Search results for: dimensional accuracy
5650 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac
Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang
Abstract:
Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.Keywords: three-dimensional geological modeling, geological database, geostatistics, block model
Procedia PDF Downloads 805649 Investigation on the Cooling Performance of Cooling Channels Fabricated via Selective Laser Melting for Injection Molding
Authors: Changyong Liu, Junda Tong, Feng Xu, Ninggui Huang
Abstract:
In the injection molding process, the performance of cooling channels is crucial to the part quality. Through the application of conformal cooling channels fabricated via metal additive manufacturing, part distortion, warpage can be greatly reduced and cycle time can be greatly shortened. However, the properties of additively manufactured conformal cooling channels are quite different from conventional drilling processes such as the poorer dimensional accuracy and larger surface roughness. These features have significant influences on its cooling performance. In this study, test molds with the cooling channel diameters of φ2 mm, φ3 mm and φ4 mm were fabricated via selective laser melting and conventional drilling process respectively. A test system was designed and manufactured to measure the pressure difference between the channel inlet and outlet, the coolant flow rate and the temperature variation during the heating process. It was found that the cooling performance of SLM-fabricated channels was poorer than drilled cooling channels due to the smaller sectional area of cooling channels resulted from the low dimensional accuracy and the unmolten particles adhered to the channel surface. Theoretical models were established to determine the friction factor and heat transfer coefficient of SLM-fabricated cooling channels. These findings may provide guidance to the design of conformal cooling channels.Keywords: conformal cooling channels, selective laser melting, cooling performance, injection molding
Procedia PDF Downloads 1505648 Effect of Dimensional Reinforcement Probability on Discrimination of Visual Compound Stimuli by Pigeons
Authors: O. V. Vyazovska
Abstract:
Behavioral efficiency is one of the main principles to be successful in nature. Accuracy of visual discrimination is determined by the attention, learning experience, and memory. In the experimental condition, pigeons’ responses to visual stimuli presented on the screen of the monitor are behaviorally manifested by pecking or not pecking the stimulus, by the number of pecking, reaction time, etc. The higher the probability of rewarding is, the more likely pigeons will respond to the stimulus. We trained 8 pigeons (Columba livia) on a stagewise go/no-go visual discrimination task.16 visual stimuli were created from all possible combinations of four binary dimensions: brightness (dark/bright), size (large/small), line orientation (vertical/horizontal), and shape (circle/square). In the first stage, we presented S+ and 4 S-stimuli: the first that differed in all 4-dimensional values from S+, the second with brightness dimension sharing with S+, the third sharing brightness and orientation with S+, the fourth sharing brightness, orientation and size. Then all 16 stimuli were added. Pigeons rejected correctly 6-8 of 11 new added S-stimuli at the beginning of the second stage. The results revealed that pigeons’ behavior at the beginning of the second stage was controlled by probabilities of rewarding for 4 dimensions learned in the first stage. More or fewer mistakes with dimension discrimination at the beginning of the second stage depended on the number S- stimuli sharing the dimension with S+ in the first stage. A significant inverse correlation between the number of S- stimuli sharing dimension values with S+ in the first stage and the dimensional learning rate at the beginning of the second stage was found. Pigeons were more confident in discrimination of shape and size dimensions. They made mistakes at the beginning of the second stage, which were not associated with these dimensions. Thus, the received results help elucidate the principles of dimensional stimulus control during learning compound multidimensional visual stimuli.Keywords: visual go/no go discrimination, selective attention, dimensional stimulus control, pigeon
Procedia PDF Downloads 1425647 Propagation of DEM Varying Accuracy into Terrain-Based Analysis
Authors: Wassim Katerji, Mercedes Farjas, Carmen Morillo
Abstract:
Terrain-Based Analysis results in derived products from an input DEM and these products are needed to perform various analyses. To efficiently use these products in decision-making, their accuracies must be estimated systematically. This paper proposes a procedure to assess the accuracy of these derived products, by calculating the accuracy of the slope dataset and its significance, taking as an input the accuracy of the DEM. Based on the output of previously published research on modeling the relative accuracy of a DEM, specifically ASTER and SRTM DEMs with Lebanon coverage as the area of study, analysis have showed that ASTER has a low significance in the majority of the area where only 2% of the modeled terrain has 50% or more significance. On the other hand, SRTM showed a better significance, where 37% of the modeled terrain has 50% or more significance. Statistical analysis deduced that the accuracy of the slope dataset, calculated on a cell-by-cell basis, is highly correlated to the accuracy of the input DEM. However, this correlation becomes lower between the slope accuracy and the slope significance, whereas it becomes much higher between the modeled slope and the slope significance.Keywords: terrain-based analysis, slope, accuracy assessment, Digital Elevation Model (DEM)
Procedia PDF Downloads 4475646 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation
Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping
Abstract:
In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula
Procedia PDF Downloads 5015645 Heritage 3D Digitalization Combining High Definition Photogrammetry with Metrologic Grade Laser Scans
Authors: Sebastian Oportus, Fabrizio Alvarez
Abstract:
3D digitalization of heritage objects is widely used nowadays. However, the most advanced 3D scanners in the market that capture topology and texture at the same time, and are specifically made for this purpose, don’t deliver the accuracy that is needed for scientific research. In the last three years, we have developed a method that combines the use of Metrologic grade laser scans, that allows us to work with a high accuracy topology up to 15 times more precise and combine this mesh with a texture obtained from high definition photogrammetry with up to 100 times more pixel concentrations. The result is an accurate digitalization that promotes heritage preservation, scientific study, high detail reproduction, and digital restoration, among others. In Chile, we have already performed 478 digitalizations of high-value heritage pieces and compared the results with up to five different digitalization methods; the results obtained show a considerable better dimensional accuracy and texture resolution. We know the importance of high precision and resolution for academics and museology; that’s why our proposal is to set a worldwide standard using this open source methodology.Keywords: 3D digitalization, digital heritage, heritage preservation, digital restauration, heritage reproduction
Procedia PDF Downloads 1895644 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials
Authors: Ariadna Manresa, Ines Ferrer
Abstract:
Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.Keywords: biomaterial, biopolymer, micro injection molding, ultrasound
Procedia PDF Downloads 2845643 Analytical Determination of Electromechanical Coupling Effects on Interlaminar Stresses of Generally Laminated Piezoelectric Plates
Authors: Atieh Andakhshideh, S. Maleki, Sayed Sadegh Marashi
Abstract:
In this paper, the interlaminar stresses of generally laminated piezoelectric plates are presented. The electromechanical coupling effect of the piezoelectric plate is considered and the governing equations and boundary conditions are derived using the principle of minimum total potential energy. The solution procedure is a three-dimensional multi-term extended Kantorovich method (3DMTEKM). The objective of this paper is to accurately study coupling influence on the edge effects of piezolaminated plates with finite dimensions, arbitrary lamination lay-ups and under uniform axial strain. These results can provide a benchmark for checking the accuracy of the other numerical method or two-dimensional laminate theories. To verify the accuracy of the 3DMTEKM, first examples are simplified to special cases such as cross-ply or symmetric laminations and are compared with other analytical solutions available in the literature. Excellent agreement is achieved in validation test and other numerical results are presented for general cases. Numerical examples indicate the singular behavior of interlaminar normal/shear stresses and electric field strength components near the edges of the piezolaminated plates. The coupling influence on the free edge effect with respect to lamination lay-ups of piezoelectric plate is studied in several examples.Keywords: electromechanical coupling, generally laminated piezoelectric plates, Kantorovich method, edge effect, interlaminar stresses
Procedia PDF Downloads 1495642 Numerical Method for Heat Transfer Problem in a Block Having an Interface
Authors: Beghdadi Lotfi, Bouziane Abdelhafid
Abstract:
A finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. To valid the accuracy of the method two numerical experiments s are used: conduction in a regular block (with known analytical solution) and conduction in a rotated block (case with curved boundaries).The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry
Procedia PDF Downloads 2905641 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity
Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif
Abstract:
In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.Keywords: thermoelasticity, thermal conductivity, Laplace transforms, Fourier transforms
Procedia PDF Downloads 2295640 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features
Procedia PDF Downloads 1235639 Investigation of the Progressive Collapse Potential in Steel Buildings with Composite Floor System
Authors: Pouya Kaafi, Gholamreza Ghodrati Amiri
Abstract:
Abnormal loads due to natural events, implementation errors and some other issues can lead to occurrence of progressive collapse in structures. Most of the past researches consist of 2- Dimensional (2D) models of steel frames without consideration of the floor system effects, which reduces the accuracy of the modeling. While employing a 3-Dimensional (3D) model and modeling the concrete slab system for the floors have a crucial role in the progressive collapse evaluation. In this research, a 3D finite element model of a 5-story steel building is modeled by the ABAQUS software once with modeling the slabs, and the next time without considering them. Then, the progressive collapse potential is evaluated. The results of the analyses indicate that the lack of the consideration of the slabs during the analyses, can lead to inaccuracy in assessing the progressive failure potential of the structure.Keywords: abnormal loads, composite floor system, intermediate steel moment resisting frame system, progressive collapse
Procedia PDF Downloads 4565638 Using Confirmatory Factor Analysis to Test the Dimensional Structure of Tourism Service Quality
Authors: Ibrahim A. Elshaer, Alaa M. Shaker
Abstract:
Several previous empirical studies have operationalized service quality as either a multidimensional or unidimensional construct. While few earlier studies investigated some practices of the assumed dimensional structure of service quality, no study has been found to have tested the construct’s dimensionality using confirmatory factor analysis (CFA). To gain a better insight into the dimensional structure of service quality construct, this paper tests its dimensionality using three CFA models (higher order factor model, oblique factor model, and one factor model) on a set of data collected from 390 British tourists visited Egypt. The results of the three tests models indicate that service quality construct is multidimensional. This result helps resolving the problems that might arise from the lack of clarity concerning the dimensional structure of service quality, as without testing the dimensional structure of a measure, researchers cannot assume that the significant correlation is a result of factors measuring the same construct.Keywords: service quality, dimensionality, confirmatory factor analysis, Egypt
Procedia PDF Downloads 5925637 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 1335636 Three-Dimensional Spillage Effects on the Pressure Distribution of a Double Ramp
Authors: Pengcheng Quan, Shan Zhong
Abstract:
Double ramp geometry is widely used in supersonic and hypersonic environments as it presents unique flow patterns for shock wave-boundary layer interaction studies as well as for two-dimensional inlets and deflected control surfaces for re-entry vehicles. Hence, the surface pressure distribution is critical for optimum design. Though when the model is wide enough on spanwise direction the flow can be regarded as a two-dimensional flow, in actual applications a finite width would normally cause some three-dimensional spillage effects. No research has been found addressed this problem, hence the primary interest of this study is to set up a liable surface pressure distribution on a double ramp with three-dimensional effects. Both numerical and experimental (pressure sensitive paints) are applied to obtain the pressure distribution; the results agree well except that the numerical computation doesn’t capture the Gortler vortices. The pressure variations on the spanwise planes are used to analyse the development of the Gortler vortices and the effects of three-dimensional spillage on the vortices. Results indicate that the three-dimensionl spillage effects not only enhance the developing of the Gortler vortice, but also increase the periodic distance between vortice pairs.Keywords: spillage effects, pressure sensitive paints, hypersonic, double ramp
Procedia PDF Downloads 3325635 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space
Authors: Xin Chen
Abstract:
It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency
Procedia PDF Downloads 775634 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM
Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei
Abstract:
In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank
Procedia PDF Downloads 1855633 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 1995632 The Correlation between Three-Dimensional Implant Positions and Esthetic Outcomes of Single-Tooth Implant Restoration
Authors: Pongsakorn Komutpol, Pravej Serichetaphongse, Soontra Panmekiate, Atiphan Pimkhaokham
Abstract:
Statement of Problem: The important parameter of esthetic assessment in anterior maxillary implant include pink esthetic of gingiva and white esthetic of restoration. While the 3 dimensional (3D) implant position are recently concerned as a key for succeeding in implant treatment. However, to our knowledge, the authors did not come across any publication that demonstrated the relations of esthetic outcome and 3D implant position. Objectives: To investigate the correlation between positional accuracy of single-tooth implant restoration (STIR) in all 3 dimensions and their esthetic outcomes. Materials and Methods: 17 patients’ data who had a STIR at central incisor with pristine contralateral tooth were included in this study. Intraoral photographs, dental models, and cone beam computed tomography (CBCT) images were retrieved. The esthetic outcome was assessed in accordance with pink esthetic score and white esthetic score (PES/WES). While the number of correct position in each dimension (mesiodistal, labiolingual, apicocoronal) of the implant were evaluated and defined as 'right' or 'wrong' according to ITI consensus conference by one investigator using CBCT data. The different mean score between right and wrong position in all dimensions was analyzed by Mann-Whitney U test with 0.05 was the significant level of the study. Results: The average score of PES/WES was 15.88 ± 1.65 which was considered as clinically acceptable. The average PES/WES score in 1, 2 and 3 right dimension of the implant position were 16.71, 15.75 and 15.17 respectively. None of the implants placed wrongly in all three dimensions. Statistically significant difference of the PES/WES score was found between the implants that placed right in 3 dimensions and 1 dimension (p = 0.041). Conclusion: This study supported the principle of 3D position of implant. The more properly implant was placed, the higher esthetic outcome was found.Keywords: accuracy, dental implant, esthetic, 3D implant position
Procedia PDF Downloads 1825631 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria
Authors: M. S. Meon, M. N. Rao, K-U. Schröder
Abstract:
Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.Keywords: bearing strength, bolted joint, degradation scheme, progressive damage model
Procedia PDF Downloads 5025630 A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions
Authors: Xijun Yu, Zhenzhen Li, Zupeng Jia
Abstract:
This paper presents a new cell-centered Lagrangian scheme for two-dimensional compressible flow. The new scheme uses a semi-Lagrangian form of the Euler equations. The system of equations is discretized by Discontinuous Galerkin (DG) method using the Taylor basis in Eulerian space. The vertex velocities and the numerical fluxes through the cell interfaces are computed consistently by a nodal solver. The mesh moves with the fluid flow. The time marching is implemented by a class of the Runge-Kutta (RK) methods. A WENO reconstruction is used as a limiter for the RKDG method. The scheme is conservative for the mass, momentum and total energy. The scheme maintains second-order accuracy and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the robustness of the scheme.Keywords: cell-centered Lagrangian scheme, compressible Euler equations, RKDG method
Procedia PDF Downloads 5485629 Exact Soliton Solutions of the Integrable (2+1)-Dimensional Fokas-Lenells Equation
Authors: Meruyert Zhassybayeva, Kuralay Yesmukhanova, Ratbay Myrzakulov
Abstract:
Integrable nonlinear differential equations are an important class of nonlinear wave equations that admit exact soliton solutions. All these equations have an amazing property which is that their soliton waves collide elastically. One of such equations is the (1+1)-dimensional Fokas-Lenells equation. In this paper, we have constructed an integrable (2+1)-dimensional Fokas-Lenells equation. The integrability of this equation is ensured by the existence of a Lax representation for it. We obtained its bilinear form from the Hirota method. Using the Hirota method, exact one-soliton and two-soliton solutions of the (2 +1)-dimensional Fokas-Lenells equation were found.Keywords: Fokas-Lenells equation, integrability, soliton, the Hirota bilinear method
Procedia PDF Downloads 2265628 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation
Authors: Carl van Walraven, Meltem Tuna
Abstract:
Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation
Procedia PDF Downloads 2385627 An MrPPG Method for Face Anti-Spoofing
Authors: Lan Zhang, Cailing Zhang
Abstract:
In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG
Procedia PDF Downloads 1795626 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2115625 High-Resolution Flood Hazard Mapping Using Two-Dimensional Hydrodynamic Model Anuga: Case Study of Jakarta, Indonesia
Authors: Hengki Eko Putra, Dennish Ari Putro, Tri Wahyu Hadi, Edi Riawan, Junnaedhi Dewa Gede, Aditia Rojali, Fariza Dian Prasetyo, Yudhistira Satya Pribadi, Dita Fatria Andarini, Mila Khaerunisa, Raditya Hanung Prakoswa
Abstract:
Catastrophe risk management can only be done if we are able to calculate the exposed risks. Jakarta is an important city economically, socially, and politically and in the same time exposed to severe floods. On the other hand, flood risk calculation is still very limited in the area. This study has calculated the risk of flooding for Jakarta using 2-Dimensional Model ANUGA. 2-Dimensional model ANUGA and 1-Dimensional Model HEC-RAS are used to calculate the risk of flooding from 13 major rivers in Jakarta. ANUGA can simulate physical and dynamical processes between the streamflow against river geometry and land cover to produce a 1-meter resolution inundation map. The value of streamflow as an input for the model obtained from hydrological analysis on rainfall data using hydrologic model HEC-HMS. The probabilistic streamflow derived from probabilistic rainfall using statistical distribution Log-Pearson III, Normal and Gumbel, through compatibility test using Chi Square and Smirnov-Kolmogorov. Flood event on 2007 is used as a comparison to evaluate the accuracy of model output. Property damage estimations were calculated based on flood depth for 1, 5, 10, 25, 50, and 100 years return period against housing value data from the BPS-Statistics Indonesia, Centre for Research and Development of Housing and Settlements, Ministry of Public Work Indonesia. The vulnerability factor was derived from flood insurance claim. Jakarta's flood loss estimation for the return period of 1, 5, 10, 25, 50, and 100 years, respectively are Rp 1.30 t; Rp 16.18 t; Rp 16.85 t; Rp 21.21 t; Rp 24.32 t; and Rp 24.67 t of the total value of building Rp 434.43 t.Keywords: 2D hydrodynamic model, ANUGA, flood, flood modeling
Procedia PDF Downloads 2775624 Sensor Registration in Multi-Static Sonar Fusion Detection
Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin
Abstract:
In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem
Procedia PDF Downloads 1695623 Digital Reconstruction of Museum's Statue Using 3D Scanner for Cultural Preservation in Indonesia
Authors: Ahmad Zaini, F. Muhammad Reza Hadafi, Surya Sumpeno, Muhtadin, Mochamad Hariadi
Abstract:
The lack of information about museum’s collection reduces the number of visits of museum. Museum’s revitalization is an urgent activity to increase the number of visits. The research's roadmap is building a web-based application that visualizes museum in the virtual form including museum's statue reconstruction in the form of 3D. This paper describes implementation of three-dimensional model reconstruction method based on light-strip pattern on the museum statue using 3D scanner. Noise removal, alignment, meshing and refinement model's processes is implemented to get a better 3D object reconstruction. Model’s texture derives from surface texture mapping between object's images with reconstructed 3D model. Accuracy test of dimension of the model is measured by calculating relative error of virtual model dimension compared against the original object. The result is realistic three-dimensional model textured with relative error around 4.3% to 5.8%.Keywords: 3D reconstruction, light pattern structure, texture mapping, museum
Procedia PDF Downloads 4685622 Easymodel: Web-based Bioinformatics Software for Protein Modeling Based on Modeller
Authors: Alireza Dantism
Abstract:
Presently, describing the function of a protein sequence is one of the most common problems in biology. Usually, this problem can be facilitated by studying the three-dimensional structure of proteins. In the absence of a protein structure, comparative modeling often provides a useful three-dimensional model of the protein that is dependent on at least one known protein structure. Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) mainly based on its alignment with one or more proteins of known structure (templates). Comparative modeling consists of four main steps 1. Similarity between the target sequence and at least one known template structure 2. Alignment of target sequence and template(s) 3. Build a model based on alignment with the selected template(s). 4. Prediction of model errors 5. Optimization of the built model There are many computer programs and web servers that automate the comparative modeling process. One of the most important advantages of these servers is that it makes comparative modeling available to both experts and non-experts, and they can easily do their own modeling without the need for programming knowledge, but some other experts prefer using programming knowledge and do their modeling manually because by doing this they can maximize the accuracy of their modeling. In this study, a web-based tool has been designed to predict the tertiary structure of proteins using PHP and Python programming languages. This tool is called EasyModel. EasyModel can receive, according to the user's inputs, the desired unknown sequence (which we know as the target) in this study, the protein sequence file (template), etc., which also has a percentage of similarity with the primary sequence, and its third structure Predict the unknown sequence and present the results in the form of graphs and constructed protein files.Keywords: structural bioinformatics, protein tertiary structure prediction, modeling, comparative modeling, modeller
Procedia PDF Downloads 985621 Does sustainability disclosure improve analysts’ forecast accuracy Evidence from European banks
Authors: Albert Acheampong, Tamer Elshandidy
Abstract:
We investigate the extent to which sustainability disclosure from the narrative section of European banks’ annual reports improves analyst forecast accuracy. We capture sustainability disclosure using a machine learning approach and use forecast error to proxy analyst forecast accuracy. Our results suggest that sustainability disclosure significantly improves analyst forecast accuracy by reducing the forecast error. In a further analysis, we also find that the induction of Directive 2014/95/European Union (EU) is associated with increased disclosure content, which then reduces forecast error. Collectively, our results suggest that sustainability disclosure improves forecast accuracy, and the induction of the new EU directive strengthens this improvement. These results hold after several further and robustness analyses. Our findings have implications for market participants and policymakers.Keywords: sustainability disclosure, machine learning, analyst forecast accuracy, forecast error, European banks, EU directive
Procedia PDF Downloads 78