Search results for: Matlab simulation results
39402 Design and Development of Wind Turbine Emulator to Operate with 1.5 kW Induction Generator
Authors: Himani Ratna Dahiya
Abstract:
This paper contributes to design a Wind Emulator coupled to 1.5 kW Induction generator for Wind Energy Conversion System. A wind turbine emulator (WTE) is important equipment for developing wind energy conversion systems. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators that is hard to achieve with an actual wind turbine since the wind speed varies randomly. In this paper a wind emulator is modeled and simulated using MATLAB. Verification of the simulation results is done by experimental setup using DC motor-Induction generator set, LABVIEW and data acquisition card.Keywords: Wind Turbine Emulator, LABVIEW, matlab, induction generator
Procedia PDF Downloads 59039401 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger
Authors: Hanan Rizk
Abstract:
A heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed a PID controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software, and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control
Procedia PDF Downloads 22039400 Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method
Authors: Shuo Tian, Xuepiao Bai, Jianqin Shang, Pengtao Gai, Yuansong Zeng
Abstract:
Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively.Keywords: shot peen forming, process parameter, response surface model, numerical simulation
Procedia PDF Downloads 8739399 Supply Air Pressure Control of HVAC System Using MPC Controller
Authors: P. Javid, A. Aeenmehr, J. Taghavifar
Abstract:
In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.Keywords: air conditioning system, GPC, dead time, air supply control
Procedia PDF Downloads 52739398 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform
Authors: Shield B. Lin, Sameer Abdali
Abstract:
Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 14939397 Modeling and Simulation Methods Using MATLAB/Simulink
Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,
Abstract:
This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)
Procedia PDF Downloads 34339396 Enhance Power Quality by HVDC System, Comparison Technique between HVDC and HVAC Transmission Systems
Authors: Smko Zangana, Ergun Ercelebi
Abstract:
The alternating current is the main power in all industries and other aspects especially for the short and mid distances, but as far as long a distance which exceeds 500 KMs, using the alternating current technically will face many difficulties and more costs because it's difficult to control the current and also other restrictions. Therefore, recently those reasons led to building transmission lines HVDC to transmit power for long distances. This document presents technical comparison and assessments for power transmission system among distances either ways and studying the stability of the system regarding the proportion of losses in the actual power sent and received between both sides in different systems and also categorizing filters used in the HVDC system and its impact and effect on reducing Harmonic in the power transmission. MATLAB /Simulink simulation software is used to simulate both HVAC & HVDC power transmission system topologies.Keywords: HVAC power system, HVDC power system, power system simulation (MATLAB), the alternating current, voltage stability
Procedia PDF Downloads 36639395 Numerical Modeling for Water Engineering and Obstacle Theory
Authors: Mounir Adal, Baalal Azeddine, Afifi Moulay Larbi
Abstract:
Numerical analysis is a branch of mathematics devoted to the development of iterative matrix calculation techniques. We are searching for operations optimization as objective to calculate and solve systems of equations of order n with time and energy saving for computers that are conducted to calculate and analyze big data by solving matrix equations. Furthermore, this scientific discipline is producing results with a margin of error of approximation called rates. Thus, the results obtained from the numerical analysis techniques that are held on computer software such as MATLAB or Simulink offers a preliminary diagnosis of the situation of the environment or space targets. By this we can offer technical procedures needed for engineering or scientific studies exploitable by engineers for water.Keywords: numerical analysis methods, obstacles solving, engineering, simulation, numerical modeling, iteration, computer, MATLAB, water, underground, velocity
Procedia PDF Downloads 46239394 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.Keywords: incremental conductance algorithm, perturb and observe algorithm, photovoltaic system, simulation results
Procedia PDF Downloads 55639393 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method
Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi
Abstract:
This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure
Procedia PDF Downloads 49139392 Position and Speed Tracking of DC Motor Based on Experimental Analysis in LabVIEW
Authors: Muhammad Ilyas, Awais Khan, Syed Ali Raza Shah
Abstract:
DC motors are widely used in industries to provide mechanical power in speed and torque. The position and speed control of DC motors is getting the interest of the scientific community in robotics, especially in the robotic arm, a flexible joint manipulator. The current research work is based on position control of DC motors using experimental investigations in LabVIEW. The linear control strategy is applied to track the position and speed of the DC motor with comparative analysis in the LabVIEW platform and simulation analysis in MATLAB. The tracking error in hardware setup based on LabVIEW programming is slightly greater than simulation analysis in MATLAB due to the inertial load of the motor during steady-state conditions. The controller output shows the input voltage applied to the dc motor varies between 0-8V to ensure minimal steady error while tracking the position and speed of the DC motor.Keywords: DC motor, labview, proportional integral derivative control, position tracking, speed tracking
Procedia PDF Downloads 10639391 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing
Authors: M. Ranjeeth, S. Anuradha
Abstract:
Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.Keywords: spectrum sensing, energy detection, fading channels, probability of detection, probability of false alarm
Procedia PDF Downloads 53239390 Fault Diagnosis in Induction Motor
Authors: Kirti Gosavi, Anita Bhole
Abstract:
The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor
Procedia PDF Downloads 63339389 Modelling the Anaerobic Digestion of Esparto Paper Industry Wastewater Effluent in a Batch Digester Using IWA Anaerobic Digestion Model No. 1 (ADM1)
Authors: Boubaker Fezzani, Ridha Ben Cheikh, Tarek Rouissi
Abstract:
In this work the original ADM1, implemented in the simulation software package MATLAB/Simulink, was modified and adapted and applied to reproduce the experimental results of the mesophilic anaerobic digestion of Esperto paper industry wastewater in a batch digester. The data set from lab-scale experiment runs were used to calibrate and validate the model. The simulations’ results indicated that the modified ADM1 was able to predict reasonably well the steady state results of gas flows, methane and carbon dioxide contents, pH and total volatile fatty acids (TVFA) observed with all influents concentrations.Keywords: anaerobic digestion, mathematical modelling, Simulation, ADM1, batch digester, esparto paper industry effluent, mesophilic temperature
Procedia PDF Downloads 40539388 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage
Abstract:
Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit
Procedia PDF Downloads 40039387 Seamless MATLAB® to Register-Transfer Level Design Methodology Using High-Level Synthesis
Authors: Petri Solanti, Russell Klein
Abstract:
Many designers are asking for an automated path from an abstract mathematical MATLAB model to a high-quality Register-Transfer Level (RTL) hardware description. Manual transformations of MATLAB or intermediate code are needed, when the design abstraction is changed. Design conversion is problematic as it is multidimensional and it requires many different design steps to translate the mathematical representation of the desired functionality to an efficient hardware description with the same behavior and configurability. Yet, a manual model conversion is not an insurmountable task. Using currently available design tools and an appropriate design methodology, converting a MATLAB model to efficient hardware is a reasonable effort. This paper describes a simple and flexible design methodology that was developed together with several design teams.Keywords: design methodology, high-level synthesis, MATLAB, verification
Procedia PDF Downloads 13939386 Simulation with Uncertainties of Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform
Authors: Shield B. Lin, Ziraguen O. Williams
Abstract:
In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, an active proportional-integral-derivative controller commanding a linear actuator is proposed in a vibration isolation system to regulate the movement of the exercise platform. Computer simulation shows promising results that most exciter forces can be reduced or even eliminated. This paper emphasizes on parameter uncertainties, variations and exciter force variations. Drift and variations of system parameters in the vibration isolation system for astronaut’s exercise platform are analyzed. An active controlled scheme is applied with the goals to reduce the platform displacement and to minimize the force being transmitted to the spacecraft structure. The controller must be robust enough to accommodate the wide variations of system parameters and exciter forces. Computer simulation for the vibration isolation system was performed via MATLAB/Simulink and Trick. The simulation results demonstrate the achievement of force reduction with small platform displacement under wide ranges of variations in system parameters.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 14639385 Simulation of 3-D Direction-of-Arrival Estimation Using MUSIC Algorithm
Authors: Duckyong Kim, Jong Kang Park, Jong Tae Kim
Abstract:
DOA (Direction of Arrival) estimation is an important method in array signal processing and has a wide range of applications such as direction finding, beam forming, and so on. In this paper, we briefly introduce the MUSIC (Multiple Signal Classification) Algorithm, one of DOA estimation methods for analyzing several targets. Then we apply the MUSIC algorithm to the two-dimensional antenna array to analyze DOA estimation in 3D space through MATLAB simulation. We also analyze the design factors that can affect the accuracy of DOA estimation through simulation, and proceed with further consideration on how to apply the system.Keywords: DOA estimation, MUSIC algorithm, spatial spectrum, array signal processing
Procedia PDF Downloads 37939384 Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink
Authors: Ishit Sheth, Chandrasekhar Jinendran, Chinmaya Ranjan Sahu
Abstract:
A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions.Keywords: Full Vehicle Model, MBSE, Non Holonomic Constraints, Boltzmann Hamel Equation
Procedia PDF Downloads 22839383 Estimation of the State of Charge of the Battery Using EFK and Sliding Mode Observer in MATLAB-Arduino/Labview
Authors: Mouna Abarkan, Abdelillah Byou, Nacer M'Sirdi, El Hossain Abarkan
Abstract:
This paper presents the estimation of the state of charge of the battery using two types of observers. The battery model used is the combination of a voltage source, which is the open circuit battery voltage of a strength corresponding to the connection of resistors and electrolyte and a series of parallel RC circuits representing charge transfer phenomena and diffusion. An adaptive observer applied to this model is proposed, this observer to estimate the battery state of charge of the battery is based on EFK and sliding mode that is known for their robustness and simplicity implementation. The results are validated by simulation under MATLAB/Simulink and implemented in Arduino-LabView.Keywords: model of the battery, adaptive sliding mode observer, the EFK observer, estimation of state of charge, SOC, implementation in Arduino/LabView
Procedia PDF Downloads 30439382 Modelling Home Appliances for Energy Management System: Comparison of Simulation Results with Measurements
Authors: Aulon Shabani, Denis Panxhi, Orion Zavalani
Abstract:
This paper presents the modelling and development of a simulator for residential electrical appliances. The simulator is developed on MATLAB providing the possibility to analyze and simulate energy consumption of frequently used home appliances in Albania. Modelling of devices considers the impact of different factors, mentioning occupant behavior and climacteric conditions. Most devices are modeled as an electric circuit, and the electric energy consumption is estimated by the solutions of the guiding differential equations. The provided models refer to devices like a dishwasher, oven, water heater, air conditioners, light bulbs, television, refrigerator water, and pump. The proposed model allows us to simulate beforehand the energetic behavior of the largest consumption home devices to estimate peak consumption and improving its reduction. Simulated home prototype results are compared to real measurement of a considered typical home. Obtained results from simulator framework compared to monitored typical household using EmonTxV3 show the effectiveness of the proposed simulation. This conclusion will help for future simulation of a large group of typical household for a better understanding of peak consumption.Keywords: electrical appliances, energy management, modelling, peak estimation, simulation, smart home
Procedia PDF Downloads 16339381 A Simulation Model and Parametric Study of Triple-Effect Desalination Plant
Authors: Maha BenHamad, Ali Snoussi, Ammar Ben Brahim
Abstract:
A steady-state analysis of triple-effect thermal vapor compressor desalination unit was performed. A mathematical model based on mass, salinity and energy balances is developed. The purpose of this paper is to develop a connection between process simulator and process optimizer in order to study the influence of several operating variables on the performance and the produced water cost of the unit. A MATLAB program is used to solve the model equations, and Aspen HYSYS is used to model the plant. The model validity is examined against a commercial plant and showed a good agreement between industrial data and simulations results. Results show that the pressures of the last effect and the compressed vapor have an important influence on the produced cost, and the increase of the difference temperature in the condenser decreases the specific heat area about 22%.Keywords: steady-state, triple effect, thermal vapor compressor, Matlab, Aspen Hysys
Procedia PDF Downloads 17139380 An Enhanced Harmony Search (ENHS) Algorithm for Solving Optimization Problems
Authors: Talha A. Taj, Talha A. Khan, M. Imran Khalid
Abstract:
Optimization techniques attract researchers to formulate a problem and determine its optimum solution. This paper presents an Enhanced Harmony Search (ENHS) algorithm for solving optimization problems. The proposed algorithm increases the convergence and is more efficient than the standard Harmony Search (HS) algorithm. The paper discusses the novel techniques in detail and also provides the strategy for tuning the decisive parameters that affects the efficiency of the ENHS algorithm. The algorithm is tested on various benchmark functions, a real world optimization problem and a constrained objective function. Also, the results of ENHS are compared to standard HS, and various other optimization algorithms. The ENHS algorithms prove to be significantly better and more efficient than other algorithms. The simulation and testing of the algorithms is performed in MATLAB.Keywords: optimization, harmony search algorithm, MATLAB, electronic
Procedia PDF Downloads 46339379 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network
Authors: Habtemariam Alemu
Abstract:
It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink
Procedia PDF Downloads 51739378 Compensation of Power Quality Disturbances Using DVR
Authors: R. Rezaeipour
Abstract:
One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic voltage restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using MATLAB software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.Keywords: DVR, power quality, voltage sags, voltage swells, flicker
Procedia PDF Downloads 34539377 Optimal Design and Simulation of a Grid-Connected Photovoltaic (PV) Power System for an Electrical Department in University of Tripoli, Libya
Authors: Mustafa Al-Refai
Abstract:
This paper presents the optimal design and simulation of a grid-connected Photovoltaic (PV) system to supply electric power to meet the energy demand by Electrical Department in University of Tripoli Libya. Solar radiation is the key factor determining electricity produced by photovoltaic (PV) systems. This paper is designed to develop a novel method to calculate the solar photovoltaic generation capacity on the basis of Mean Global Solar Radiation data available for Tripoli Libya and finally develop a system design of possible plant capacity for the available roof area. MatLab/Simulink Programming tools and monthly average solar radiation data are used for this design and simulation. The specifications of equipments are provided based on the availability of the components in the market. Simulation results and analyses are presented to validate the proposed system configuration.Keywords: photovoltaic (PV), grid, Simulink, solar energy, power plant, solar irradiation
Procedia PDF Downloads 30139376 Matlab Method for Exclusive-or Nodes in Fuzzy GERT Networks
Authors: Roland Lachmayer, Mahtab Afsari
Abstract:
Research is the cornerstone for advancement of human communities. So that it is one of the indexes for evaluating advancement of countries. Research projects are usually cost and time-consuming and do not end in result in short term. Project scheduling is one of the integral parts of project management. The present article offers a new method by using C# and Matlab software to solve Fuzzy GERT networks for Exclusive-OR kind of nodes to schedule the network. In this article we concentrate on flowcharts that we used in Matlab to show how we apply Matlab to schedule Exclusive-OR nodes.Keywords: research projects, fuzzy GERT, fuzzy CPM, CPM, α-cuts, scheduling
Procedia PDF Downloads 39839375 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques
Procedia PDF Downloads 33139374 Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications
Authors: Suleyman Ogul Ertugrul, Mustafa Turgut, Serkan Inandı, Mustafa Gorkem Coban, Mustafa Kıgılı, Ali Mert, Oguzhan Kesmez, Murat Ozancı, Caglar Uyulan
Abstract:
In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles.Keywords: FSAE, suspension system, Adams Car, kinematic
Procedia PDF Downloads 5139373 Simulation Study of a Fault at the Switch on the Operation of the Doubly Fed Induction Generator Based on the Wind Turbine
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB / Simulink software illustrate the quality of the power generated at the default.Keywords: doubly fed induction generator (DFIG), wind power generation, back to back PWM converter, default switching
Procedia PDF Downloads 465