sony, Casio and Nintendo
Authors: Kiyohiro Yamazaki
Abstract:
A purpose of this study is to examine how a firm without fundamental technology is able to gain the competitive advantage. This paper examines three case studies, Sony in the flat display TV industry, Casio in the digital camera industry and Nintendo in the home game machine industry. This paper maintain the firms without fundamental technology construct two advantages, economic advantage and organizational advantage. An economic advantage involves the firm can select either high-tech or cheap devices out of several device makers, and change the alternatives cheaply and quickly. In addition, organizational advantage means that a firm without fundamental technology is not restricted by organizational inertia and cognitive restraints, and exercises the characteristic of strength.Keywords: firm without fundamental technology, economic advantage, organizational advantage, Sony, Casio, Nintendo
Procedia PDF Downloads 2883347 Application of Adaptive Particle Filter for Localizing a Mobile Robot Using 3D Camera Data
Authors: Maysam Shahsavari, Seyed Jamalaldin Haddadi
Abstract:
There are several methods to localize a mobile robot such as relative, absolute and probabilistic. In this paper, particle filter due to its simple implementation and the fact that it does not need to know to the starting position will be used. This method estimates the position of the mobile robot using a probabilistic distribution, relying on a known map of the environment instead of predicting it. Afterwards, it updates this estimation by reading input sensors and control commands. To receive information from the surrounding world, distance to obstacles, for example, a Kinect is used which is much cheaper than a laser range finder. Finally, after explaining the Adaptive Particle Filter method and its implementation in detail, we will compare this method with the dead reckoning method and show that this method is much more suitable for situations in which we have a map of the environment.Keywords: particle filter, localization, methods, odometry, kinect
Procedia PDF Downloads 2693346 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell
Authors: M. Hossain, H. P. Zhu, A. B. Yu
Abstract:
This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.Keywords: DEM, granular rheology, non-spherical particles, regime transition
Procedia PDF Downloads 2643345 An Approximate Formula for Calculating the Fundamental Mode Period of Vibration of Practical Building
Authors: Abdul Hakim Chikho
Abstract:
Most international codes allow the use of an equivalent lateral load method for designing practical buildings to withstand earthquake actions. This method requires calculating an approximation to the fundamental mode period of vibrations of these buildings. Several empirical equations have been suggested to calculate approximations to the fundamental periods of different types of structures. Most of these equations are knowing to provide an only crude approximation to the required fundamental periods and repeating the calculation utilizing a more accurate formula is usually required. In this paper, a new formula to calculate a satisfactory approximation of the fundamental period of a practical building is proposed. This formula takes into account the mass and the stiffness of the building therefore, it is more logical than the conventional empirical equations. In order to verify the accuracy of the proposed formula, several examples have been solved. In these examples, calculating the fundamental mode periods of several farmed buildings utilizing the proposed formula and the conventional empirical equations has been accomplished. Comparing the obtained results with those obtained from a dynamic computer has shown that the proposed formula provides a more accurate estimation of the fundamental periods of practical buildings. Since the proposed method is still simple to use and requires only a minimum computing effort, it is believed to be ideally suited for design purposes.Keywords: earthquake, fundamental mode period, design, building
Procedia PDF Downloads 2843344 Printed Thai Character Recognition Using Particle Swarm Optimization Algorithm
Authors: Phawin Sangsuvan, Chutimet Srinilta
Abstract:
This Paper presents the applications of Particle Swarm Optimization (PSO) Method for Thai optical character recognition (OCR). OCR consists of the pre-processing, character recognition and post-processing. Before enter into recognition process. The Character must be “Prepped” by pre-processing process. The PSO is an optimization method that belongs to the swarm intelligence family based on the imitation of social behavior patterns of animals. Route of each particle is determined by an individual data among neighborhood particles. The interaction of the particles with neighbors is the advantage of Particle Swarm to determine the best solution. So PSO is interested by a lot of researchers in many difficult problems including character recognition. As the previous this research used a Projection Histogram to extract printed digits features and defined the simple Fitness Function for PSO. The results reveal that PSO gives 67.73% for testing dataset. So in the future there can be explored enhancement the better performance of PSO with improve the Fitness Function.Keywords: character recognition, histogram projection, particle swarm optimization, pattern recognition techniques
Procedia PDF Downloads 4773343 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping
Authors: Masato Saeki
Abstract:
Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level
Procedia PDF Downloads 4533342 Execution of Optimization Algorithm in Cascaded H-Bridge Multilevel Inverter
Authors: M. Suresh Kumar, K. Ramani
Abstract:
This paper proposed the harmonic elimination of Cascaded H-Bridge Multi-Level Inverter by using Selective Harmonic Elimination-Pulse Width Modulation method programmed with Particle Swarm Optimization algorithm. PSO method determine proficiently the required switching angles to eliminate low order harmonics up to the 11th order from the inverter output voltage waveform while keeping the magnitude of the fundamental harmonics at the desired value. Results demonstrate that the proposed method does efficiently eliminate a great number of specific harmonics and the output voltage is resulted in minimum Total Harmonic Distortion. The results shown that the PSO algorithm attain successfully to the global solution faster than other algorithms.Keywords: multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Particle Swarm Optimization (PSO), Total Harmonic Distortion (THD)
Procedia PDF Downloads 6033341 Development of Wide Bandgap Semiconductor Based Particle Detector
Authors: Rupa Jeena, Pankaj Chetry, Pradeep Sarin
Abstract:
The study of fundamental particles and the forces governing them has always remained an attractive field of theoretical study to pursue. With the advancement and development of new technologies and instruments, it is possible now to perform particle physics experiments on a large scale for the validation of theoretical predictions. These experiments are generally carried out in a highly intense beam environment. This, in turn, requires the development of a detector prototype possessing properties like radiation tolerance, thermal stability, and fast timing response. Semiconductors like Silicon, Germanium, Diamond, and Gallium Nitride (GaN) have been widely used for particle detection applications. Silicon and germanium being narrow bandgap semiconductors, require pre-cooling to suppress the effect of noise by thermally generated intrinsic charge carriers. The application of diamond in large-scale experiments is rare owing to its high cost of fabrication, while GaN is one of the most extensively explored potential candidates. But we are aiming to introduce another wide bandgap semiconductor in this active area of research by considering all the requirements. We have made an attempt by utilizing the wide bandgap of rutile Titanium dioxide (TiO2) and other properties to use it for particle detection purposes. The thermal evaporation-oxidation (in PID furnace) technique is used for the deposition of the film, and the Metal Semiconductor Metal (MSM) electrical contacts are made using Titanium+Gold (Ti+Au) (20/80nm). The characterization comprising X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Ultraviolet (UV)-Visible spectroscopy, and Laser Raman Spectroscopy (LRS) has been performed on the film to get detailed information about surface morphology. On the other hand, electrical characterizations like Current Voltage (IV) measurement in dark and light and test with laser are performed to have a better understanding of the working of the detector prototype. All these preliminary tests of the detector will be presented.Keywords: particle detector, rutile titanium dioxide, thermal evaporation, wide bandgap semiconductors
Procedia PDF Downloads 793340 Formulation of Famotidine Solid Lipid Nanoparticles (SLN): Preparation, Evaluation and Release Study
Authors: Rachmat Mauludin, Nurmazidah
Abstract:
Background and purpose: Famotidine is an H2 receptor blocker. Absorption orally is rapid enough, but famotidine can be degraded by stomach acid causing dose reduction until 35.8% after 50 minutes. This drug also undergoes first-pass metabolism which reduced its bio availability only until 40-50%. To overcome these problems, Solid Lipid Nano particles (SLNs) as alternative delivery systems can be formulated. SLNs is a lipid-based drug delivery technology with 50-1000 nm particle size, where the drug incorporated into the bio compatible lipids and the lipid particles are stabilized using appropriate stabilizers. When the particle size is 200 nm or below, lipid containing famotidine can be absorbed through the lymphatic vessels to the subclavian vein, so first-pass metabolism can be avoided. Method: Famotidine SLNs with various compositions of stabilizer was prepared using a high-speed homogenization and sonication method. Then, the particle size distribution, zeta potential, entrapment efficiency, particle morphology and in vitro release profiles were evaluated. Optimization of sonication time also carried out. Result: Particle size of SLN by Particle Size Analyzer was in range 114.6 up to 455.267 nm. Ultrasonicated SLNs within 5 minutes generated smaller particle size than SLNs which was ultrasonicated for 10 and 15 minutes. Entrapment efficiency of SLNs were 74.17 up to 79.45%. Particle morphology of the SLNs was spherical and distributed individually. Release study of Famotidine revealed that in acid medium, 28.89 up to 80.55% of famotidine could be released after 2 hours. Nevertheless in basic medium, famotidine was released 40.5 up to 86.88% in the same period. Conclusion: The best formula was SLNs which stabilized by 4% Poloxamer 188 and 1 % Span 20, that had particle size 114.6 nm in diameter, 77.14% famotidine entrapped, and the particle morphology was spherical and distributed individually. SLNs with the best drug release profile was SLNs which stabilized by 4% Eudragit L 100-55 and 1% Tween 80 which had released 36.34 % in pH 1.2 solution, and 74.13% in pH 7.4 solution after 2 hours. The optimum sonication time was 5 minutes.Keywords: famotodine, SLN, high speed homogenization, particle size, release study
Procedia PDF Downloads 8603339 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm
Authors: Dipti Patra, Guguloth Uma, Smita Pradhan
Abstract:
Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information
Procedia PDF Downloads 4083338 The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading
Authors: Peyman Aela, Lu Zong, Guoqing Jing
Abstract:
Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box.Keywords: ballast, contact model, cyclic loading, DEM
Procedia PDF Downloads 196