Search results for: broyden fletcher goldfarb shanno (BFGS)quasi newton
114 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes
Authors: Aymen Laadhari, Gábor Székely
Abstract:
This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.Keywords: finite element method, implicit, level set, membrane, Newton method
Procedia PDF Downloads 304113 Image Reconstruction Method Based on L0 Norm
Authors: Jianhong Xiang, Hao Xiang, Linyu Wang
Abstract:
Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB.Keywords: smoothed L0, compressed sensing, image processing, sparse reconstruction
Procedia PDF Downloads 115112 Investigation of the Evolutionary Equations of the Two-Planetary Problem of Three Bodies with Variable Masses
Authors: Zhanar Imanova
Abstract:
Masses of real celestial bodies change anisotropically and reactive forces appear, and they need to be taken into account in the study of these bodies' dynamics. We studied the two-planet problem of three bodies with variable masses in the presence of reactive forces and obtained the equations of perturbed motion in Newton’s form equations. The motion equations in the orbital coordinate system, unlike the Lagrange equation, are convenient for taking into account the reactive forces. The perturbing force is expanded in terms of osculating elements. The expansion of perturbing functions is a time-consuming analytical calculation and results in very cumber some analytical expressions. In the considered problem, we obtained expansions of perturbing functions by small parameters up to and including the second degree. In the non resonant case, we obtained evolution equations in the Newton equation form. All symbolic calculations were done in Wolfram Mathematica.Keywords: two-planet, three-body problem, variable mass, evolutionary equations
Procedia PDF Downloads 64111 A TFETI Domain Decompositon Solver for von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening
Authors: Martin Cermak, Stanislav Sysala
Abstract:
In this paper we present the efficient parallel implementation of elastoplastic problems based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. This approach allow us to use parallel solution and compute this nonlinear problem on the supercomputers and decrease the solution time and compute problems with millions of DOFs. In our approach we consider an associated elastoplastic model with the von Mises plastic criterion and the combination of linear isotropic-kinematic hardening law. This model is discretized by the implicit Euler method in time and by the finite element method in space. We consider the system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI. The implementation of this problem is realized in our in-house MatSol packages developed in MATLAB.Keywords: isotropic-kinematic hardening, TFETI, domain decomposition, parallel solution
Procedia PDF Downloads 420110 Consumption of Animal and Vegetable Protein on Muscle Power in Road Cyclists from 18 to 20 Years in Bogota, Colombia
Authors: Oscar Rubiano, Oscar Ortiz, Natalia Morales, Lida Alfonso, Johana Alvarado, Adriana Gutierrez, Daniel Botero
Abstract:
Athletes who usually use protein supplements, are those who practice strength and power sports, whose goal is to achieve a large muscle mass. However, it has also been explored in sports or endurance activities such as cycling, and where despite requiring high power, prominent muscle development can impede good competitive performance due to the determinant of body mass for good performance of the athlete body. This research shows, the effect with protein supplements establishes a protein - muscle mass ratio, although in a lesser proportion the relationship between protein types and muscle power. Thus, we intend to explore as a first approximation, the behavior of muscle power in lower limbs after the intake of two protein supplements from different sources. The aim of the study was to describe the behavior of muscle power in lower limbs after the consumption of animal protein (AP) and vegetable protein (VP) in four route cyclists from 18 to 20 years of the Bogota cycling league. The methodological design of this study is quantitative, with a non-probabilistic sampling, based on a pre-experimental model. The jumping power was evaluated before and after the intervention by means of the squat jump test (SJ), Counter movement jump (CMJ) and Abalacov (AB). Cyclists consumed a drink with whey protein and a soy isolate after training four times a week for three months. The amount of protein in each cyclist, was calculated according to body weight (0.5 g / kg of muscle mass). The results show that subjects who consumed PV improved muscle strength and landing strength. In contrast, the power and landing force decreased for subjects who consumed PA. For the group that consumed PV, the increase was positive at 164.26 watts, 135.70 watts and 33.96 watts for the AB, SJ and CMJ jumps respectively. While for PA, the differences of the medians were negative at -32.29 watts, -82.79 watts and -143.86 watts for the AB, SJ and CMJ jumps respectively. The differences of the medians in the AB jump were positive for both the PV (121.61 Newton) and PA (454.34 Newton) cases, however, the difference was greater for PA. For the SJ jump, the difference for the PA cases was 371.52 Newton, while for the PV cases the difference was negative -448.56 Newton, so the difference was greater in the SJ jump for PA. In jump CMJ, the differences of the medians were negative for the cases of PA and PV, being -7.05 for PA and - 958.2 for PV. So the difference was greater for PA. The conclusion of this study shows that serum protein supplementation showed no improvement in muscle power in the lower limbs of the cyclists studied, which could suggest that whey protein does not have a beneficial effect on performance in terms of power, either, showed an impact on body composition. In contrast, supplementation with soy isolate showed positive effects on muscle power, body.Keywords: animal protein (AP), muscle power, supplements, vegetable protein (VP)
Procedia PDF Downloads 177109 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.Keywords: melting furnace, inverse heat transfer, enthalpy method, levenberg–marquardt method
Procedia PDF Downloads 324108 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams
Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha
Abstract:
The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation
Procedia PDF Downloads 431107 ICT-based Methodologies and Students’ Academic Performance and Retention in Physics: A Case with Newton Laws of Motion
Authors: Gabriel Ocheleka Aniedi A. Udo, Patum Wasinda
Abstract:
The study was carried out to appraise the impact of ICT-based teaching methodologies (video-taped instructions and Power Point presentations) on academic performance and retention of secondary school students in Physics, with particular interest in Newton Laws of Motion. The study was conducted in Cross River State, Nigeria, with a quasi-experimental research design using non-randomised pre-test and post-test control group. The sample for the study consisted of 176 SS2 students drawn from four intact classes of four secondary schools within the study area. Physics Achievement Test (PAT), with a reliability coefficient of 0.85, was used for data collection. Mean and Analysis of Covariance (ANCOVA) was used in the treatment of the obtained data. The results of the study showed that there was a significant difference in the academic performance and retention of students taught using video-taped instructions and those taught using power point presentations. Findings of the study showed that students taught using video-taped instructions had a higher academic performance and retention than those taught using power point presentations. The study concludes that the use of blended ICT-based teaching methods can improve learner’s academic performance and retention.Keywords: video taped instruction (VTI), power point presentation (PPT), academic performance, retention, physics
Procedia PDF Downloads 91106 Heritage and the Sustainable Development Goals: Successful Practices and Lessons Learnt from the Uk’s Global Challenges Research Fund and Newton Research Portfolios
Authors: Francesca Giliberto
Abstract:
Heritage and culture, in general, plays a central role in addressing the complexity and broad variety of global development challenges, ranging from environmental degradation and refugee and humanitarian crisis to extreme poverty, food insecurity, persisting inequalities, and unsustainable urbanisation, just to mention some examples. Nevertheless, the potential of harnessing heritage to address global challenges has remained largely under-represented and underestimated in the most recent international development agenda adopted by the United Nations in 2015 (2030 Agenda). Among the 17 sustainable development goals (SDGs) and 169 associated targets established, only target 11.4 explicitly mentions heritage, stating that efforts should be strengthened “to protect and safeguard the world’s cultural and natural heritage in order to make our cities safe, resilient, and sustainable”. However, this global target continues to reflect a rather limited approach to heritage for development. This paper will provide a critical reflection on the contribution that using (tangible and intangible) heritage in international research can make to tackling global challenges and supporting the achievement of all the SDGs. It will present key findings and insights from the heritage strand of PRAXIS, a research project from the University of Leeds, which focuses on Arts and Humanities research across 300+ projects funded through the Global Challenges Research Fund and Newton Fund. In particular, this paper will shed light on successful practices and lessons learned from 87 research projects funded through the Global Challenges Research Fund and Newton Fund portfolios in 49 countries eligible for Official Development Assistance (ODA) between 2014 and 2021. Research data were collected through a desk assessment of project data available on UKRI Gateway to Research, online surveys, and qualitative interviews with research principal investigators and partners. The findings of this research provide evidence of how heritage and heritage research can foster innovative, interdisciplinary, inclusive, and transformative sustainable development and the achievement of the SDGs in ODA countries and beyond. This paper also highlights current challenges and research gaps that still need to be overcome to rethink current approaches and transform our development models to be more integrated, human-centred, and sustainable.Keywords: global challenges, heritage, international research, sustainable development
Procedia PDF Downloads 74105 Exploring the Difficulties of Acceleration Concept from the Perspective of Historical Textual Analysis
Authors: Yun-Ju Chiu, Feng-Yi Chen
Abstract:
Kinematics is the beginning to learn mechanics in physics course. The concept of acceleration plays an important role in learning kinematics. Teachers usually instruct the conception through the formulas and graphs of kinematics and the well-known law F = ma. However, over the past few decades, a lot of researchers reveal numerous students’ difficulties in learning acceleration. One of these difficulties is that students frequently confuse acceleration with velocity and force. Why is the concept of acceleration so difficult to learn? The aim of this study is to understand the conceptual evolution of acceleration through the historical textual analysis. Text analysis and one-to-one interviews with high school students and teachers are used in this study. This study finds the history of science constructed from textbooks is usually quite different from the real evolution of history. For example, most teachers and students believe that the best-known law F = ma was written down by Newton. The expression of the second law is not F = ma in Newton’s best-known book Principia in 1687. Even after more than one hundred years, a famous Cambridge textbook titled An Elementary Treatise on Mechanics by Whewell of Trinity College did not express this law as F = ma. At that time of Whewell, the early mid-nineteenth century Britain, the concept of acceleration was not only ambiguous but also confused with the concept of force. The process of learning the concept of acceleration is analogous to its conceptual development in history. The study from the perspective of historical textual analysis will promote the understanding of the concept learning difficulties, the development of professional physics teaching, and the improvement of the context of physics textbooks.Keywords: acceleration, textbooks, mechanics, misconception, history of science
Procedia PDF Downloads 252104 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices
Authors: M. O. Oke, T. S. Workneh
Abstract:
Drying behaviour of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80oC) and ten sweet potato varieties sliced to 5 mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27-6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.Keywords: sweet potato slice, drying models, moisture ratio, moisture diffusivity, activation energy
Procedia PDF Downloads 517103 A Variant of Newton's Method with Free Second-Order Derivative
Authors: Young Hee Geum
Abstract:
In this paper, we present the iterative method and determine the control parameters to converge cubically for solving nonlinear equations. In addition, we derive the asymptotic error constant.Keywords: asymptotic error constant, iterative method, multiple root, root-finding, order of convergent
Procedia PDF Downloads 293102 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100
Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono
Abstract:
Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength
Procedia PDF Downloads 310101 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 445100 Transformations between Bivariate Polynomial Bases
Authors: Dimitris Varsamis, Nicholas Karampetakis
Abstract:
It is well known that any interpolating polynomial P(x,y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis etc. The aim of this paper is twofold: a) to present transformations between the coordinates of the polynomial P(x,y) in the aforementioned basis and b) to present transformations between these bases.Keywords: bivariate interpolation polynomial, polynomial basis, transformations, interpolating polynomial
Procedia PDF Downloads 40599 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.Keywords: cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method
Procedia PDF Downloads 20098 Studies on Space-Based Laser Targeting System for the Removal of Orbital Space Debris
Authors: Krima M. Rohela, Raja Sabarinath Sundaralingam
Abstract:
Humans have been launching rockets since the beginning of the space age in the late 1950s. We have come a long way since then, and the success rate for the launch of rockets has increased considerably. With every successful launch, there is a large amount of junk or debris which is released into the upper layers of the atmosphere. Space debris has been a huge concern for a very long time now. This includes the rocket shells released from the launch and the parts of defunct satellites. Some of this junk will come to fall towards the Earth and burn in the atmosphere. But most of the junk goes into orbit around the Earth, and they remain in orbits for at least 100 years. This can cause a lot of problems to other functioning satellites and may affect the future manned missions to space. The main concern of the space-debris is the increase in space activities, which leads to risks of collisions if not taken care of soon. These collisions may result in what is known as Kessler Syndrome. This debris can be removed by a space-based laser targeting system. Hence, the matter is investigated and discussed. The first step in this involves launching a satellite with a high-power laser device into space, above the debris belt. Then the target material is ablated with a focussed laser beam. This step of the process is highly dependent on the attitude and orientation of the debris with respect to the Earth and the device. The laser beam will cause a jet of vapour and plasma to be expelled from the material. Hence, the force is applied in the opposite direction, and in accordance with Newton’s third law of motion, this will cause the material to move towards the Earth and get pulled down due to gravity, where it will get disintegrated in the upper layers of the atmosphere. The larger pieces of the debris can be directed towards the oceans. This method of removal of the orbital debris will enable safer passage for future human-crewed missions into space.Keywords: altitude, Kessler syndrome, laser ablation, Newton’s third law of motion, satellites, Space debris
Procedia PDF Downloads 14997 Fully Eulerian Finite Element Methodology for the Numerical Modeling of the Dynamics of Heart Valves
Authors: Aymen Laadhari
Abstract:
During the last decade, an increasing number of contributions have been made in the fields of scientific computing and numerical methodologies applied to the study of the hemodynamics in the heart. In contrast, the numerical aspects concerning the interaction of pulsatile blood flow with highly deformable thin leaflets have been much less explored. This coupled problem remains extremely challenging and numerical difficulties include e.g. the resolution of full Fluid-Structure Interaction problem with large deformations of extremely thin leaflets, substantial mesh deformations, high transvalvular pressure discontinuities, contact between leaflets. Although the Lagrangian description of the structural motion and strain measures is naturally used, many numerical complexities can arise when studying large deformations of thin structures. Eulerian approaches represent a promising alternative to readily model large deformations and handle contact issues. We present a fully Eulerian finite element methodology tailored for the simulation of pulsatile blood flow in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets. Our method enables to use a fluid solver on a fixed mesh, whilst being able to easily model the mechanical properties of the valve. We introduce a semi-implicit time integration scheme based on a consistent NewtonRaphson linearization. A variant of the classical Newton method is introduced and guarantees a third-order convergence. High-fidelity computational geometries are built and simulations are performed under physiological conditions. We address in detail the main features of the proposed method, and we report several experiments with the aim of illustrating its accuracy and efficiency.Keywords: eulerian, level set, newton, valve
Procedia PDF Downloads 27896 The Effect of Closed Circuit Television Image Patch Layout on Performance of a Simulated Train-Platform Departure Task
Authors: Aaron J. Small, Craig A. Fletcher
Abstract:
This study investigates the effect of closed circuit television (CCTV) image patch layout on performance of a simulated train-platform departure task. The within-subjects experimental design measures target detection rate and response latency during a CCTV visual search task conducted as part of the procedure for safe train dispatch. Three interface designs were developed by manipulating CCTV image patch layout. Eye movements, perceived workload and system usability were measured across experimental conditions. Task performance was compared to identify significant differences between conditions. The results of this study have not been determined.Keywords: rail human factors, workload, closed circuit television, platform departure, attention, information processing, interface design
Procedia PDF Downloads 16895 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks
Procedia PDF Downloads 40194 Specification and Unification of All Fundamental Forces Exist in Universe in the Theoretical Perspective – The Universal Mechanics
Authors: Surendra Mund
Abstract:
At the beginning, the physical entity force was defined mathematically by Sir Isaac Newton in his Principia Mathematica as F ⃗=(dp ⃗)/dt in form of his second law of motion. Newton also defines his Universal law of Gravitational force exist in same outstanding book, but at the end of 20th century and beginning of 21st century, we have tried a lot to specify and unify four or five Fundamental forces or Interaction exist in universe, but we failed every time. Usually, Gravity creates problems in this unification every single time, but in my previous papers and presentations, I defined and derived Field and force equations for Gravitational like Interactions for each and every kind of central systems. This force is named as Variational Force by me, and this force is generated by variation in the scalar field density around the body. In this particular paper, at first, I am specifying which type of Interactions are Fundamental in Universal sense (or in all type of central systems or bodies predicted by my N-time Inflationary Model of Universe) and then unify them in Universal framework (defined and derived by me as Universal Mechanics in a separate paper) as well. This will also be valid in Universal dynamical sense which includes inflations and deflations of universe, central system relativity, Universal relativity, ϕ-ψ transformation and transformation of spin, physical perception principle, Generalized Fundamental Dynamical Law and many other important Generalized Principles of Generalized Quantum Mechanics (GQM) and Central System Theory (CST). So, In this article, at first, I am Generalizing some Fundamental Principles, and then Unifying Variational Forces (General form of Gravitation like Interactions) and Flow Generated Force (General form of EM like Interactions), and then Unify all Fundamental Forces by specifying Weak and Strong Interactions in form of more basic terms - Variational, Flow Generated and Transformational Interactions.Keywords: Central System Force, Disturbance Force, Flow Generated Forces, Generalized Nuclear Force, Generalized Weak Interactions, Generalized EM-Like Interactions, Imbalance Force, Spin Generated Forces, Transformation Generated Force, Unified Force, Universal Mechanics, Uniform And Non-Uniform Variational Interactions, Variational Interactions
Procedia PDF Downloads 5093 Bible of Hospitality: Considering the Hotel Business through the Prism of the Evangelical Approach
Authors: Rimma Kiseleva
Abstract:
The hotel business has a long history. The basis of the service of hospitality industry enterprises is the service, attitude, and consciousness of employees as hospitable “hosts of the house”. It is generally accepted that the founder and main expert of quality service is Caesar Ritz, “the king of hoteliers and the hotelier of kings.” However when deeply immersed in the history of the universe, it turns out that the very first book about hospitality, standardization of guest reception processes and the basics of better service is nothing more than the Bible. A unique study on the topic of considering the Church as a hotel, as well as the hotel business itself as the most gracious work of Jesus Christ Himself, which is confirmed by verses from the Gospel, includes the following approaches: analytical, comparative, empirical. The study shows that it was Jesus Christ who became the founder of the rules of the most sacrificial service, real service to people, filled with brotherly love, humility, love for strangers, those qualities that are the foundation, the “three pillars” of the hospitality industry. And also that the hotel is the most charitable cause, which is still relevant today.Keywords: Augustine Aurelius, Bible, Gospel, guest house, hospitality, hotel, humility, inn, Jesus Christ, Joseph Fletcher, New Testament, Paul Tillich, service, strangeness
Procedia PDF Downloads 5292 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation
Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab
Abstract:
This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation
Procedia PDF Downloads 13891 A Time-Reducible Approach to Compute Determinant |I-X|
Authors: Wang Xingbo
Abstract:
Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.Keywords: algorithm, determinant, computation, eigenvalue, time complexity
Procedia PDF Downloads 41590 Voltage Stability Assessment and Enhancement Using STATCOM -A Case Study
Authors: Puneet Chawla, Balwinder Singh
Abstract:
Recently, increased attention has been devoted to the voltage instability phenomenon in power systems. Many techniques have been proposed in the literature for evaluating and predicting voltage stability using steady state analysis methods. In this paper, P-V and Q-V curves have been generated for a 57 bus Patiala Rajpura circle of India. The power-flow program is developed in MATLAB using Newton-Raphson method. Using Q-V curves, the weakest bus of the power system and the maximum reactive power change permissible on that bus is calculated. STATCOMs are placed on the weakest bus to improve the voltage and hence voltage stability and also the power transmission capability of the line.Keywords: voltage stability, reactive power, power flow, weakest bus, STATCOM
Procedia PDF Downloads 51589 Calculating All Dark Energy and Dark Matter Effects Through Dynamic Gravity Theory
Authors: Sean Kinney
Abstract:
In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifest. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, using the math of Dynamic Gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need of exotic measures.Keywords: gravity, dynamic gravity, dark matter, dark energy
Procedia PDF Downloads 10588 Doping in Sport: Attitudes, Beliefs and Knowledge of Talented
Authors: Kim Nolte, Ben J. M. Steyn, Pieter E. Krüger, Lizelle Fletcher
Abstract:
Objective: The primary aim of this research was to determine the attitudes, beliefs and knowledge of talented young South African athletes regarding prohibited performance-enhancing drugs (PEDs) and anti-doping rules and regulations. Methods: This was a survey study and a quantitative research approach was used. South African TuksSport academy athletes at the High Performance Centre, University of Pretoria and competitive high school athletes at four private high schools in Gauteng completed the survey. A self-determined structured questionnaire was used to establish the attitudes, beliefs and knowledge of the athletes. Results: A total of 346 (208 males, 138 females) athletes, age (mean ± SD) 16.9 ±1.41 years participated in the survey. According to this survey, 3.9% of the athletes in this survey admitted to be using a prohibited PED and more than 14% of the athletes said they would consider using a prohibited PED if they knew they would not get caught out. Ambition (46%) and emotional pressure (22.5%) was the primary reasons why the athletes would consider using prohibited PEDs. Even though coaches appear to be the main source of information (PEDs and anti-doping rules), only 42.1% of the athletes felt they were well informed. Conclusion: Controlling doping by means of testing is important. However, it is not sufficient and interventions should include psychosocial programmes planned and developed focusing on changing attitudes towards doping and doping culture, as well as the appropriate education specifically on the health risks of using PEDs.Keywords: doping, anti-doping, attitudes, athletes and sport
Procedia PDF Downloads 51587 Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory
Authors: Sean Michael Kinney
Abstract:
In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures.Keywords: dynamic gravity, gravity, dark matter, dark energy
Procedia PDF Downloads 7886 An Optimal and Efficient Family of Fourth-Order Methods for Nonlinear Equations
Authors: Parshanth Maroju, Ramandeep Behl, Sandile S. Motsa
Abstract:
In this study, we proposed a simple and interesting family of fourth-order multi-point methods without memory for obtaining simple roots. This family requires only three functional evaluations (viz. two of functions f(xn), f(yn) and third one of its first-order derivative f'(xn)) per iteration. Moreover, the accuracy and validity of new schemes is tested by a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal fourth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, the dynamic study of these methods also supports the theoretical aspect.Keywords: basins of attraction, nonlinear equations, simple roots, Newton's method
Procedia PDF Downloads 31285 Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells
Authors: Alexandra Andrade Brandão Soares, Paulo Batista Gonçalves
Abstract:
Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work.Keywords: cylindrical shells, dynamics, functionally graded material, nonlinear vibrations
Procedia PDF Downloads 65