Search results for: bee colony
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 256

Search results for: bee colony

226 Ant System with Acoustic Communication

Authors: Saad Bougrine, Salma Ouchraa, Belaid Ahiod, Abdelhakim Ameur El Imrani

Abstract:

Ant colony optimization is an ant algorithm framework that took inspiration from foraging behaviour of ant colonies. Indeed, ACO algorithms use a chemical communication, represented by pheromone trails, to build good solutions. However, ants involve different communication channels to interact. Thus, this paper introduces the acoustic communication between ants while they are foraging. This process allows fine and local exploration of search space and permits optimal solution to be improved.

Keywords: acoustic communication, ant colony optimization, local search, traveling salesman problem

Procedia PDF Downloads 586
225 Serological Screening of Barrier Maintained Rodent Colony

Authors: R. Posia, J. Mistry, K. Kamani

Abstract:

The health screening of laboratory rodents is essential for ensuring animal health and the validity of biomedical research data. Routine health monitoring is necessary to verify the effectiveness of biosecurity and the specific pathogen free (SPF) status of the colony. The present screening was performed in barrier maintained rat (Rattus norvegicus) colony. Rats were maintained under a controlled environment and strict biosecurity in the facility. The screening was performed on quarterly bases from randomly selected animals from breeding and or maintenance colonies. Selected animals were subject to blood collection under isoflurane anaesthesia. Serum was separated from the collected blood and stored samples at -60 ± 10 °C until further use. A total of 88 samples were collected quarterly bases from animals in a year. In the serological test, enzyme-linked immunosorbent assay (ELISA) was used for screening of serum samples against sialodacryoadenitis virus (SDAV), Sendai virus (SV), and Kilham’s rat virus (KRV). ELISA kits were procured from XpressBio, USA. Test serum samples were run along with positive control, negative control serum in 96 well ELISA plates as per the procedure recommended by the vendor. Test ELISA plate reading was taken in the microplate reader. This screening observed that none of the samples was observed positive for the sialodacryoadenitis virus (SDAV), Sendai virus (SV), and Kilham’s rat virus (KRV), indicating that effectiveness of biosecurity practices followed in the rodent colony. The result of serological screening helps us to declare that our rodent colony is specifically pathogen free for these pathogens.

Keywords: biosecurity, ELISA, specific pathogen free, serological screening, serum

Procedia PDF Downloads 77
224 Artificial Bee Colony Based Modified Energy Efficient Predictive Routing in MANET

Authors: Akhil Dubey, Rajnesh Singh

Abstract:

In modern days there occur many rapid modifications in field of ad hoc network. These modifications create many revolutionary changes in the routing. Predictive energy efficient routing is inspired on the bee’s behavior of swarm intelligence. Predictive routing improves the efficiency of routing in the energetic point of view. The main aim of this routing is the minimum energy consumption during communication and maximized intermediate node’s remaining battery power. This routing is based on food searching behavior of bees. There are two types of bees for the exploration phase the scout bees and for the evolution phase forager bees use by this routing. This routing algorithm computes the energy consumption, fitness ratio and goodness of the path. In this paper we review the literature related with predictive routing, presenting modified routing and simulation result of this algorithm comparison with artificial bee colony based routing schemes in MANET and see the results of path fitness and probability of fitness.

Keywords: mobile ad hoc network, artificial bee colony, PEEBR, modified predictive routing

Procedia PDF Downloads 416
223 Prey Selection of the Corallivorous Gastropod Drupella cornus in Jeddah Coast, Saudi Arabia

Authors: Gaafar Omer BaOmer, Abdulmohsin A. Al-Sofyani, Hassan A. Ramadan

Abstract:

Drupella is found on coral reefs throughout the tropical and subtropical shallow waters of the Indo-Pacific region. Drupella is muricid gastropod, obligate corallivorous and their population outbreak can cause significant coral mortality. Belt transect surveys were conducted at two sites (Bohairat and Baydah) in Jeddah coast, Saudi Arabia to assess prey preferences for D. cornus with respect to prey availability through resource selection ratios. Results revealed that there are different levels of prey preferences at the different age stages and at the different sites. Acropora species with a caespitose, corymbose and digitate growth forms were preferred prey for recruits and juveniles of Drupella cornus, whereas Acropora variolosa was avoided by D. cornus because of its arborescent colony growth form. Pocillopora, Stylophora, and Millipora were occupied by Drupella cornus less than expected, whereas massive corals genus Porites were avoided. High densities of D. cornus were observed on two fragments of Pocillopora damicornis which may because of the absence of coral guard crabs genus Trapezia. Mean densities of D. cornus per colony for each species showed significant differentiation between the two study sites. Low availability of Acropora colonies in Bayadah patch reef caused high mean density of D. cornus per colony to compare to that in Bohairat, whereas higher mean density of D. cornus per colony of Pocillopora in Bohairat than that in Bayadah may because of most of occupied Pocillopora colonies by D. cornus were physical broken by anchoring compare to those colonies in Bayadah. The results indicated that prey preferences seem to depend on both coral genus and colony shape, while mean densities of D. cornus depend on availability and status of coral colonies.

Keywords: prey availability, resource selection, Drupella cornus, Jeddah, Saudi Arabia

Procedia PDF Downloads 148
222 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm

Authors: J. S. Dhillon, K. K. Dhaliwal

Abstract:

In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.

Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization

Procedia PDF Downloads 477
221 Software Architecture Optimization Using Swarm Intelligence Techniques

Authors: Arslan Ellahi, Syed Amjad Hussain, Fawaz Saleem Bokhari

Abstract:

Optimization of software architecture can be done with respect to a quality attributes (QA). In this paper, there is an analysis of multiple research papers from different dimensions that have been used to classify those attributes. We have proposed a technique of swarm intelligence Meta heuristic ant colony optimization algorithm as a contribution to solve this critical optimization problem of software architecture. We have ranked quality attributes and run our algorithm on every QA, and then we will rank those on the basis of accuracy. At the end, we have selected the most accurate quality attributes. Ant colony algorithm is an effective algorithm and will perform best in optimizing the QA’s and ranking them.

Keywords: complexity, rapid evolution, swarm intelligence, dimensions

Procedia PDF Downloads 261
220 Colony Size and Behaviors Characteristics of Monkeys in Peninsular Malaysia

Authors: Karimullah Karim, Shahrul Anuar, T. Dauda

Abstract:

Swarm of research on monkey behavior exists, but were concerned with an aspect of molecular study in support of human primate and non-human primates. Many researchers take an interest in the study of Primates and their environment for the reason that they are intimately connected to humans in terms of human social behaviors. In this context, a study of the activity budget of monkeys was conducted in three states of Peninsular Malaysia. The chi-square test was served to analysis the behaviors and their variances in different study areas, effects of seasonal variation on behaviors, time differences in behaviors and habituated and non-habituated behaviors of monkeys. In consequent the behavior of moving (17%) was found higher followed by climbing (15%), eating (13%), and other social behaviors. All the behavior categories were found significant at p<0.05. The most common behavior of the monkeys in conclusion has been found associated with the restiveness of the animal and that their colony size is not rigid as it depends also on some other factors. This study can therefore serve as a starting point for the understanding of comparative behaviors of monkey in general and the study of the monkey behavior is thus recommended to be expanded to cover more study areas as well as species than in the present work.

Keywords: activity budget, Peninsular Malaysia, monkeys colony, behaviour

Procedia PDF Downloads 318
219 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm

Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan

Abstract:

With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.

Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization

Procedia PDF Downloads 324
218 Hybrid Gravity Gradient Inversion-Ant Colony Optimization Algorithm for Motion Planning of Mobile Robots

Authors: Meng Wu

Abstract:

Motion planning is a common task required to be fulfilled by robots. A strategy combining Ant Colony Optimization (ACO) and gravity gradient inversion algorithm is proposed for motion planning of mobile robots. In this paper, in order to realize optimal motion planning strategy, the cost function in ACO is designed based on gravity gradient inversion algorithm. The obstacles around mobile robot can cause gravity gradient anomalies; the gradiometer is installed on the mobile robot to detect the gravity gradient anomalies. After obtaining the anomalies, gravity gradient inversion algorithm is employed to calculate relative distance and orientation between mobile robot and obstacles. The relative distance and orientation deduced from gravity gradient inversion algorithm is employed as cost function in ACO algorithm to realize motion planning. The proposed strategy is validated by the simulation and experiment results.

Keywords: motion planning, gravity gradient inversion algorithm, ant colony optimization

Procedia PDF Downloads 137
217 An Ant Colony Optimization Approach for the Pollution Routing Problem

Authors: P. Parthiban, Sonu Rajak, N. Kannan, R. Dhanalakshmi

Abstract:

This paper deals with the Vehicle Routing Problem (VRP) with environmental considerations which is called Pollution Routing Problem (PRP). The objective is to minimize the operational and environmental costs. It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. In this context, we presented an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the PRP. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage a SOA is run on the resulting VRPTW solutions. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route in order to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm is able to provide good solutions.

Keywords: ant colony optimization, CO2 emissions, combinatorial optimization, speed optimization, vehicle routing

Procedia PDF Downloads 322
216 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 186
215 Optimization of Pumping Power of Water between Reservoir Using Ant Colony System

Authors: Thiago Ribeiro De Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite Asano

Abstract:

The area of the electricity sector that deals with energy needs by the hydropower and thermoelectric in a coordinated way is called Planning Operating Hydrothermal Power Systems. The aim of this area is to find a political operative to provide electrical power to the system in a specified period with minimization of operating cost. This article proposes a computational tool for solving the planning problem. In addition, this article will be introducing a methodology to find new transfer points between reservoirs increasing energy production in hydroelectric power plants cascade systems. The computational tool proposed in this article applies: i) genetic algorithms to optimize the water transfer and operation of hydroelectric plants systems; and ii) Ant Colony algorithm to find the trajectory with the least energy pumping for the construction of pipes transfer between reservoirs considering the topography of the region. The computational tool has a database consisting of 35 hydropower plants and 41 reservoirs, which are part of the southeastern Brazilian system, which has been implemented in an individualized way.

Keywords: ant colony system, genetic algorithms, hydroelectric, hydrothermal systems, optimization, water transfer between rivers

Procedia PDF Downloads 326
214 ACOPIN: An ACO Algorithm with TSP Approach for Clustering Proteins in Protein Interaction Networks

Authors: Jamaludin Sallim, Rozlina Mohamed, Roslina Abdul Hamid

Abstract:

In this paper, we proposed an Ant Colony Optimization (ACO) algorithm together with Traveling Salesman Problem (TSP) approach to investigate the clustering problem in Protein Interaction Networks (PIN). We named this combination as ACOPIN. The purpose of this work is two-fold. First, to test the efficacy of ACO in clustering PIN and second, to propose the simple generalization of the ACO algorithm that might allow its application in clustering proteins in PIN. We split this paper to three main sections. First, we describe the PIN and clustering proteins in PIN. Second, we discuss the steps involved in each phase of ACO algorithm. Finally, we present some results of the investigation with the clustering patterns.

Keywords: ant colony optimization algorithm, searching algorithm, protein functional module, protein interaction network

Procedia PDF Downloads 612
213 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling

Authors: Fahad Y. Al-dawish

Abstract:

The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.

Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing

Procedia PDF Downloads 421
212 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks

Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi

Abstract:

In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.

Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward

Procedia PDF Downloads 581
211 Multi-Criteria Test Case Selection Using Ant Colony Optimization

Authors: Niranjana Devi N.

Abstract:

Test case selection is to select the subset of only the fit test cases and remove the unfit, ambiguous, redundant, unnecessary test cases which in turn improve the quality and reduce the cost of software testing. Test cases optimization is the problem of finding the best subset of test cases from a pool of the test cases to be audited. It will meet all the objectives of testing concurrently. But most of the research have evaluated the fitness of test cases only on single parameter fault detecting capability and optimize the test cases using a single objective. In the proposed approach, nine parameters are considered for test case selection and the best subset of parameters for test case selection is obtained using Interval Type-2 Fuzzy Rough Set. Test case selection is done in two stages. The first stage is the fuzzy entropy-based filtration technique, used for estimating and reducing the ambiguity in test case fitness evaluation and selection. The second stage is the ant colony optimization-based wrapper technique with a forward search strategy, employed to select test cases from the reduced test suite of the first stage. The results are evaluated using the Coverage parameters, Precision, Recall, F-Measure, APSC, APDC, and SSR. The experimental evaluation demonstrates that by this approach considerable computational effort can be avoided.

Keywords: ant colony optimization, fuzzy entropy, interval type-2 fuzzy rough set, test case selection

Procedia PDF Downloads 668
210 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm

Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta

Abstract:

Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.

Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates

Procedia PDF Downloads 237
209 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic

Authors: Farahnaz Karami

Abstract:

Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.

Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic

Procedia PDF Downloads 64
208 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power

Procedia PDF Downloads 375
207 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Authors: Ahcene Habbi, Yassine Boudouaoui

Abstract:

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization

Procedia PDF Downloads 437
206 Serum Granulocyte Colony Stimulating Factor is a Potent Stimulator of Hematopoeitic Progenitor Cells Mobilization in Trauma Hemorrhagic Shock

Authors: Manoj Kumar, Sujata Mohanty, D. N. Rao, Arul Selvi, Sanjeev K. Bhoi

Abstract:

Background: Hematopoietic progenitor cells (HPC) mobilized from bone marrow to peripheral blood has been observed in severe trauma and hemorrhagic shock patients. Granulocyte-colony stimulating factor (G-CSF) is a potent stimulator that mobilized HPC from bone marrow to peripheral blood. Objective: Our aim of the study was to investigate the serum G-CSF levels and correlate with HPC and outcome. Methods: Peripheral blood sample from 50 hemorrhagic shock patients was collected on arrival for determination of G-CSF and peripheral blood HPC (PBHPC) and compared with healthy control (n=15). Determination of serum levels of G-CSF by sandwich ELISA and PBHPC by Sysmex XE-2100. Data were categorized by age, sex, Injury Severity Score (ISS), and laboratory data was prospectively collected. Data are expressed as mean±SD and median (min, max). Results: Significantly increased the serum level of G-CSF (264.8 vs. 79.1 pg/ml) and peripheral blood HPC (0.1 vs. 0.01 %) in the T/HS patients when compared with control group. Conclusions: Our studies suggest serum G-CSF elevated in T/HS patients. The elevated in G-CSF was also associated with mobilization of HPC from BM to peripheral blood HPC. Increased the levels of G-CSF in T/HS may play a significant role in the alteration of the hematopoietic compartment.

Keywords: granulocyte colony stimulating factor, G-CSF, hematopoietic progenitor cells, HPC, trauma hemorrhagic shock, T/HS, outcome

Procedia PDF Downloads 332
205 Level of Sociality and Sting Autotomy

Authors: V. V. Belavadi, Syed Najeer E. Noor Khadri, Shivamurthy Naik

Abstract:

Members of aculeate Hymenoptera exhibit different levels of sociality. While Chrysidoidea are primarily parasitic and use their sting only for the purpose parasitizing the host and never for defense, all vespoid and apoid (sphecid) wasps use their sting for paralysing their prey as well as for defending themselves from predators and intruders. Though most apoid bees use their sting for defending themselves, a few bees (Apis spp.) use their sting exclusively for defending their colonies and the brood. A preliminary study conducted on the comparative morphology of stings of apoid bees and wasps and that of vespid wasps, indicated that the backward projected barbs are more pronounced only in the genus Apis, which is considered as the reason why a honey bee worker, loses its sting and dies when it stings a higher animal. This raises an important question: How barbs on lancets of Apis bees evolved? Supposing the barbs had not been strong, the worker bee would have been more efficient in defending the colony instead of only once in its lifetime! Some arguments in favour of worker altruistic behaviour, mention that in highly social insects, the colony size is large, workers are closely related among themselves and a worker sacrificing its life for the colony is beneficial for the colony. However, in colonies with a queen that has mated multiple times, the coefficient of relatedness among workers gets reduced and still the workers continue to exhibit the same behaviour. In this paper, we have tried to compare the morphology of stings of aculeate Hymenoptera and have attempted to relate sting morphology with social behaviour. Species examined for sting morphology are A. cerana, Apis dorsata, A. florea, Amegilla violacea, A. zonata, Megachile anthracina, M. Disjuncta, Liris aurulentus, Tachysphex bengalensis. Our studies indicate that occurrence of barbs on lancets correlates with the degree of sociality and sting autotomy is more pronounced in swarm-founding species than in haplometrotic species. The number of barbs on the lancets varied from 0 to 11. Additionally SEM images also revealed interesting characters of barbs.

Keywords: altruistic, barbs, sociality, sting autotomy

Procedia PDF Downloads 318
204 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd

Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic

Abstract:

Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.

Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization

Procedia PDF Downloads 108
203 Nourishing the Hive: The Interplay of Nutrition, Gene Expression, and Queen Egg-Laying in Honeybee Colonies

Authors: Damien P. Fevre, Peter K. Dearden

Abstract:

Honeybee population sustainability is a critical concern for environmental stability and human food security. The success of a colony relies heavily on the egg-laying capacity of the queen, as it determines the production of thousands of worker bees who, in turn, perform essential functions in foraging and transforming food to make it digestible for the colony. The main sources of nutrition for honeybees are nectar, providing carbohydrates, and pollen, providing protein. This study delves into the impact of the proportion of these macronutrients on the food consumption patterns of nurse bees responsible for feeding the queen and how it affects the characteristics of the eggs produced. Using nutritional geometry, qRT-PCR, and RNA-seq analysis, this study sheds light on the pivotal role of nutrition in influencing gene expression in nurse bees, honeybee queen egg-laying capacity and embryonic development. Interestingly, while nutrition is crucial, the queen's genotype plays an even more significant role in this complex relationship, highlighting the importance of genotype-by-environment interactions. Understanding the interplay between genotype and nutrition is key to optimizing beekeeping management and strategic queen breeding practices. The findings from this study have significant implications for beekeeping practices, emphasizing the need for an appropriate nutrition to support the social nutrition of Apis mellifera. Implementing these insights can lead to improved colony health, increased productivity, and sustainable honeybee conservation efforts.

Keywords: honeybee, egg-laying, nutrition, transcriptomics

Procedia PDF Downloads 92
202 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach

Authors: Hassan M. H. Mustafa

Abstract:

This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.

Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology

Procedia PDF Downloads 470
201 Growth Inhibition of Candida Albicans Strains Co-Cultured with Lactobacillus Strains in a Cereal Medium

Authors: Richard Nyanzi, Maupi E. Letsoalo, Jacobus N. Eloff, Piet J. Jooste

Abstract:

Candida albicans naturally occurs in the gastrointestinal tract (GIT) of more than 50% of humans. Overgrowth of the fungus causes several forms of candidiasis including oral thrush. Overgrowth tends to occur in immunocompromised humans such as diabetic, cancer and HIV patients. Antifungal treatment is available, but not without shortcomings. In this study, inhibitory activity of five probiotic Lactobacillus strains was demonstrated against the growth of seven clinical strains of Candida albicans by co-culturing of the organisms in a maize gruel (MG) medium. Phenotypic tests, molecular techniques and phylogenetic analysis have enabled precise identification of the organisms used in the study. The quantitative pour plate technique was used to enumerate colonies of the yeasts and the lactobacilli and the Kruskal-Wallis test and ANOVA tests were employed to compare the distributions of the colonies of the organisms. The cereal medium, containing added carbon sources, was inoculated with a Candida and a Lactobacillus strain in combination and incubated at 37 °C for 168 h. Aliquots were regularly taken and subjected to pH determination and colony enumeration. Certain Lactobacillus strains proved to be inhibitory and also lethal to some Candida albicans strains. A low pH due to Lactobacillus acid production resulted in significant low Candida colony counts. Higher Lactobacillus colony counts did not necessarily result in lower Candida counts suggesting that inhibitory factors besides low pH and competitive growth by lactobacilli contributed to the reduction in Candida counts. Such anti-Candida efficacy however needs to be confirmed by in vivo studies.

Keywords: candida albicans, oral thrush, candidiasis, lactobacillus, probiotics

Procedia PDF Downloads 399
200 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.

Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony

Procedia PDF Downloads 379
199 Software Assessment Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However,these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: optimization technique, quality assurance, software certification model, software assessment

Procedia PDF Downloads 487
198 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: software quality, quality assurance, software certification model, software assessment

Procedia PDF Downloads 524
197 Antimicrobial Efficacy of 0.75% Metronidazole and 2% Chlorhexidine Gel Applied in Implant Screw Hole: A Clinical Trial

Authors: Mostafa Solati

Abstract:

Objectives: Considering the gap of information regarding the optimal antimicrobial efficacy of metronidazole for application in the implant screw hole, this study aimed to compare the antimicrobial efficacy of 0.75% metronidazole and 2% chlorhexidine (CHX) gel applied in the implant screw hole. Materials and Methods: This randomized controlled clinical trial evaluated 60 implants (20 patients, each requiring three implants) in three groups (n=20). In group 1, 0.75% metronidazole gel was applied to the implant screw hole. In group 2, 2% CHX gel was applied, and in group 3, no material was used. Microbial samples were collected from the screw holes after three months, and the microbial colonies were counted. Data were analyzed using ANOVA. Results: The number of bacteria in the control group was significantly higher than that in 0.75% metronidazole gel and 2% CHX groups (P<0.05). The CHX group caused the maximum reduction in colony count with no significant difference from the metronidazole group (P>0.05). Conclusion: The application of 0.75% metronidazole gel and 2% CHX can effectively decrease the colony count in the implant screw hole and can probably play a role in the preservation of peri-implant tissue health.

Keywords: dental implant, metronidazole, CHX, screw hole

Procedia PDF Downloads 70