Search results for: credit management
9855 Two Stage Fuzzy Methodology to Evaluate the Credit Risks of Investment Projects
Authors: O. Badagadze, G. Sirbiladze, I. Khutsishvili
Abstract:
The work proposes a decision support methodology for the credit risk minimization in selection of investment projects. The methodology provides two stages of projects’ evaluation. Preliminary selection of projects with minor credit risks is made using the Expertons Method. The second stage makes ranking of chosen projects using the Possibilistic Discrimination Analysis Method. The latter is a new modification of a well-known Method of Fuzzy Discrimination Analysis.Keywords: expert valuations, expertons, investment project risks, positive and negative discriminations, possibility distribution
Procedia PDF Downloads 6769854 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 679853 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan
Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed
Abstract:
This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.Keywords: attitude, Islamic credit card, religiosity, subjective norms
Procedia PDF Downloads 1449852 Evolutionary Analysis of Green Credit Regulation on Greenwashing Behavior in Dual-Layer Network
Authors: Bo-wen Zhu, Bin Wu, Feng Chen
Abstract:
It has become a common measure among governments to support green development of enterprises through Green Credit policies. In China, the Central Bank of China and other authorities even put forward corresponding assessment requirements for proportion of green credit in commercial banks. Policy changes might raise concerns about commercial banks turning a blind eye to greenwashing behavior by enterprises. The lack of effective regulation may lead to a diffusion of such behavior, and eventually result in the phenomenon of “bad money driving out good money”, which could dampen the incentive effect of Green Credit policies. This paper employs a complex network model based on an evolutionary game analysis framework involving enterprises, banks, and regulatory authorities to investigate inhibitory effect of the Green Credit regulation on enterprises’ greenwashing behavior, banks’ opportunistic and collusive behaviors. The findings are as follows: (1) Banking opportunism rises with Green Credit evaluation criteria and requirements for the proportion of credit balance. Restrictive regulation against violating banks is necessary as there is an increasing trend of banks adopting opportunistic strategy. (2) Raising penalties and probability of regulatory inspections can effectively suppress banks’ opportunistic behavior, however, it cannot entirely eradicate the opportunistic behavior on the bank side. (3) Although maintaining a certain inspection probability can inhibit enterprises from adopting greenwashing behavior, enterprises choose a catering production strategy instead. (4) One-time rewards from local government have limited effects on the equilibrium state and diffusion trend of bank regulatory decision-making.Keywords: green credit, greenwashing behavior, regulation, diffusion effect
Procedia PDF Downloads 249851 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey
Procedia PDF Downloads 1219850 Literature Review on the Barriers to Access Credit for Small Agricultural Producers and Policies to Mitigate Them in Developing Countries
Authors: Margarita Gáfaro, Karelys Guzmán, Paola Poveda
Abstract:
This paper establishes the theoretical aspects that explain the barriers to accessing credit for small agricultural producers in developing countries and identifies successful policy experiences to mitigate them. We will test two hypotheses. The first one is that information asymmetries, high transaction costs and high-risk exposure limit the supply of credit to small agricultural producers in developing countries. The second hypothesis is that low levels of financial education and productivity and high uncertainty about the returns of agricultural activity limit the demand for credit. To test these hypotheses, a review of the theoretical and empirical literature on access to rural credit in developing countries will be carried out. The first part of this review focuses on theoretical models that incorporate information asymmetries in the credit market and analyzes the interaction between these asymmetries and the characteristics of the agricultural sector in developing countries. Some of the characteristics we will focus on are the absence of collateral, the underdevelopment of the judicial systems and insurance markets, and the high dependence on climatic factors of production technologies. The second part of this review focuses on the determinants of credit demand by small agricultural producers, including the profitability of productive projects, security conditions, risk aversion or loss, financial education, and cognitive biases, among others. There are policies that focus on resolving these supply and demand constraints and managing to improve credit access. Therefore, another objective of this paper is to present a review of effective policies that have promoted access to credit for smallholders in the world. For this, information available in policy documents will be collected. This information will be complemented by interviews with officials in charge of the design and execution of these policies in a subset of selected countries. The information collected will be analyzed in light of the conceptual framework proposed in the first two parts of this section. The barriers to access to credit that each policy attempts to resolve and the factors that could explain its effectiveness will be identified.Keywords: agricultural economics, credit access, smallholder, developing countries
Procedia PDF Downloads 699849 Effect of Micro Credit Access on Poverty Reduction among Small Scale Women Entrepreneurs in Ondo State, Nigeria
Authors: Adewale Oladapo, C. A. Afolami
Abstract:
The study analyzed the effect of micro credit access on poverty reduction among small scale women entrepreneurs in Ondo state, Nigeria. Primary data were collected in a cross-sectional survey of 100 randomly selected woman entrepreneurs. These were drawn in multistage sampling process covering four local government areas (LGAS). Data collected include socio economics characteristics of respondents, access to micro credit, sources of micro credit, and constraints faced by the entrepreneur in sourcing for micro credit. Data were analyzed using descriptive statistics, Foster, Greer and Thorbecke (FGT) index of poverty measure, Gini coefficients and probit regression analysis. The study found that respondents sampled for the survey were within the age range of 31-40 years with mean age 38.6%. Mostly (56.0%) of the respondents were educated to the tune of primary school. Majority (87.0%) of the respondents were married with fairly large household size of (4-5). The poverty index analysis revealed that most (67%) of the sample respondents were poor. The result of the Probit regression analyzed showed that income was a significant variable in micro credit access, while the result of the Gini coefficient revealed a very high income inequality among the respondents. The study concluded that most of the respondents were poor and return on investment (income) was an important variable that increased the chance of respondents in sourcing for micro-credit loan and recommended that income realized by entrepreneur should be properly documented to facilitate loan accessibility.Keywords: entrepreneurs, income, micro-credit, poverty
Procedia PDF Downloads 1289848 Economic Analysis of the Impact of Commercial Agricultural Credit Scheme (CACS) on Farmers Income in Nigeria
Authors: Titus Wuyah Yunana
Abstract:
This study analyzed the impact of commercial agricultural credit scheme on income of beneficiary farmers in Kaduna State using the Net farm income and double difference method. A questionnaire was used to source the data from 306 farmers comprising of 153 beneficiaries and 153 non-beneficiaries. The results indicated that the net farm income of the commercial agricultural credit scheme beneficiaries increases from N15,006,352.00 before scheme to N24,862,585.00 after the first and the second phases of the scheme. There was also an increase in the net farm income of the non-beneficiaries from N9, 670,385.40 to N14, 391,469.00 during the scheme. The double difference method analysis indicated a positive mean income difference value between beneficiaries and nonbeneficiaries after the first and the second phases of the scheme. The study recommends expansion in the number of beneficiaries and efficient allocation and utilization of the resources. The government should also introduce more programs that will assist the farmers to increase their productivity, income and the economy as a whole.Keywords: agriculture, credit scheme, farmers, income, beneficiary
Procedia PDF Downloads 3389847 Effect of Credit Use on Technical Efficiency of Cassava Farmers in Ondo State, Nigeria
Authors: Adewale Oladapo, Carolyn A. Afolami
Abstract:
Agricultural production should be the major financial contributor to the Nigerian economy; however, the petroleum sector had taken the importance attached to this sector. The situation tends to be more worsening unless necessary attention is given to adequate credit supply among food crop farmers. This research analyses the effect of credit use on the technical efficiency of cassava farmers in Ondo State, Nigeria. Primary data were collected from two hundred randomly selected cassava farmers through a multistage sampling procedure in the study area. Data were analysed using descriptive statistics and stochastic frontier analysis (SFA). Findings revealed that 95.0% of the farmers were male while 56.0% had no formal education and were married. The SFA showed that cassava farmer’s efficiency increased with farm size, herbicide and planting material at 5%,10% and 1% respectively but decreased with fertilizer application at 1% level while farmers’ age, education, household size, experience and access to credit increased technical inefficiency at 10%. The study concluded that cassava farmers are technically inefficient in the use of farm resources and recommended that adequate and workable agricultural policy measures that will ensure availability and efficient fertilizer distribution should be put in place to increase efficiency. Furthermore, the government should encourage youth participation in cassava production and ensure improvement in farmer’s access to credit to increase farmer’s technical efficiency.Keywords: agriculture, access to credit, cassava farmers, technical efficiency
Procedia PDF Downloads 1839846 Educational Credit in Enhancing Collaboration between Universities and Companies in Smart City
Authors: Eneken Titov, Ly Hobe
Abstract:
The collaboration between the universities and companies has been a challenging topic for many years, and although we have many good experiences, those seem to be single examples between one university and company. In Ülemiste Smart City in Estonia, the new initiative was started in 2020 fall, when five Estonian universities cooperated, led by the Ülemiste City developing company Mainor, intending to provide charge-free university courses for the Ülemiste City companies and their employees to encourage university-company wider collaboration. Every Ülemiste City company gets a certain number of free educational credit hours per year to participate in university courses. A functional and simple web platform was developed to mediate university courses for the companies. From January 2021, the education credit platform is open for all Ülemiste City companies and their employees to join, and universities offer more than 9000 hours of courses (appr 150 ECTS). Just two months later, more than 20% of Ülemiste City companies (82 out of 400) have joined the project, and their employees have registered for more than in total 3000 hours courses. The first results already show that the project supports the university marketing and the continuous education mindset in general, whether 1/4 of the courses are paid courses (e.g., when the company is out of free credit).Keywords: education, educational credit, smart city, university-industry collaboration
Procedia PDF Downloads 2039845 Volatility Transmission among European Bank CDS
Authors: Aida Alemany, Laura Ballester, Ana González-Urteaga
Abstract:
From 2007 subprime crisis to the recent Eurozone debt crisis the European banking industry has experienced a terrible financial instability situation with increasing levels of CDS spreads (used as a proxy of credit risk). This paper investigates whether volatility transmission channels in European banking markets have changed after three significant crises’ events during the period January 2006 to March 2013. The global financial crisis is characterized by a unidirectional volatility shocks spillovers effect in credit risk from inside to outside the Eurozone. By contrast, the Eurozone debt crisis is revealed to be local in nature with the euro as the key element suggesting a market fragmentation between distressed peripheral and non-distressed core Eurozone countries, whereas retaining the local currency have acted as a firewall. With these findings we are able to shed light on the impact of the different crises on the European banking credit risk dynamics.Keywords: CDS spreads, credit risk, volatility spillovers, financial crisis
Procedia PDF Downloads 4689844 SME Credit Financing, Financial Development and Economic Growth: A VAR Approach to the Nigerian Economy
Authors: A. Bolaji Adesoye, Alimi Olorunfemi
Abstract:
This paper examines the impact of small and medium-scale enterprises (SMEs) credit financing and financial market development and their shocks on the output growth of Nigeria. The study estimated a VAR model for Nigeria using 1970-2013 annual data series. Unit root tests and cointegration are carried out. The study also explores IRFs and FEVDs in a system that includes output, commercial bank loan to SMEs, domestic credit to private sector by banks, money supply, lending rate and investment. Findings suggest that shocks in commercial bank credit to SMEs has a major impact on the output changes of Nigeria. Money supply shocks also have a sizeable impact on output growth variations amidst other financial instruments. Lastly, neutrality of investment does not hold in Nigeria as it also has impact on output fluctuations.Keywords: SMEs financing, financial development, investment, output, Nigeria
Procedia PDF Downloads 4089843 The Responsible Lending Principle in the Spanish Proposal of the Mortgage Credit Act
Authors: Noelia Collado-Rodriguez
Abstract:
The Mortgage Credit Directive 2014/17/UE should have been transposed the 21st of March of 2016. However, in Spain not only we did not meet the deadline, but currently we just have a preliminary draft of the so-called Mortgage Credit Act. Before we analyze the preliminary draft from the standpoint of the responsible lending principle, we should point out that this preliminary draft is not a consumer law statute. Through the text of the preliminary draft we cannot see any reference to the consumer, but we see references to the borrower. Furthermore, and more important, the application of this statute would not be, according to its text, circumscribed to borrowers who address the credit to a personal purpose. Instead, it seems that the preliminary draft aims to be one more of the rules of banking transparency that already exists in the Spanish legislation. In this sense, we can also mention that the sanctions contained in the preliminary draft are referred to these laws of banking ordination and oversight – where the rules of banking transparency belong –. This might be against the spirit of the Mortgage Credit Directive, which allows the extension of its scope to credits aimed to acquire other immovable property beyond the residential one. However, the borrower has to be a consumer accordingly with the Directive. It is quite relevant that the prospective Spanish Mortgage Credit Act might not be a consumer protection statute; specially, from the perspective of the responsible lending principle. The responsible lending principle is a consumer law principle, which is based on the structural weakness of the consumer’s position in the relationship with the creditor. Therefore, it cannot surprise that the Spanish preliminary draft does not state any of the pre contractual conducts that express the responsible lending principle. We are referring to the lender’s duty to provide adequate explanations; the consumer’s suitability test; the lender’s duty to assess consumer’s creditworthiness; the consultation of databases to perform the creditworthiness assessment; and the most important, the lender’s prohibition to grant credit in case of a negative creditworthiness assessment. The preliminary draft just entitles the Economy Ministry to enact provisions related to those topics. Thus, the duties and rules derived from the responsible lending principle included in the EU Directive will not have legal character in Spain, being mere administrative regulations. To conclude, the two main questions that come up after reading the Spanish Mortgage Credit Act preliminary draft are, in the first place, what kind of consequences might arise from the Mortgage Credit Act if finally it is not a consumer law statute. And in the second place, what might be the consequences for the responsible lending principle of being developed by administrative regulations instead of by legislation.Keywords: consumer credit, consumer protection, creditworthiness assessment, responsible lending
Procedia PDF Downloads 2889842 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 2359841 Relationship Financing: A Process of Interpretative Phenomenological Analysis
Authors: Y. Fandja, O. Colot, M. Croquet
Abstract:
Small and medium-sized firms (SMEs) face difficulties in accessing bank credit. Bank credit is actually the main source of external financing for SMEs. In general, SMEs are risky businesses because of the potential opacity maintained by the leader in the management of affairs, the agency conflicts between business owners and third-party funders and the potential opportunism of the leader due to the incompleteness of the contracts. These elements accentuate the problems of information asymmetries between SMEs and bankers leading to capital rationing. Moreover, the last economic crisis reinforced this rationing of capital. However, a long-term relationship between SMEs and their bank would enable the latter to accumulate a set of relevant information allowing the reduction of information asymmetry and, consequently, the reduction of credit rationing. The objective of this research is to investigate the lived experience of SMEs loan officers in their relationships with their clients in order to understand how these relationships can affect the financing structure of these SMEs. To carry out this research, an Interpretative Phenomenological Analysis is implemented. This approach is part of the constructivist paradigm and refers to the subjective narratives of the individual rather than to an objective description of the facts. The role of the researcher is to explore the lived experience of the interviewees and to try to understand the meaning they give to this experience. Currently, several sixty-minute semi-structured interviews with loan officers for SMEs have been conducted. The analysis of the content of these interviews brought out three main themes. First, the relationship between the credit officer and the company manager is complex because the credit officer is not aware of establishing a personal relationship with his client. Second; the emotional involvement in the bank financing decision is present and third, the trust in the relationship between the credit officer and his client is very important. The originality of this research is to use the interpretative phenomenological analysis more specific to psychology and sociology in order to approach in a different way the problem of the financing of SMEs through their particular relations with the bankers.Keywords: financing structure, interpretative phenomenological analysis, relationship financing, SME
Procedia PDF Downloads 1599840 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 5429839 Recent Volatility in Islamic Banking Sector of Bangladesh: Nexus Between Economy, Religion and Politics
Authors: Abdul Kader
Abstract:
This paper attempts to investigate several contributory factors to recent volatility in the Islamic Banking sector of Bangladesh. In particular, the study explores corporate governance, credit management, credit regulations, inept board of directors, using religious sentiment as a means to deceive general people, and the degree of political interference as potential contributory factors. To find the correlation among different variables, semi-structured questionnaires were distributed among the clients, bank managers, some Banking scholars and ex-members of the board of directors of three Islamic Banks in Bangladesh. Later, ten interviews were collected from key informants to gain in-depth information about the present mismanagement of Islamic Banks in Bangladesh. After then, data were analyzed using statistical software and substantiated by secondary sources like newspapers, reports and investigative reports aired in screen media. The paper found a correlation between almost all contributory factors and recent unstable conditions in the Islamic banking sector. After performing regression analysis, this paper found a more significant relationship between some of the contributory factors with Banking volatility than others. For instance, credit management, inept board of directors, depriving customers of proving no profit in the name of business—no interest-- and political interference have a strong significant positive correlation with the present poor condition of Islamic Banking. This paper concludes that while internal management is important in recovering the losses, the government needs to ensure framing better policy for the Islamic Banking system, Central Bank needs to supervise and monitor all Islamic banks meticulously and loan receivers must go through the impartial evaluation and approved by the representatives of the Central Shariah Board. This paper also recommends that there is a need to strengthen the auditing system and improve regulatory oversight of the Islamic Banks in Bangladesh. Policy recommendations that this paper put forward could provide an outline for dealing with the existing challenging condition of Islamic Banks and these could be applied to similar problems in other countries where the Islamic Banking model exists.Keywords: Islamic bank, volatility in banking sector, shariah law, credit management, political interference
Procedia PDF Downloads 789838 Credit Risk Evaluation of Dairy Farming Using Fuzzy Logic
Authors: R. H. Fattepur, Sameer R. Fattepur, D. K. Sreekantha
Abstract:
Dairy Farming is one of the key industries in India. India is the leading producer and also the consumer of milk, milk-based products in the world. In this paper, we have attempted to the replace the human expert system and to develop an artificial expert system prototype to increase the speed and accuracy of decision making dairy farming credit risk evaluation. Fuzzy logic is used for dealing with uncertainty, vague and acquired knowledge, fuzzy rule base method is used for representing this knowledge for building an effective expert system.Keywords: expert system, fuzzy logic, knowledge base, dairy farming, credit risk
Procedia PDF Downloads 3629837 Inflation Tail Risks and Asset Pricing
Authors: Sebastian Luber
Abstract:
The study demonstrates that tail inflation risk is priced into stock returns and credit spreads. This holds true even when controlling for current and historical inflation moments. The analysis employs inflation caps and floors to obtain the distribution of future inflation under the risk-neutral measure. Credit spreads decrease as the mean and median of future inflation rise, but they respond positively to tail risks. Conversely, stocks serve as a robust hedge against future inflation. Stock returns increase with a higher mean and median of future inflation and rising inflationary tail risk, while they decrease with rising deflationary tail risk.Keywords: asset pricing, inflation expectations, tail risk, stocks, inflation derivatives, credit
Procedia PDF Downloads 229836 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 2949835 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 1489834 EarlyWarning for Financial Stress Events:A Credit-Regime Switching Approach
Abstract:
We propose a new early warning model for predicting financial stress events for a given future time. In this model, we examine whether credit conditions play an important role as a nonlinear propagator of shocks when predicting the likelihood of occurrence of financial stress events for a given future time. This propagation takes the form of a threshold regression in which a regime change occurs if credit conditions cross a critical threshold. Given the new early warning model for financial stress events, we evaluate the performance of this model and currently available alternatives, such as the model from signal extraction approach, and linear regression model. In-sample forecasting results indicate that the three types of models are useful tools for predicting financial stress events while none of them outperforms others across all criteria considered. The out-of-sample forecasting results suggest that the credit-regime switching model performs better than the two others across all criteria and all forecasting horizons considered.Keywords: cut-off probability, early warning model, financial crisis, financial stress, regime-switching model, forecasting horizons
Procedia PDF Downloads 4359833 Regulation of the Commercial Credits in the Foreign Exchange Operations
Authors: Marija Vicic
Abstract:
The purpose of commercial credit regulation in an unified way under Law on Foreign Exchange Operations in Republic of Serbia allows an easier state monitoring of credit operations performed by non-professionals on foreign exchange market. By broadly defining the term “commercial credits“, the state (i.e. National Bank of Serbia) is given the authority to monitor the performance of all obligations under commercial contracts in which the obligations are not performed simultaneously. In the first part of the paper, the author analyses the economic gist of commercial credits with the purpose of giving an insight into their special treatment. The author examines the term „commercial credits“ given in Law on foreign exchange operations and the difference between financial credits and irregular commercial credits (exports and imports of goods and services deemed to be commercial credits) is particularly highlighted. In the second part, the author emphasizes the specifics of commercial credit contracts, especially the effects of special requests for the parties to these contracts to notify National Bank of Serbia and specific regulations regarding maturity of obligations under these commercial credits and the assignment and compensation of the said contracts.Keywords: commercial credit, foreign exchange operations, commercial transactions, deferred payment, advance payment, (non) resident
Procedia PDF Downloads 4219832 A Regional Analysis on Co-movement of Sovereign Credit Risk and Interbank Risks
Authors: Mehdi Janbaz
Abstract:
The global financial crisis and the credit crunch that followed magnified the importance of credit risk management and its crucial role in the stability of all financial sectors and the whole of the system. Many believe that risks faced by the sovereign sector are highly interconnected with banking risks and most likely to trigger and reinforce each other. This study aims to examine (1) the impact of banking and interbank risk factors on the sovereign credit risk of Eurozone, and (2) how the EU Credit Default Swaps spreads dynamics are affected by the Crude Oil price fluctuations. The hypothesizes are tested by employing fitting risk measures and through a four-staged linear modeling approach. The sovereign senior 5-year Credit Default Swap spreads are used as a core measure of the credit risk. The monthly time-series data of the variables used in the study are gathered from the DataStream database for a period of 2008-2019. First, a linear model test the impact of regional macroeconomic and market-based factors (STOXX, VSTOXX, Oil, Sovereign Debt, and Slope) on the CDS spreads dynamics. Second, the bank-specific factors, including LIBOR-OIS spread (the difference between the Euro 3-month LIBOR rate and Euro 3-month overnight index swap rates) and Euribor, are added to the most significant factors of the previous model. Third, the global financial factors including EURO to USD Foreign Exchange Volatility, TED spread (the difference between 3-month T-bill and the 3-month LIBOR rate based in US dollars), and Chicago Board Options Exchange (CBOE) Crude Oil Volatility Index are added to the major significant factors of the first two models. Finally, a model is generated by a combination of the major factor of each variable set in addition to the crisis dummy. The findings show that (1) the explanatory power of LIBOR-OIS on the sovereign CDS spread of Eurozone is very significant, and (2) there is a meaningful adverse co-movement between the Crude Oil price and CDS price of Eurozone. Surprisingly, adding TED spread (the difference between the three-month Treasury bill and the three-month LIBOR based in US dollars.) to the analysis and beside the LIBOR-OIS spread (the difference between the Euro 3M LIBOR and Euro 3M OIS) in third and fourth models has been increased the predicting power of LIBOR-OIS. Based on the results, LIBOR-OIS, Stoxx, TED spread, Slope, Oil price, OVX, FX volatility, and Euribor are the determinants of CDS spreads dynamics in Eurozone. Moreover, the positive impact of the crisis period on the creditworthiness of the Eurozone is meaningful.Keywords: CDS, crude oil, interbank risk, LIBOR-OIS, OVX, sovereign credit risk, TED
Procedia PDF Downloads 1449831 Credit Risk and Financial Stability
Authors: Zidane Abderrezzaq
Abstract:
In contrast to recent successful developments in macro monetary policies, the modelling, measurement and management of systemic financial stability has remained problematical. Indeed, the focus of most effort has been on improving individual, rather than systemic, bank risk management; the Basel II objective has been to bring regulatory bank capital into line with the (sophisticated) banks’ assessment of their own economic capital. Even at the individual bank level there are concerns over appropriate diversification allowances, differing objectives of banks and regulators, the need for a buffer over regulatory minima, and the distinction between expected and unexpected losses (EL and UL). At the systemic level the quite complex and prescriptive content of Basel II raises dangers of ‘endogenous risk’ and procyclicality. Simulations suggest that this latter could be a serious problem. In an extension to the main analysis we study how liquidity effects interact with banking structure to produce a greater chance of systemic breakdown. We finally consider how the risk of contagion might depend on the degree of asymmetry (tiering) inherent in the structure of the banking system. A number of our results have important implications for public policy, which this paper also draws out.Keywords: systemic stability, financial regulation, credit risk, systemic risk
Procedia PDF Downloads 3809830 Smallholder’s Agricultural Water Management Technology Adoption, Adoption Intensity and Their Determinants: The Case of Meda Welabu Woreda, Oromia, Ethiopia
Authors: Naod Mekonnen Anega
Abstract:
The very objective of this paper was to empirically identify technology tailored determinants to the adoption and adoption intensity (extent of use) of agricultural water management technologies in Meda Welabu Woreda, Oromia regional state, Ethiopia. Meda Welabu Woreda which is one of the administrative Woredas of the Oromia regional state was selected purposively as this Woreda is one of the Woredas in the region where small scale irrigation practices and the use of agricultural water management technologies can be found among smallholders. Using the existence water management practices (use of water management technologies) and land use pattern as a criterion Genale Mekchira Kebele is selected to undergo the study. A total of 200 smallholders were selected from the Kebele using the technique developed by Krejeie and Morgan. The study employed the Logit and Tobit models to estimate and identify the economic, social, geographical, household, institutional, psychological, technological factors that determine adoption and adoption intensity of water management technologies. The study revealed that while 55 of the sampled households are adopters of agricultural water management technology the rest 140 were non adopters of the technologies. Among the adopters included in the sample 97% are using river diversion technology (traditional) with traditional canal while the rest 7% percent are using pond with treadle pump technology. The Logit estimation reveled that while adoption of river diversion is positively and significantly affected by membership to local institutions, active labor force, income, access to credit and land ownership, adoption of treadle pump technology is positively and significantly affected by family size, education level, access to credit, extension contact, income, access to market, and slope. The Logit estimation also revealed that whereas, group action requirement, distance to farm, and size of active labor force negative and significantly influenced adoption of river diversion, age and perception has negatively and significantly influenced adoption decision of treadle pump technology. On the other hand, the Tobit estimation reveled that while adoption intensity (extent of use) of agricultural water management is positively and significantly affected by education, credit, and extension contact, access to credit, access to market and income. This study revealed that technology tailored study on adoption of Agricultural water management technologies (AWMTs) should be considered to indentify and scale up best agricultural water management practices. In fact, in countries like Ethiopia, where there is difference in social, economic, cultural, environmental and agro ecological conditions even within the same Kebele technology tailored study that fit the condition of each Kebele would help to identify and scale up best practices in agricultural water management.Keywords: water management technology, adoption, adoption intensity, smallholders, technology tailored approach
Procedia PDF Downloads 4549829 Fintech Credit and Bank Efficiency Two-way Relationship: A Comparison Study Across Country Groupings
Authors: Tan Swee Liang
Abstract:
This paper studies the two-way relationship between fintech credit and banking efficiency using the Generalized panel Method of Moment (GMM) estimation in structural equation modeling (SEM). Banking system efficiency, defined as its ability to produce the existing level of outputs with minimal inputs, is measured using input-oriented data envelopment analysis (DEA), where the whole banking system of an economy is treated as a single DMU. Banks are considered an intermediary between depositors and borrowers, utilizing inputs (deposits and overhead costs) to provide outputs (increase credits to the private sector and its earnings). Analysis of the interrelationship between fintech credit and bank efficiency is conducted to determine the impact in different country groupings (ASEAN, Asia and OECD), in particular the banking system response to fintech credit platforms. Our preliminary results show that banks do respond to the greater pressure caused by fintech platforms to enhance their efficiency, but differently across the different groups. The author’s earlier research on ASEAN-5 high bank overhead costs (as a share of total assets) as the determinant of economic growth suggests that expenses may not have been channeled efficiently to income-generating activities. One practical implication of the findings is that policymakers should enable alternative financing, such as fintech credit, as a warning or encouragement for banks to improve their efficiency.Keywords: fintech lending, banking efficiency, data envelopment analysis, structural equation modeling
Procedia PDF Downloads 919828 Financial Liberalization and Allocation of Bank Credit in Malaysia
Authors: Chow Fah Yee, Eu Chye Tan
Abstract:
The main purpose of developing a modern and sophisticated financial system is to mobilize and allocate the country’s resources for productive uses and in the process contribute to economic growth. Financial liberalization introduced in Malaysia in 1978 was said to be a step towards this goal. According to Mc-Kinnon and Shaw, the deregulation of a country’s financial system will create a more efficient and competitive market driven financial sector; with savings being channelled to the most productive users. This paper aims to assess whether financial liberalization resulted in bank credit being allocated to the more productive users, for the case of Malaysia by: firstly, using Chi-square test to if there exists a relationship between financial liberalization and bank lending in Malaysia. Secondly, to analyze on a comparative basis, the share of loans secured by 9 major economic sectors, using data on bank loans from 1975 to 2003. Lastly, present value analysis and rank correlation was used to determine if the recipients of bigger loans are the more efficient users. Chi-square test confirmed the generally observed trend of an increase in bank credit with the adoption of financial liberalization. While the comparative analysis of loans showed that the bulk of credit were allocated to service sectors, consumer loans and property related sectors, at the expense of industry. Results for rank correlation analysis showed that there is no relationship between the more productive users and amount of loans obtained. This implies that the recipients (sectors) that received more loans were not the more efficient sectors.Keywords: allocation of resources, bank credit, financial liberalization, economics
Procedia PDF Downloads 4469827 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data
Authors: Minjuan Sun
Abstract:
Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.Keywords: credit score, digital footprint, Fintech, machine learning
Procedia PDF Downloads 1609826 Countercyclical Capital Buffer in the Polish Banking System
Authors: Mateusz Mokrogulski, Piotr Śliwka
Abstract:
The aim of this paper is the identification of periods of excessive credit growth in the Polish banking sector in years 2007-2014 using different methodologies. Due to the lack of precise guidance in CRD IV regarding methods of calculating the credit gap and related deviations from the long-term trends, a few filtering methods are applied, e.g. Hodrick-Prescott and Baxter-King. The solutions based on the switching model are also proposed. The next step represent computations of both the credit gap, and the counter cyclical capital buffer (CCB) rates on a quarterly basis. The calculations are carried out for the entire banking sector in Poland, as well as for its components (commercial and co-operative banks), and different types of loans. The calculations show vividly that in the analysed period there were the times of excessive credit growth. However, the results are different for the above mentioned sub-sectors. Of paramount importance here are mortgage loans, where the outcomes are distorted by high exchange rate fluctuations. The research on the CCB is now going to gain popularity as the buffer will soon become one of the tools of the macro prudential policy under CRD IV. Although the presented method is focused on the Polish banking sector, it can also be applied to other member states. Especially to the Central and Eastern European countries, that are usually characterized by smaller banking sectors compared to EU-15.Keywords: countercyclical capital buffer, CRD IV, filtering methods, mortgage loans
Procedia PDF Downloads 322