Search results for: Bayes' decision
4022 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes
Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez
Abstract:
Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability
Procedia PDF Downloads 2334021 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 4144020 A Straightforward Approach for Determining the Weights of Decision Makers Based on Angle Cosine and Projection Method
Authors: Qiang Yang, Ping-An Du
Abstract:
Group decision making with multiple attribute has attracted intensive concern in the decision analysis area. This paper assumes that the contributions of all the decision makers (DMs) are not equal to the decision process based on different knowledge and experience in group setting. The aim of this paper is to develop a novel approach to determine weights of DMs in the group decision making problems. In this paper, the weights of DMs are determined in the group decision environment via angle cosine and projection method. First of all, the average decision of all individual decisions is defined as the ideal decision. After that, we define the weight of each decision maker (DM) by aggregating the angle cosine and projection between individual decision and ideal decision with associated direction indicator μ. By using the weights of DMs, all individual decisions are aggregated into a collective decision. Further, the preference order of alternatives is ranked in accordance with the overall row value of collective decision. Finally, an example in a chemical company is provided to illustrate the developed approach.Keywords: angel cosine, ideal decision, projection method, weights of decision makers
Procedia PDF Downloads 3774019 Complex Decision Rules in the Form of Decision Trees
Authors: Avinash S. Jagtap, Sharad D. Gore, Rajendra G. Gurao
Abstract:
Decision rules become more and more complex as the number of conditions increase. As a consequence, the complexity of the decision rule also influences the time complexity of computer implementation of such a rule. Consider, for example, a decision that depends on four conditions A, B, C and D. For simplicity, suppose each of these four conditions is binary. Even then the decision rule will consist of 16 lines, where each line will be of the form: If A and B and C and D, then action 1. If A and B and C but not D, then action 2 and so on. While executing this decision rule, each of the four conditions will be checked every time until all the four conditions in a line are satisfied. The minimum number of logical comparisons is 4 whereas the maximum number is 64. This paper proposes to present a complex decision rule in the form of a decision tree. A decision tree divides the cases into branches every time a condition is checked. In the form of a decision tree, every branching eliminates half of the cases that do not satisfy the related conditions. As a result, every branch of the decision tree involves only four logical comparisons and hence is significantly simpler than the corresponding complex decision rule. The conclusion of this paper is that every complex decision rule can be represented as a decision tree and the decision tree is mathematically equivalent but computationally much simpler than the original complex decision ruleKeywords: strategic, tactical, operational, adaptive, innovative
Procedia PDF Downloads 2874018 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: situation-awareness, smart home, IoT, machine learning, classifier
Procedia PDF Downloads 4224017 Reducing Crash Risk at Intersections with Safety Improvements
Authors: Upal Barua
Abstract:
Crash risk at intersections is a critical safety issue. This paper examines the effectiveness of removing an existing off-set at an intersection by realignment, in reducing crashes. Empirical Bayes method was applied to conduct a before-and-after study to assess the effect of this safety improvement. The Transportation Safety Improvement Program in Austin Transportation Department completed several safety improvement projects at high crash intersections with a view to reducing crashes. One of the common safety improvement techniques applied was the realignment of intersection approaches removing an existing off-set. This paper illustrates how this safety improvement technique is applied at a high crash intersection from inception to completion. This paper also highlights the significant crash reductions achieved from this safety improvement technique applying Empirical Bayes method in a before-and-after study. The result showed that realignment of intersection approaches removing an existing off-set can reduce crashes by 53%. This paper also features the state of the art techniques applied in planning, engineering, designing and construction of this safety improvement, key factors driving the success, and lessons learned in the process.Keywords: crash risk, intersection, off-set, safety improvement technique, before-and-after study, empirical Bayes method
Procedia PDF Downloads 2454016 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 1614015 Framework for the Modeling of the Supply Chain Collaborative Planning Process
Authors: D. Pérez, M. M. E. Alemany
Abstract:
In this work a Framework to model the Supply Chain (SC) Collaborative Planning (CP) Process is proposed, and particularly its Decisional view. The main Framework contributions with regards to previous related works are the following, 1) the consideration of not only the Decision view, the most important one due to the Process type, but other additional three views which are the Physical, Organisation and Information ones, closely related and complementing the Decision View, 2) the joint consideration of two interdependence types, the Temporal (among Decision Centres belonging to different Decision Levels) and Spatial (among Decision Centres belonging to the same Decision Level) to support the distributed Decision-Making process in SC where several decision Centres interact among them in a collaborative manner.Keywords: collaborative planning, decision view, distributed decision-making, framework
Procedia PDF Downloads 4674014 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 3874013 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 164012 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model
Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee
Abstract:
Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior
Procedia PDF Downloads 1274011 Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning
Authors: Zhen Wu, David Lupien St-Pierre, Georges Abdul-Nour
Abstract:
In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium.Keywords: decision criteria, decision making, sewer network planning, decision making, strict uncertainty
Procedia PDF Downloads 5594010 A Supervised Approach for Detection of Singleton Spam Reviews
Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim
Abstract:
In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine
Procedia PDF Downloads 3094009 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy
Authors: Kemal Polat
Abstract:
In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.Keywords: machine learning, data weighting, classification, data mining
Procedia PDF Downloads 3254008 Decision Traps of Military Leaders
Authors: Ahmet Ali Turk, Muhterem Bayram
Abstract:
In this study, it is intended to determine that what kind of traps military leaders fall into during the decision making and how they make take a measure against them. In the study, the domestic and foreign literature on the military leadership has been reviewed and military decision-making process of the different countries has been introduced and study has been designed by making interviews as a sample with 50 people who had made military leadership. The issues resulting from the literature review that led to wrong decisions of military leaders and the points obtained as a result of interview have been evaluated by comparing. As a result, it has been emerged that the personnel who have made especially military leadership are in tendency of making the wrong decision due to decision traps such as excessive self-confidence, lack of experience, unplanned movement, hasty decision making and prohibitive conditions and also the need for increased situational awareness about this condition has been emerged.Keywords: military leadership, decision making, military decision making, military decision making traps
Procedia PDF Downloads 3544007 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: data mining, digital libraries, digital preservation, file format
Procedia PDF Downloads 4994006 Early Stage Suicide Ideation Detection Using Supervised Machine Learning and Neural Network Classifier
Authors: Devendra Kr Tayal, Vrinda Gupta, Aastha Bansal, Khushi Singh, Sristi Sharma, Hunny Gaur
Abstract:
In today's world, suicide is a serious problem. In order to save lives, early suicide attempt detection and prevention should be addressed. A good number of at-risk people utilize social media platforms to talk about their issues or find knowledge on related chores. Twitter and Reddit are two of the most common platforms that are used for expressing oneself. Extensive research has already been done in this field. Through supervised classification techniques like Nave Bayes, Bernoulli Nave Bayes, and Multiple Layer Perceptron on a Reddit dataset, we demonstrate the early recognition of suicidal ideation. We also performed comparative analysis on these approaches and used accuracy, recall score, F1 score, and precision score for analysis.Keywords: machine learning, suicide ideation detection, supervised classification, natural language processing
Procedia PDF Downloads 904005 Estimation of Stress-Strength Parameter for Burr Type XII Distribution Based on Progressive Type-II Censoring
Authors: A. M. Abd-Elfattah, M. H. Abu-Moussa
Abstract:
In this paper, the estimation of stress-strength parameter R = P(Y < X) is considered when X; Y the strength and stress respectively are two independent random variables of Burr Type XII distribution. The samples taken for X and Y are progressively censoring of type II. The maximum likelihood estimator (MLE) of R is obtained when the common parameter is unknown. But when the common parameter is known the MLE, uniformly minimum variance unbiased estimator (UMVUE) and the Bayes estimator of R = P(Y < X) are obtained. The exact condence interval of R based on MLE is obtained. The performance of the proposed estimators is compared using the computer simulation.Keywords: Burr Type XII distribution, progressive type-II censoring, stress-strength model, unbiased estimator, maximum-likelihood estimator, uniformly minimum variance unbiased estimator, confidence intervals, Bayes estimator
Procedia PDF Downloads 4564004 Youth Intelligent Personal Decision Aid
Authors: Norfiza Ibrahim, Norshuhada Shiratuddin, Siti Mahfuzah Sarif
Abstract:
Decision-making system is used to facilitate people in making the right choice for their important daily activities. For the youth, proper guidance in making important decisions is needed. Their skills in decision-making aid decisions will indirectly affect their future. For that reason, this study focuses on the intelligent aspects in the development of intelligent decision support application. The aid apparently integrates Personality Traits (PT) and Multiple Intelligence (MI) data in development of a computerized personal decision aid for youth named as Youth Personal Decision Aid (Youth PDA). This study is concerned with the aid’s helpfulness based on the hybrid intelligent process. There are four main items involved which are reliability, decision making effort, confidence, as well as decision process awareness. Survey method was applied to the actual user of this system, namely the school and the Institute of Higher Education (IPT)’s students. An establish instrument was used to evaluate the study. The results of the analysis and findings in the assessment indicates a high mean value of the four dimensions in helping Youth PDA to be accepted as a useful tool for the youth in decision-making.Keywords: decision support, multiple intelligent, personality traits, youth personal decision aid
Procedia PDF Downloads 6324003 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification
Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike
Abstract:
Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.Keywords: data mining, decision tree, classification, imbalance dataset
Procedia PDF Downloads 1364002 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.Keywords: regression, piecewise, Bayesian, reversible Jump MCMC
Procedia PDF Downloads 5214001 Adolescents’ Role in Family Buying Decision Making
Authors: Harleen Kaur, Deepika Jindal Singla
Abstract:
Buying decision making is a complicated process, in which consumer’s decision is under the impact of others. The buying decision making is directed in a way that they have to act as customers in the society. Media and family are key socialising agents for adolescents’. Moreover, changes in the socio-cultural environment in India necessitate that adolescents’ influence in family’s buying decision-making should be investigated. In comparison to Western society, Indian is quite different, when compared in terms of family composition and structure, behaviour, values and norms which effect adolescents’ buying decision-making.Keywords: adolescents, buying behavior, Indian urban families, consumer socialization
Procedia PDF Downloads 4784000 Strategic Decision Making Practice in Croatia: Which Decision Making Style is More Effective?
Authors: Ivana Bulog
Abstract:
Decision making is a vital part of the business world and any other field of human endeavor. Which way a business organization will take, and where that way will lead it, depends on broad range of decisions made by managers in the managerial structure. Strategic decisions are of the greatest importance for organizational success. Although much empirical research has been done trying to describe and explain its nature and effectiveness, knowledge about strategic decision making is still incomplete. This paper explores the nature of strategic decision making in particular setting - in Croatian companies. The main focus of this research is on the style that decision makers on strategic management level are following when making decisions of life importance for their companies. Two main decision making style that explain the way decision maker collects and processes available information and performs all the activities in strategic decision making process were empirical tested: rational and intuitive one. Besides analyzing their existence on strategic management level in Croatian companies, their effectiveness is analyzed as well. Results showed that decision makers at strategic management level are following both styles somewhat equally in order to function effectively, and that intuitive style is more effective when considering decisions outcomes.Keywords: decision making style, decision making effectiveness, strategic decisions, management sciences
Procedia PDF Downloads 3803999 Carrying Out the Steps of Decision Making Process in Concrete Organization
Authors: Eva Štěpánková
Abstract:
The decision-making process is theoretically clearly defined. Generally, it includes the problem identification and analysis, data gathering, goals and criteria setting, alternatives development and optimal alternative choice and its implementation. In practice however, various modifications of the theoretical decision-making process can occur. The managers can consider some of the phases to be too complicated or unfeasible and thus they do not carry them out and conversely some of the steps can be overestimated. The aim of the paper is to reveal and characterize the perception of the individual phases of decision-making process by the managers. The research is concerned with managers in the military environment–commanders. Quantitative survey is focused cross-sectionally in the individual levels of management of the Ministry of Defence of the Czech Republic. On the total number of 135 respondents the analysis focuses on which of the decision-making process phases are problematic or not carried out in practice and which are again perceived to be the easiest. Then it is examined the reasons of the findings.Keywords: decision making, decision making process, decision problems, concrete organization
Procedia PDF Downloads 4733998 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors
Authors: Katawut Kaewbanjong
Abstract:
We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.Keywords: prediction model, statistical analysis, software project, user satisfaction factor
Procedia PDF Downloads 1243997 Contribution to the Decision-Making Process for Selecting the Suitable Maintenance Policy
Authors: Nasser Y. Mahamoud, Pierre Dehombreux, Hassan E. Robleh
Abstract:
Industrial companies may be confronted with questions about their choice of maintenance policy. This choice must be guided by several numbers of decision criteria or objectives related to their production or service activities but also to their level of development and their investment prospects. A decision-support methodology to choose a maintenance policy (corrective, systematic or conditional preventive, predictive, opportunistic or not) is proposed to facilitate this choice using the main categories of the most important decision criteria. The different steps of this methodology are illustrated using theoretical case: identification of the different maintenance alternatives, determining the structure of the most important categories of the decision criteria, assessing the different maintenance policies on to the criteria by using an ordinal preference relation, and finally ranking the different maintenance policies.Keywords: maintenance policy, decision criteria, decision-making process, AHP
Procedia PDF Downloads 3323996 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.Keywords: piecewise regression, bayesian, reversible jump MCMC, segmentation
Procedia PDF Downloads 3733995 Tongue Image Retrieval Based Using Machine Learning
Authors: Ahmad FAROOQ, Xinfeng Zhang, Fahad Sabah, Raheem Sarwar
Abstract:
In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC).Keywords: medical imaging, image retrieval, machine learning, tongue
Procedia PDF Downloads 813994 Evaluation of a Personalized Online Decision Aid for Colorectal Cancer Screening: A Randomized Controlled Trial
Authors: Linda P. M. Pluymen, Mariska M. G. Leeflang, I. Stegeman, Henock G. Yebyo, Anne E. M. Brabers, Patrick M. Bossuyt, E. Dekker, Anke J. Woudstra, Mirjam P. Fransen
Abstract:
Weighing the benefits and harms of colorectal cancer screening can be difficult for individuals. An existing online decision aid was expanded with a benefit-harm analysis to help people make an informed decision about participating in colorectal cancer screening. In a randomized controlled trial, we investigated whether those in the intervention group who used the decision aid with benefit-harm analysis were more certain about their decision than those in the control group who used the decision aid without benefit-harm analysis. Participants were 623 (39% of those invited) men and women aged 45 until 75 years old. Analyses were performed in those 386 participants (62%) who reported to have completed the entire decision aid. No statistically significant differences were observed between intervention and control group in decisional conflict score (mean difference 2.4, 95% CI -0.9, 5.6), clarity of values (mean difference 1.0, 95% CI -4.4, 6.6), deliberation score (mean difference 0.5, 95% CI -0.6, 1.7), anxiety score (mean difference 0.0, 95% CI -0.3, 0.3) and risk perception score (mean difference 0.1, -0.1, 0.3). Adding a benefit-harm analysis to an online decision aid did not improve informed decision making about participating in colorectal cancer screening.Keywords: benefit-harm analysis, decision aid, informed decision making, personalized decision making
Procedia PDF Downloads 1703993 The Quotation-Based Algorithm for Distributed Decision Making
Authors: Gennady P. Ginkul, Sergey Yu. Soloviov
Abstract:
The article proposes to use so-called "quotation-based algorithm" for simulation of decision making process in distributed expert systems and multi-agent systems. The idea was adopted from the techniques for group decision-making. It is based on the assumption that one expert system to perform its logical inference may use rules from another expert system. The application of the algorithm was demonstrated on the example in which the consolidated decision is the decision that requires minimal quotation.Keywords: backward chaining inference, distributed expert systems, group decision making, multi-agent systems
Procedia PDF Downloads 375