Search results for: self learning
1250 Inclusive Cultural Heritage Tourism Project
Authors: L. Cruz-Lopes, M. Sell, P. Escudeiro, B. Esteves
Abstract:
It might be difficult for deaf people to communicate since spoken and written languages are different from sign language. When it comes to getting information, going to places of cultural heritage, or using services and infrastructure, there is a clear lack of inclusiveness. By creating assistive technology that enables deaf individuals to get around communication hurdles and encourage inclusive tourism, the ICHT- Inclusive Cultural Heritage Tourism initiative hopes to increase knowledge of sign language. The purpose of the Inclusive Cultural Heritage Tourism (ICHT) project is to develop online and on-site sign language tools and material for usage at popular tourist destinations in the northern region of Portugal, including Torre dos Clérigos, the Lello bookstore, Maia Zoo, Porto wine cellars, and São Pedro do Sul (Viseu) thermae. The ICHT system consists of an application using holography, a mobile game, an online platform for collaboration with deaf and hearing users, and a collection of International Sign training courses. The project also offers a prospect for a more inclusive society by introducing a method of teaching sign languages to tourism industry professionals. As a result, the teaching and learning of sign language along with the assistive technology tools created by the project sets up an inclusive environment for the deaf community, producing results in the area of automatic sign language translation and aiding in the global recognition of the Portuguese tourism industry.Keywords: inclusive tourism, games, international sign training, deaf community
Procedia PDF Downloads 1161249 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 971248 Made-in-Japan English and the Negative Impact on English Language Learning
Authors: Anne Crescini
Abstract:
The number of loanwords borrowed into the Japanese language is increasing rapidly in recent years, and many linguists argue that loanwords make up more than 10% of the Japanese lexicon. While these loanwords come from various Western languages, 80%-90% are borrowed from English. Also, there is a separate group of words and phrases categorized as ‘Japanese English’. These made-in-Japan linguistic creations may look and sound like English, but in fact are not used by native speakers and are often incomprehensible to them. Linguistically, the important thing to remember is that these terms are not English ones, but in fact, 100% Japanese words. A problem arises in language teaching, however, when Japanese English learners are unable to distinguish authentic loans from Japanese English terms. This confusion could greatly impede language acquisition and communication. The goal of this paper is to determine to what degree this potential misunderstanding may interfere with communication. Native English speakers living in the United States were interviewed and shown a list of romanized Japanese English terms, which are both commonly used and often mistaken for authentic loans. Then, the words were put into the context of a sentence in order to ascertain if context in any way aided comprehension. The results showed that while some terms are understood on their own, and others are understood better in context, a large number of the terms are entirely incomprehensible to native English speakers. If that is the case, and a Japanese learner mistakes a Japanese English term for an authentic loan, a communication breakdown may occur during interaction in English. With the ever-increasing presence of both groups of terms in the Japanese language, it is more important than ever that teaching professionals address this topic in the language classroom.Keywords: Japanese, Japanese English, language acquisition, loanwords
Procedia PDF Downloads 2221247 Bridge Health Monitoring: A Review
Authors: Mohammad Bakhshandeh
Abstract:
Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis
Procedia PDF Downloads 901246 Using Systems Theory and Collective Impact Approaches to Increase the Retention and Success of University Student Stem Majors
Authors: Araceli Martínez Ortiz
Abstract:
An educational research effort is analyzed using systems theory to document the power of collective impact when addressing multiple factors contributing towards the retention of students majoring in science, technology, engineering and mathematics (STEM) academic programs. This research promotes understanding on how networked communities may work effectively toward a shared vision and mutually aligned activities that result in sustained, large scale change. The actions of a team of researchers in their third year of collaboration are presented to describe a model that positively aligns work efforts resulting in greater total gains. The goals of the multiple programs managed by the funded program team are to: 1) expand the number of students who choose to study a STEM field of study; 2) promote student collaborative learning; 3) support faculty understanding of the funds of knowledge of diverse students and 4) establish innovative and robust STEM education research that will lead to the development of nationally replicable, scalable models for broadening participation in STEM. The impacts of this research effort are measured through quantitative statistical analysis of the changes in second-year STEM undergraduate student retention rates and representation rates of women, Hispanics and African American STEM majors.Keywords: collaborative impact, diversity, student retention, systems theory, STEM education
Procedia PDF Downloads 2661245 Measuring Greenhouse Gas Exchange from Paddy Field Using Eddy Covariance Method in Mekong Delta, Vietnam
Authors: Vu H. N. Khue, Marian Pavelka, Georg Jocher, Jiří Dušek, Le T. Son, Bui T. An, Ho Q. Bang, Pham Q. Huong
Abstract:
Agriculture is an important economic sector of Vietnam, the most popular of which is wet rice cultivation. These activities are also known as the main contributor to the national greenhouse gas. In order to understand more about greenhouse gas exchange in these activities and to investigate the factors influencing carbon cycling and sequestration in these types of ecosystems, since 2019, the first eddy covariance station has been installed in a paddy field in Long An province, Mekong Delta. The station was equipped with state-of-the-art equipment for CO₂ and CH₄ gas exchange and micrometeorology measurements. In this study, data from the station was processed following the ICOS recommendations (Integrated Carbon Observation System) standards for CO₂, while CH₄ was manually processed and gap-filled using a random forest model from methane-gapfill-ml, a machine learning package, as there is no standard method for CH₄ flux gap-filling yet. Finally, the carbon equivalent (Ce) balance based on CO₂ and CH₄ fluxes was estimated. The results show that in 2020, even though a new water management practice - alternate wetting and drying - was applied to reduce methane emissions, the paddy field released 928 g Cₑ.m⁻².yr⁻¹, and in 2021, it was reduced to 707 g Cₑ.m⁻².yr⁻¹. On a provincial level, rice cultivation activities in Long An, with a total area of 498,293 ha, released 4.6 million tons of Cₑ in 2020 and 3.5 million tons of Cₑ in 2021.Keywords: eddy covariance, greenhouse gas, methane, rice cultivation, Mekong Delta
Procedia PDF Downloads 1421244 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble
Procedia PDF Downloads 1381243 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 5171242 Broadening the Roles of Masjid: Reviving Prophetic Holistic Model in Fostering Islamic Education and Arabic Language in South-Western Nigeria
Authors: Ahmad Tijani Surajudeen, Muhammad Zahiri Awang Mat, Aliy Abdulwahid Adebisi
Abstract:
With arrival of Islam in the South-Western Nigeria in the late fifteenth and early sixteenth centuries, various masājid established in different parts of the area played vital roles towards the betterment and unity of the Muslims. However, despite the fact that the masājid in the South-Western part of Nigeria contributed immensely to the spiritual and educational enhancement of the Muslims, it has not fully captured the holistic educational roles as a unique model used by the Prophet (S.A.W). Therefore, the primary objective of this paper is to investigate and broaden the roles of masjid towards its compartmentalized and holistic contributions among the Muslims in the south-western Nigeria. The findings from the paper have identified five holistic roles of masjid, namely, spiritual, intellectual, physical, social and emotional contributions which have been exemplified in the prophetic model of masjid. The paper has argued that the five factors must be unreservedly unified towards the betterment of the Muslims and enhancement of Islamic education and Arabic Language in the South-Western Nigeria. However, the challenges of masjid management in the South-Western Nigeria are the main hindrance in achieving the holistic roles of masjid. It is thereby suggested that, the management of masjid should take the identified prophetic model of masjid into account in order to positively improve the affairs of Muslims as well as promoting the teaching and learning of Islamic education and Arabic language among the Muslims in the South-Western Nigeria.Keywords: worship, Islamic education, Arabic language, prophetic holistic model
Procedia PDF Downloads 3331241 The Role of Knowledge Sharing in Market Response: The Case of Saman Bank of Iran
Authors: Fatemeh Torabi, Jamal El-Den, Narumon Sriratanviriyakul
Abstract:
Perpetual changes in the workplace and daily business activities bring a need for imbedding organizational knowledge sharing within the organizations’ culture, routines and processes. Organizations should adapt to the changing in the environment in order to survive. Accordingly, the management should promote a knowledge sharing culture which might result in knowledge accumulation, hence better response to these changing environmental conditions. Researchers in the field of strategy and marketing stressed that employees’, as well as the overall performance of the organization, would improve as a result of implementing a knowledge-oriented culture. The research investigated the significant impact of knowledge sharing on market response and the competitiveness of organizations. A knowledge sharing framework was developed based on current literary frameworks with additional constructs such as employees’ learning commitments, experiences and prior knowledge. Linear regression was used to analyze the relationships among dependent and independent variables. The research’s results indicated strong positive correlation between the dependent and independent variables, especially in organizational market sharing. We anticipate that this correlation would improve organizational knowledge sharing related practices and the associated knowledge entities. The research posits the introduced framework could be a solid ground for further investigations on how some organizational factors would influence the organization’s response to the market as well as on competitiveness. Final results support all hypotheses. Finding of this research show that knowledge sharing intention had the significant and positive effect on market response and competitiveness of organizations.Keywords: knowledge management, knowledge sharing, market response, organizational competitiveness
Procedia PDF Downloads 2061240 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking
Authors: Jonas Colin
Abstract:
Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.Keywords: chatbot, GPT 3.5, metacognition, symbiose
Procedia PDF Downloads 701239 Development of Fault Diagnosis Technology for Power System Based on Smart Meter
Authors: Chih-Chieh Yang, Chung-Neng Huang
Abstract:
In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.Keywords: ANFIS, fault diagnosis, power system, smart meter
Procedia PDF Downloads 1391238 The Influence of Audio-Visual Resources in Teaching Business Subjects in Selected Secondary Schools in Ifako Ijaiye Local Government Area of Lagos State, Nigeria
Authors: Oluwole Victor Falobi, Lawrence Olusola Ige
Abstract:
The cardinal drawing force of this study is to examine the influence of audio-visual resources in teaching business subjects in selected secondary schools in IfakoIjaiye Local Government Area of Lagos State, Nigeria. A descriptive survey research design was employed for the study. By using a quantitative research approach and a sample size of 120 students were randomly selected from four public schools. Three research questions with one hypothesis guided the study. Data collected were analysed using frequency, the mean and standard deviation for the research questions, and Pearson Product Moment Correlation PPMC were used to analysed the inferential statistic. Findings from the study revealed that the Influence of audio-visual resources in teaching business subjects in selected secondary schools in IfakoIjaiye Local Government Area of Lagos State is low. It further revealed data the knowledge of teachers on the use of audio-visual resources is high in Ifako Local Government Area. It was recommended that government should create a timely monitoring system in other to check secondary school laboratories and classrooms to replace outdated facilities and also purchase needed facilities for effective teaching and learning to take place.Keywords: audio-visual resources, business subjects, school, teaching
Procedia PDF Downloads 991237 Smart Online Library Catalog System with Query Expansion for the University of the Cordilleras
Authors: Vincent Ballola, Raymund Dilan, Thelma Palaoag
Abstract:
The Smart Online Library Catalog System with Query Expansion seeks to address the low usage of the library because of the emergence of the Internet. Library users are not accustomed to catalog systems that need a query to have the exact words without any mistakes for decent results to appear. The graphical user interface of the current system has a rather skewed learning curve for users to adapt with. With a simple graphical user interface inspired by Google, users can search quickly just by inputting their query and hitting the search button. Because of the query expansion techniques incorporated into the new system such as stemming, thesaurus search, and weighted search, users can have more efficient results from their query. The system will be adding the root words of the user's query to the query itself which will then be cross-referenced to a thesaurus database to search for any synonyms that will be added to the query. The results will then be arranged by the number of times the word has been searched. Online queries will also be added to the results for additional references. Users showed notable increases in efficiency and usability due to the familiar interface and query expansion techniques incorporated in the system. The simple yet familiar design led to a better user experience. Users also said that they would be more inclined in using the library because of the new system. The incorporation of query expansion techniques gives a notable increase of results to users that in turn gives them a wider range of resources found in the library. Used books mean more knowledge imparted to the users.Keywords: query expansion, catalog system, stemming, weighted search, usability, thesaurus search
Procedia PDF Downloads 3881236 Unpacking Chilean Preservice Teachers’ Beliefs on Practicum Experiences through Digital Stories
Authors: Claudio Díaz, Mabel Ortiz
Abstract:
An EFL teacher education programme in Chile takes five years to train a future teacher of English. Preservice teachers are prepared to learn an advanced level of English and teach the language from 5th to 12th grade in the Chilean educational system. In the context of their first EFL Methodology course in year four, preservice teachers have to create a five-minute digital story that starts from a critical incident they have experienced as teachers-to-be during their observations or interventions in the schools. A critical incident can be defined as a happening, a specific incident or event either observed by them or involving them. The happening sparks their thinking and may make them subsequently think differently about the particular event. When they create their digital stories, preservice teachers put technology, teaching practice and theory together to narrate a story that is complemented by still images, moving images, text, sound effects and music. The story should be told as a personal narrative, which explains the critical incident. This presentation will focus on the creation process of 50 Chilean preservice teachers’ digital stories highlighting the critical incidents they started their stories. It will also unpack preservice teachers’ beliefs and reflections when approaching their teaching practices in schools. These beliefs will be coded and categorized through content analysis to evidence preservice teachers’ most rooted conceptions about English teaching and learning in Chilean schools. The findings seem to indicate that preservice teachers’ beliefs are strongly mediated by contextual and affective factors.Keywords: beliefs, digital stories, preservice teachers, practicum
Procedia PDF Downloads 4411235 Neuroplasticity in Language Acquisition in English as Foreign Language Classrooms
Authors: Sabitha Rahim
Abstract:
In the context of teaching vocabulary of English as Foreign Language (EFL), the confluence of memory and retention is one of the most significant factors in students' language acquisition. The progress of students engaged in foreign language acquisition is often stymied by vocabulary attrition, which leads to learners' lack of confidence and motivation. However, among other factors, little research has investigated the importance of neuroplasticity in Foreign Language acquisition and how underused neural pathways lead to the loss of plasticity, thereby affecting the learners’ vocabulary retention and motivation. This research explored the effect of enhancing vocabulary acquisition of EFL students in the Foundation Year at King Abdulaziz University through various methods and neuroplasticity exercises that reinforced their attention, motivation, and engagement. It analyzed the results to determine if stimulating the brain of EFL learners by various physical and mental activities led to the improvement in short and long term memory in vocabulary retention. The main data collection methods were student surveys, assessment records of teachers, student achievement test results, and students' follow-up interviews. A key implication of this research is for the institutions to consider having multiple varieties of student activities promoting brain plasticity within the classrooms as an effective tool for foreign language acquisition. Building awareness among the faculty and adapting the curriculum to include activities that promote brain plasticity ensures an enhanced learning environment and effective language acquisition in EFL classrooms.Keywords: language acquisition, neural paths, neuroplasticity, vocabulary attrition
Procedia PDF Downloads 1761234 Analysis of Basic Science Curriculum as Correlates of Secondary School Students' Achievement in Science Test in Oyo State
Authors: Olubiyi Johnson Ezekiel
Abstract:
Basic science curriculum is an on-going effort towards developing the potential of manner to produce individuals in a holistic and integrated person, who are intellectually, spiritually, emotionally and physically balanced and harmonious. The main focus of this study is to determine the relationship between students’ achievement in junior school certificate examination (JSCE) and senior school basic science achievement test (SSBSAT) on the basis of all the components of basic science. The study employed the descriptive research of the survey type and utilized junior school certificate examination and senior school basic science achievement test(r = .87) scores as instruments. The data collected were subjected to Pearson product moment correlation, Spearman rank correlation, regression analysis and analysis of variance. The result of the finding revealed that the mean effects of the achievement in all the components of basic science on SSBSAT are significantly different from zero. Based on the results of the findings, it was concluded that the relationship between students’ achievement in JSCE and SSBSAT was weak and to achieve a unit increase in the students’ achievement in the SSBSAT when other subjects are held constant, we have to increase the learning of: -physics by 0.081 units; -chemistry by 0.072 units; -biology by 0.025 units and general knowledge by 0.097 units. It was recommended among others, that general knowledge aspect of basic science should be included in either physics or chemistry aspect of basic science.Keywords: basic science curriculum, students’ achievement, science test, secondary school students
Procedia PDF Downloads 4501233 Understanding Indonesian Smallholder Dairy Farmers’ Decision to Adopt Multiple Farm: Level Innovations
Authors: Rida Akzar, Risti Permani, Wahida , Wendy Umberger
Abstract:
Adoption of farm innovations may increase farm productivity, and therefore improve market access and farm incomes. However, most studies that look at the level and drivers of innovation adoption only focus on a specific type of innovation. Farmers may consider multiple innovation options, and constraints such as budget, environment, scarcity of labour supply, and the cost of learning. There have been some studies proposing different methods to combine a broad variety of innovations into a single measurable index. However, little has been done to compare these methods and assess whether they provide similar information about farmer segmentation by their ‘innovativeness’. Using data from a recent survey of 220 dairy farm households in West Java, Indonesia, this study compares and considers different methods of deriving an innovation index, including expert-weighted innovation index; an index derived from the total number of adopted technologies; and an index of the extent of adoption of innovation taking into account both adoption and disadoption of multiple innovations. Second, it examines the distribution of different farming systems taking into account their innovativeness and farm characteristics. Results from this study will inform policy makers and stakeholders in the dairy industry on how to better design, target and deliver programs to improve and encourage farm innovation, and therefore improve farm productivity and the performance of the dairy industry in Indonesia.Keywords: adoption, dairy, household survey, innovation index, Indonesia, multiple innovations dairy, West Java
Procedia PDF Downloads 3361232 Bullying with Neurodiverse Students and Education Policy Reform
Authors: Fharia Tilat Loba
Abstract:
Studies show that there is a certain group of students who are more vulnerable to bullying due to their physical appearance, disability, sexual preference, race, and lack of social and behavioral skills. Students with autism spectrum disorders (ASD) are one of the most vulnerable groups among these at-risk groups. Researchers suggest that focusing on vulnerable groups of students who can be the target of bullying helps to understand the causes and patterns of aggression, which ultimately helps in structuring intervention programs to reduce bullying. Since Australia ratified the United Nations Convention on the Rights of Persons with Disabilities in 2006, it has been committed to providing an inclusive, safe, and effective learning environment for all children. In addition, the 2005 Disability Standards for Education seeks to ensure that students with disabilities can access and participate in education on the same basis as other students, covering all aspects of education, including harassment and victimization. However, bullying hinders students’ ability to fully participate in schooling. The proposed study aims to synthesize the notions of traditional bullying and cyberbullying and attempts to understand the experiences of students with ASD who are experiencing bullying in their schools. The proposed study will primarily focus on identifying the gaps between policy and practice related to bullying, and it will also attempt to understand the experiences of parents of students with ASD and professionals who have experience dealing with bullying at the school level in Australia. This study is expected to contribute to the theoretical knowledge of the bullying phenomenon and provide a reference for advocacy at the school, organization, and government levels.Keywords: education policy, bullying, Australia, neurodiversity
Procedia PDF Downloads 571231 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 321230 Retrospective Insight on the Changing Status of the Romanian Language Spoken in the Republic of Moldova
Authors: Gina Aurora Necula
Abstract:
From its transformation into a taboo and its hiding under the so-called “Moldovan language” or under the euphemistic expression “state language” to its regained status recognition as an official language, the Romanian language spoken in the Republic of Moldova has undergone impressive reforms in the last 60 years. Meant to erase the awareness of citizens’ ethnic identity and turn a majority language into a minority one, all the laws and regulations issued on the field succeeded into setting numerous barriers for speakers of Romanian. Either manifested as social constraints or materialized into assumed rejection of mother tongue usage, all these laws have demonstrated their usefulness and major impact on the Romanian-speaking population. This article is the result of our research carried out over 10 years with the support of students, and Moldovan citizens, from the master's degree program "Romanian language - identity and cultural awareness." We present here a retrospective insight of the reforms, laws, and regulations that contributed to the shifted status of the Romanian language from the official language, seen as the language of common use both in the public and private spheres, in the minority language that surrendered its privileged place to the Russian language, firstly in the public sphere, and then, slowly but surely, in the private sphere. Our main goal here is to identify and make speakers understand what the barriers to learning Romanian language are nowadays when the social pressure on using Russian no longer exists.Keywords: linguistic barriers, lingua franca, private sphere, public sphere, reformation
Procedia PDF Downloads 1151229 Using the Technological, Pedagogical, and Content Knowledge (TPACK) Model to Address College Instructors Weaknesses in Integration of Technology in Their Current Area Curricula
Authors: Junior George Martin
Abstract:
The purpose of this study was to explore college instructors’ integration of technology in their content area curriculum. The instructors indicated that they were in need of additional training to successfully integrate technology in their subject areas. The findings point to the implementation of a proposed the Technological, Pedagogical, and Content Knowledge (TPACK) model professional development workshop to satisfactorily address the weaknesses of the instructors in technology integration. The professional development workshop is proposed as a rational solution to adequately address the instructors’ inability to the successful integration of technology in their subject area in an effort to improve their pedagogy. The intense workshop would last for 5 days and will be designed to provide instructors with training in areas such as a use of technology applications and tools, and using modern methodologies to improve technology integration. Exposing the instructors to the specific areas identified will address the weaknesses they demonstrated during the study. Professional development is deemed the most appropriate intervention based on the opportunities it provides the instructors to access hands-on training to overcome their weaknesses. The purpose of the TPACK professional development workshop will be to improve the competence of the instructors so that they are adequately prepared to integrate technology successfully in their curricula. At the end of the period training, the instructors are expected to adopt strategies that will have a positive impact on the learning experiences of the students.Keywords: higher education, modern technology tools, professional development, technology integration
Procedia PDF Downloads 3121228 A Simple Technique for Centralisation of Distal Femoral Nail to Avoid Anterior Femoral Impingement and Perforation
Authors: P. Panwalkar, K. Veravalli, M. Tofighi, A. Mofidi
Abstract:
Introduction: Anterior femoral perforation or distal anterior nail position is a known complication of femoral nailing specifically in pertrochantric fractures fixed with cephalomedullary nail. This has been attributed to wrong entry point for the femoral nail, nail with large radius of curvature or malreduced fracture. Left alone anterior perforation of femur or abutment of nail on anterior femur will result in pain and risk stress riser at distal femur and periprosthetic fracture. There have been multiple techniques described to avert or correct this problem ranging from using different nail, entry point change, poller screw to deflect the nail position, use of shorter nail or use of curved guidewire or change of nail to ensure a nail with large radius of curvature Methods: We present this technique which we have used in order to centralise the femoral nail either when the nail has been put anteriorly or when the guide wire has been inserted too anteriorly prior to the insertion of the nail. This technique requires the use of femoral reduction spool from the nailing set. This technique was used by eight trainees of different level of experience under supervision. Results: This technique was easily reproducible without any learning curve without a need for opening of fracture site or change in the entry point with three different femoral nailing sets in twenty-five cases. The process took less than 10 minutes even when revising a malpositioned femoral nail. Conclusion: Our technique of using femoral reduction spool is easily reproducible and repeatable technique for avoidance of non-centralised femoral nail insertion and distal anterior perforation of femoral nail.Keywords: femoral fracture, nailing, malposition, surgery
Procedia PDF Downloads 1421227 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation
Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam
Abstract:
Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model
Procedia PDF Downloads 1111226 Integration of Virtual Learning of Induction Machines for Undergraduates
Authors: Rajesh Kumar, Puneet Aggarwal
Abstract:
In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.Keywords: block rotor test, DC test, no load test, virtual environment, voltage source inverter
Procedia PDF Downloads 3541225 Digital Literacy, Assessment and Higher Education
Authors: James Moir
Abstract:
Recent evidence suggests that academic staff face difficulties in applying new technologies as a means of assessing higher order assessment outcomes such as critical thinking, problem solving and creativity. Although higher education institutional mission statements and course unit outlines purport the value of these higher order skills there is still some question about how well academics are equipped to design curricula and, in particular, assessment strategies accordingly. Despite a rhetoric avowing the benefits of these higher order skills, it has been suggested that academics set assessment tasks up in such a way as to inadvertently lead students on the path towards lower order outcomes. This is a controversial claim, and one that this papers seeks to explore and critique in terms of challenging the conceptual basis of assessing higher order skills through new technologies. It is argued that the use of digital media in higher education is leading to a focus on students’ ability to use and manipulate of these products as an index of their flexibility and adaptability to the demands of the knowledge economy. This focus mirrors market flexibility and encourages programmes and courses of study to be rhetorically packaged as such. Curricular content has become a means to procure more or less elaborate aggregates of attributes. Higher education is now charged with producing graduates who are entrepreneurial and creative in order to drive forward economic sustainability. It is argued that critical independent learning can take place through the democratisation afforded by cultural and knowledge digitization and that assessment needs to acknowledge the changing relations between audience and author, expert and amateur, creator and consumer.Keywords: higher education, curriculum, new technologies, assessment, higher order skills
Procedia PDF Downloads 3751224 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 1011223 Business Education and Passion: The Place of Amore, Consciousness, Discipline, and Commitment as Holonomic Constructs in Pedagogy, A Conceptual Exploration
Authors: Jennifer K. Bowerman, Rhonda L. Reich
Abstract:
The purpose of this paper is to explore the concepts ACDC (Amore, Consciousness, Discipline, and Commitment) which the authors first discovered as a philosophy and framework for recruitment and organizational development in a successful start-up tech company in Brazil. This paper represents an exploration of these concepts as a potential pedagogical foundation for undergraduate business education in the classroom. It explores whether their application has potential to build emotional and practical resilience in the face of constant organizational and societal change. Derived from Holonomy this paper explains the concepts and develops a narrative around how change influences the operation of organizations. Using examples from leading edge organizational theorists, it explains why a different educational approach grounded in ACDC concepts may not only have relevance for the working world, but also for undergraduates about to enter that world. The authors propose that in the global context of constant change, it makes sense to develop an approach to education, particularly business education, beyond cognitive knowledge, models and tools, in such a way that emotional and practical resilience and creative thinking may be developed. Using the classroom as an opportunity to explore these concepts, and aligning personal passion with the necessary discipline and commitment, may provide students with a greater sense of their own worth and potential as they venture into their ever-changing futures.Keywords: ACDC, holonomic thinking, organizational learning, organizational change, business pedagogy
Procedia PDF Downloads 2391222 The Role of the Tehran Conservatory Program in Providing a Supportive, Adaptable Music Learning Environment for Children with Autism Spectrum Disorder and Their Families
Authors: Ailin Agaahi, Nafise Daneshvar Hoseini, Shahnaz Tamizi, Mehrdad Sabet
Abstract:
Music education has been recognized as a valuable therapeutic and educational intervention for children with Autism Spectrum Disorder (ASD). This study explores the experiences and perceptions of parents whose children with ASD have participated in music lessons at the Tehran Conservatory. The aim is to understand the impacts and barriers of this educational approach, providing insights into the real-world experiences of families integrating music into the lives of their children. Qualitative research was conducted through in-depth interviews with parents of children with ASD enrolled in the Tehran Conservatory's music program. The interviews examined parental motivations, observations of their child's progress, and evaluations of the program's effectiveness. Preliminary findings suggest that the music program positively impacts social interaction, emotional regulation, and communication. Parents highlighted the program's adaptability to meet the unique needs of children with ASD and the supportive environment fostered by specialized instructors. However, several barriers were identified, including the need for greater awareness and acceptance of music education for children with ASD and the limited availability of similar programs in the region. This research contributes valuable insights from parents and caregivers, emphasizing the importance of inclusive and effective music programs to support the needs of children with ASD and their families.Keywords: autism spectrum disorder, music education, therapeutic intervention, parental perspectives
Procedia PDF Downloads 181221 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: big data analysis, document classification, multi-category, text mining, topic analysis
Procedia PDF Downloads 272