Search results for: index of effectiveness
1696 A Unified Model for Predicting Particle Settling Velocity in Pipe, Annulus and Fracture
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li
Abstract:
Transports of solid particles through the drill pipe, drill string-hole annulus and hydraulically generated fractures are important dynamic processes encountered in oil and gas well drilling and completion operations. Different from particle transport in infinite space, the transports of cuttings, proppants and formation sand are hindered by a finite boundary. Therefore, an accurate description of the particle transport behavior under the bounded wall conditions encountered in drilling and hydraulic fracturing operations is needed to improve drilling safety and efficiency. In this study, the particle settling experiments were carried out to investigate the particle settling behavior in the pipe, annulus and between the parallel plates filled with power-law fluids. Experimental conditions simulated the particle Reynolds number ranges of 0.01-123.87, the dimensionless diameter ranges of 0.20-0.80 and the fluid flow behavior index ranges of 0.48-0.69. Firstly, the wall effect of the annulus is revealed by analyzing the settling process of the particles in the annular geometry with variable inner pipe diameter. Then, the geometric continuity among the pipe, annulus and parallel plates was determined by introducing the ratio of inner diameter to an outer diameter of the annulus. Further, a unified dimensionless diameter was defined to confirm the relationship between the three different geometry in terms of the wall effect. In addition, a dimensionless term independent from the settling velocity was introduced to establish a unified explicit settling velocity model applicable to pipes, annulus and fractures with a mean relative error of 8.71%. An example case study was provided to demonstrate the application of the unified model for predicting particle settling velocity. This paper is the first study of annulus wall effects based on the geometric continuity concept and the unified model presented here will provide theoretical guidance for improved hydraulic design of cuttings transport, proppant placement and sand management operations.Keywords: wall effect, particle settling velocity, cuttings transport, proppant transport in fracture
Procedia PDF Downloads 1591695 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks
Authors: Heeba A. Gurku
Abstract:
Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.Keywords: CT images, CBCT images, cycle GAN, AGGAN
Procedia PDF Downloads 831694 Factors Affecting Autistic Children's Development during the Early Years in Elementary School: A Longitudinal Study in Taiwan
Authors: Huang Ying
Abstract:
The present study was to investigate factors affecting children's improvement through the first two years of elementary school on a population-based sample of children with autism in Taiwan. All the children were diagnosed with autism spectrum disorder (ASD) by clinical psychologists according to DSM-IV. Children's development was assessed by the Vineland Adaptive Behavior Scales-Chinese version (VABS-C) on the first and the third grade. Children's improvement was measured by the difference between the standardized total score of the third and the first year. In Taiwan, school-age children with special-education needs will be arranged into different classes, including normal classes (NC), resource classes (RC), and special classes (SC) by the government. Therefore, type of class was one of the independent variables. Moreover, as early intervention is considered to be crucial, the earliest age when intervention begins was collected from parents. Attention was also included in the analysis. Teachers were asked to evaluate children's attention with a 3-item Likert Scale. The frequency of paying attention to the class or the task was recorded and scores were summed up. Additionally, standardized scores of the VABS-C in the first grade were used as pretest scores representing children's developmental level at the beginning of elementary school. Multiple regression was conducted with improvement as the dependent variable. Results showed that children in special classes had smaller improvement compared to those in normal or resource classes. Attention positively predicted improvement yet the effect of earliest intervention age was not significant. Furthermore, scores in the first grade negatively predicted improvement, which indicated that children with higher developmental levels would make less progress in the following years. Results were to some degree consistent with previous findings through meta-analysis that the effectiveness of conventional intervention methods lacked sufficient evidence to support.Keywords: attention, early intervention, elementary school, special education in Taiwan
Procedia PDF Downloads 2901693 An Investigation on Interactions between Social Security with Police Operation and Economics in the Field of Tourism
Authors: Mohammad Mahdi Namdari, Hosein Torki
Abstract:
Security as an abstract concept, has involved human being from the beginning of creation to the present, and certainly to the future. Accordingly, battles, conflicts, challenges, legal proceedings, crimes and all issues related to human kind are associated with this concept. Today by interviewing people about their life, the security of societies and Social crimes are interviewed too. Along with the security as an infrastructure and vital concept, the economy and related issues e.g. welfare, per capita income, total government revenue, export, import and etc. is considered another infrastructure and vital concept. These two vital concepts (Security and Economic) have linked together complexly and significantly. The present study employs analytical-descriptive research method using documents and Statistics of official sources. Discovery and explanation of this mutual connection are comprising a profound and extensive research; so management, development and reform in system and relationships of the scope of this two concepts are complex and difficult. Tourism and its position in today's economy is one of the main pillars of the economy of the 21st century that maybe associate with the security and social crimes more than other pillars. Like all human activities, economy of societies and partially tourism dependent on security especially in the public and social security. On the other hand, the true economic development (generally) and the growth of the tourism industry (dedicated) are a security generating and supporting for it, because a dynamic economic infrastructure prevents the formation of centers of crime and illegal activities by providing a context for socio-economic development for all segments of society in a fair and humane. This relationship is a formula of the complexity between the two concept of economy and security. Police as a revealed or people-oriented organization in the field of security directly has linked with the economy of a community and is very effective In the face of the tourism industry. The relationship between security and national crime index, and economic indicators especially ones related to tourism is confirming above discussion that is notable. According to understanding processes about security and economic as two key and vital concepts are necessary and significant for sovereignty of governments.Keywords: economic, police, tourism, social security
Procedia PDF Downloads 3211692 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method
Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty
Procedia PDF Downloads 141691 AI-Assisted Business Chinese Writing: Comparing the Textual Performances Between Independent Writing and Collaborative Writing
Authors: Stephanie Liu Lu
Abstract:
With the proliferation of artificial intelligence tools in the field of education, it is crucial to explore their impact on language learning outcomes. This paper examines the use of AI tools, such as ChatGPT, in practical writing within business Chinese teaching to investigate how AI can enhance practical writing skills and teaching effectiveness. The study involved third and fourth-year university students majoring in accounting and finance from a university in Hong Kong within the context of a business correspondence writing class. Students were randomly assigned to a control group, who completed business letter writing independently, and an experimental group, who completed the writing with the assistance of AI. In the latter, the AI-assisted business letters were initially drafted by the students issuing commands and interacting with the AI tool, followed by the students' revisions of the draft. The paper assesses the performance of both groups in terms of grammatical expression, communicative effect, and situational awareness. Additionally, the study collected dialogue texts from interactions between students and the AI tool to explore factors that affect text generation and the potential impact of AI on enhancing students' communicative and identity awareness. By collecting and comparing textual performances, it was found that students assisted by AI showed better situational awareness, as well as more skilled organization and grammar. However, the research also revealed that AI-generated articles frequently lacked a proper balance of identity and writing purpose due to limitations in students' communicative awareness and expression during the instruction and interaction process. Furthermore, the revision of drafts also tested the students' linguistic foundation, logical thinking abilities, and practical workplace experience. Therefore, integrating AI tools and related teaching into the curriculum is key to the future of business Chinese teaching.Keywords: AI-assistance, business Chinese, textual analysis, language education
Procedia PDF Downloads 541690 Molecular Diversity of Forensically Relevant Insects from the Cadavers of Lahore
Authors: Sundus Mona, Atif Adnan, Babar Ali, Fareeha Arshad, Allah Rakha
Abstract:
Molecular diversity is the variation in the abundance of species. Forensic entomology is a neglected field in Pakistan. Insects collected from the crime scene should be handled by forensic entomologists who are currently virtually non-existent in Pakistan. Correct identification of insect specimen along with knowledge of their biodiversity can aid in solving many problems related to complicated forensic cases. Inadequate morphological identification and insufficient thermal biological studies limit the entomological utility in Forensic Medicine. Recently molecular identification of entomological evidence has gained attention globally. DNA barcoding is the latest and established method for species identification. Only proper identification can provide a precise estimation of postmortem intervals. Arthropods are known to be the first tourists scavenging on decomposing dead matter. The objective of the proposed study was to identify species by molecular techniques and analyze their phylogenetic importance with barcoded necrophagous insect species of early succession on human cadavers. Based upon this identification, the study outcomes will be the utilization of established DNA bar codes to identify carrion feeding insect species for concordant estimation of post mortem interval. A molecular identification method involving sequencing of a 658bp ‘barcode’ fragment of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene from collected specimens of unknown dipteral species from cadavers of Lahore was evaluated. Nucleotide sequence divergences were calculated using MEGA 7 and Arlequin, and a neighbor-joining phylogenetic tree was generated. Three species were identified, Chrysomya megacephala, Chrysomya saffranea, and Chrysomya rufifacies with low genetic diversity. The fixation index was 0.83992 that suggests a need for further studies to identify and classify forensically relevant insects in Pakistan. There is an exigency demand for further research especially when immature forms of arthropods are recovered from the crime scene.Keywords: molecular diversity, DNA barcoding, species identification, forensically relevant
Procedia PDF Downloads 1481689 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals
Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar
Abstract:
Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks
Procedia PDF Downloads 1851688 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 1291687 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 51686 Development and Validation of the Circular Economy Scale
Authors: Yu Fang Chen, Jeng Fung Hung
Abstract:
This study aimed to develop a circular economy scale to assess the level of recognition among high-level executives in businesses regarding the circular economy. The circular economy is crucial for global ESG sustainable development and poses a challenge for corporate social responsibility. The aim of promoting the circular economy is to reduce resource consumption, move towards sustainable development, reduce environmental impact, maintain ecological balance, increase economic value, and promote employment. This study developed a 23-item Circular Economy Scale, which includes three subscales: "Understanding of Circular Economy by Enterprises" (8 items), "Attitudes" (9 items), and "Behaviors" (6 items). The Likert 5-point scale was used to measure responses, with higher scores indicating higher levels of agreement among senior executives with regard to the circular economy. The study tested 105 senior executives and used a structural equation model (SEM) as a measurement indicator to determine the extent to which potential variables were measured. The standard factor loading of the measurement indicator needs to be higher than 0.7, and the average variance explained (AVE) represents the index of convergent validity, which should be greater than 0.5 or at least 0.45 to be acceptable. Out of the 23 items, 12 did not meet the standard, so they were removed, leaving 5 items, 3 items, and 3 items for each of the three subscales, respectively, all with a factor loading greater than 0.7. The AVE for all three subscales was greater than 0.45, indicating good construct validity. The Cronbach's α reliability values for the three subscales were 0.887, 0.787, and 0.734, respectively, and the total scale was 0.860, all of which were higher than 0.7, indicating good reliability. The Circular Economy Scale developed in this study measures three conceptual components that align with the theoretical framework of the literature review and demonstrate good reliability and validity. It can serve as a measurement tool for evaluating the degree of acceptance of the circular economy among senior executives in enterprises. In the future, this scale can be used by senior executives in enterprises as an evaluation tool to further explore its impact on sustainable development and to promote circular economy and sustainable development based on the reference provided.Keywords: circular economy, corporate social responsibility, scale development, structural equation model
Procedia PDF Downloads 821685 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus
Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo
Abstract:
Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.Keywords: eco-drive, electric bus, energy management, prototype
Procedia PDF Downloads 1401684 Identification of Rare Mutations in Genes Involved in Monogenic Forms of Obesity and Diabetes in Obese Guadeloupean Children through Next-Generation Sequencing
Authors: Lydia Foucan, Laurent Larifla, Emmanuelle Durand, Christine Rambhojan, Veronique Dhennin, Jean-Marc Lacorte, Philippe Froguel, Amelie Bonnefond
Abstract:
In the population of Guadeloupe Island (472,124 inhabitants and 80% of subjects of African descent), overweight and obesity were estimated at 23% and 9% respectively among children. High prevalence of diabetes has been reported (~10%) in the adult population. Nevertheless, no study has investigated the contribution of gene mutations to childhood obesity in this population. We aimed to investigate rare genetic mutations in genes involved in monogenic obesity or diabetes in obese Afro-Caribbean children from Guadeloupe Island using next-generation sequencing. The present investigation included unrelated obese children, from a previous study on overweight conducted in Guadeloupe Island in 2013. We sequenced coding regions of 59 genes involved in monogenic obesity or diabetes. A total of 25 obese schoolchildren (with Z-score of body mass index [BMI]: 2.0 to 2.8) were screened for rare mutations (non-synonymous, splice-site, or insertion/deletion) in 59 genes. Mean age of the study population was 12.4 ± 1.1 years. Seventeen children (68%) had insulin-resistance (HOMA-IR > 3.16). A family history of obesity (mother or father) was observed in eight children and three of the accompanying parent presented with type 2 diabetes. None of the children had gonadotrophic abnormality or mental retardation. We detected five rare heterozygous mutations, in four genes involved in monogenic obesity, in five different obese children: MC4R p.Ile301Thr and SIM1 p.Val326Thrfs*43 mutations which were pathogenic; SIM1 p.Ser343Pro and SH2B1 p.Pro90His mutations which were likely pathogenic; and NTRK2 p.Leu140Phe that was of uncertain significance. In parallel, we identified seven carriers of mutation in ABCC8 or KCNJ11 (involved in monogenic diabetes), which were of uncertain significance (KCNJ11 p.Val13Met, KCNJ11 p.Val151Met, ABCC8 p.Lys1521Asn and ABCC8 p.Ala625Val). Rare pathogenic or likely pathogenic mutations, linked to severe obesity were detected in more than 15% of this Afro-Caribbean population at high risk of obesity and type 2 diabetes.Keywords: childhood obesity, MC4R, monogenic obesity, SIM1
Procedia PDF Downloads 1921683 The Psychology of Virtual Relationships Provides Solutions to the Challenges of Online Learning: A Pragmatic Review and Case Study from the University of Birmingham, UK
Authors: Catherine Mangan, Beth Anderson
Abstract:
There has been a significant drive to use online or hybrid learning in Higher Education (HE) over recent years. HEs with a virtual presence offer their communities a range of benefits, including the potential for greater inclusivity, diversity, and collaboration; more flexible learning packages; and more engaging, dynamic content. Institutions can also experience significant challenges when seeking to extend learning spaces in this way, as can learners themselves. For example, staff members’ and learners’ digital literacy varies (as do their perceptions of technologies in use), and there can be confusion about optimal approaches to implementation. Furthermore, the speed with which HE institutions have needed to shift to fully online or hybrid models, owing to the COVID19 pandemic, has highlighted the significant barriers to successful implementation. HE environments have been shown to predict a range of organisational, academic, and experiential outcomes, both positive and negative. Much research has focused on the social aspect of virtual platforms, as well as the nature and effectiveness of the technologies themselves. There remains, however, a relative paucity of synthesised knowledge on the psychology of learners’ relationships with their institutions; specifically, how individual difference and interpersonal factors predict students’ ability and willingness to engage with novel virtual learning spaces. Accordingly, extending learning spaces remains challenging for institutions, and wholly remote courses, in particular, can experience high attrition rates. Focusing on the last five years, this pragmatic review summarises evidence from the psychological and pedagogical literature. In particular, the review highlights the importance of addressing the psychological and relational complexities of students’ shift from offline to online engagement. In doing so, it identifies considerations for HE institutions looking to deliver in this way.Keywords: higher education, individual differences, interpersonal relationships, online learning, virtual environment
Procedia PDF Downloads 1741682 Development of Electronic Waste Management Framework at College of Design Art, Design and Technology
Authors: Wafula Simon Peter, Kimuli Nabayego Ibtihal, Nabaggala Kimuli Nashua
Abstract:
The worldwide use of information and communications technology (ICT) equipment and other electronic equipment is growing and consequently, there is a growing amount of equipment that becomes waste after its time in use. This growth is expected to accelerate since equipment lifetime decreases with time and growing consumption. As a result, e-waste is one of the fastest-growing waste streams globally. The United Nations University (UNU) calculates in its second Global E-waste Monitor 44.7 million metric tonnes (Mt) of e-waste were generated globally in 2016. The study population was 80 respondents, from which a sample of 69 respondents was selected using simple and purposive sampling techniques. This research was carried out to investigate the problem of e-waste and come up with a framework to improve e-waste management. The objective of the study was to develop a framework for improving e-waste management at the College of Engineering, Design, Art and Technology (CEDAT). This was achieved by breaking it down into specific objectives, and these included the establishment of the policy and other Regulatory frameworks being used in e-waste management at CEDAT, the determination of the effectiveness of the e-waste management practices at CEDAT, the establishment of the critical challenges constraining e-waste management at the College, development of a framework for e-waste management. The study reviewed the e-waste regulatory framework used at the college and then collected data which was used to come up with a framework. The study also established that weak policy and regulatory framework, lack of proper infrastructure, improper disposal of e-waste and a general lack of awareness of the e-waste and the magnitude of the problem are the critical challenges of e-waste management. In conclusion, the policy and regulatory framework should be revised, localized and strengthened to contextually address the problem. Awareness campaigns, the development of proper infrastructure and extensive research to establish the volumes and magnitude of the problems will come in handy. The study recommends a framework for the improvement of e-waste.Keywords: e-waste, treatment, disposal, computers, model, management policy and guidelines
Procedia PDF Downloads 781681 Nurturing of Children with Results from Their Nature (DNA) Using DNA-MILE
Authors: Tan Lay Cheng (Cheryl), Low Huiqi
Abstract:
Background: All children learn at different pace. Individualized learning is an approach that tailors to the individual learning needs of each child. When implementing this approach, educators have to base their lessons on the understanding that all students learn differently and that what works for one student may not work for another. In the current early childhood environment, individualized learning is for children with diverse needs. However, a typical developing child is also able to benefit from individualized learning. This research abstract explores the concept of utilizing DNA-MILE, a patented (in Singapore) DNA-based assessment tool that can be used to measure a variety of factors that can impact learning. The assessment report includes the dominant intelligence of the user or, in this case, the child. From the result, a personalized learning plan that is tailored to each individual student's needs. Methods: A study will be conducted to investigate the effectiveness of DNA-MILE in supporting individualized learning. The study will involve a group of 20 preschoolers who were randomly assigned to either a DNA-MILE-assessed group (experimental group) or a control group. 10 children in each group. The experimental group will receive DNA Mile assessments and personalized learning plans, while the control group will not. The children in the experimental group will be taught using the dominant intelligence (as shown in the DNA-MILE report) to enhance their learning in other domains. The children in the control group will be taught using the curriculum and lesson plan set by their teacher for the whole class. Parents’ and teachers’ interviews will be conducted to provide information about the children before the study and after the study. Results: The results of the study will show the difference in the outcome of the learning, which received DNA Mile assessments and personalized learning plans, significantly outperformed the control group on a variety of measures, including standardized tests, grades, and motivation. Conclusion: The results of this study suggest that DNA Mile can be an effective tool for supporting individualized learning. By providing personalized learning plans, DNA Mile can help to improve learning outcomes for all students.Keywords: individualized, DNA-MILE, learning, preschool, DNA, multiple intelligence
Procedia PDF Downloads 1161680 Growth, Yield and Pest Infestation Response of Maize (Zea mays Linn.) to Biopesticide
Authors: Udomporn Pangnakorn, Settawut Prasatporn, Sombat Chuenchooklin
Abstract:
The effect of biopesticide on growth, yield and pest infestation of maize (Zea mays Linn.) (variety DK 6818) was evaluated during the drought season. The experimental plots were located at research station of Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand. The extracted substance from plants was evaluated in the plots in 4 treatments: 1) water as control; 2) bitter bush (Chromolaena odorata L.); 3) neem (Azadirachta indica A. Juss), 4) golden shower (Cassia fistula Linn.). The experiment was followed a Randomized Complete Block Design (RCBD) with 4 treatments and 4 replications per treatment. The results showed that golden shower gave the highest growth of maize in term of height (203.29 cm), followed by neem and bitter bush with average height of 202.66 cm and 191.66 cm respectively with significance different. But neem treatment given significantly higher average of yield component in term of length, width, and weight of pod corn with 18.89 cm 13.91 cm and 166.46 g respectively. Also, treatment of neem showed the highest harvested yield at 284.06 kg/ha followed by the golden shower and bitter bush with harvested yield at 245.86 kg/ha and 235.52 kg/ha respectively. Additionally, treatment of neem and golden shower were the highest effectiveness for reducing insects pest infestation of maize: corn leaf aphid Rhopalosiphum maidis Fitch, corn borer Ostrinia fumacalis Guenee and corn armyworm Mythimna separata Walker. The treatment of neem, golden shower, and bitter bush given reduction insect infestation on maize with leaves area were infested at 5,412 mm², 6,827 mm² and 8,910 mm² respectively with significance different when compared to control.Keywords: maize, Zea mays Linn., biopesticide, bitter bush, Chromolaena odorata L.), neem, Azadirachta indica A. Juss, golden shower, Cassia fistula Linn.
Procedia PDF Downloads 3201679 Design of Solar Charge Controller and Power Converter with the Multisim
Authors: Sohal Latif
Abstract:
Solar power is in the form of photovoltaic, also known as PV, which is a form of renewable energy that applies solar panels in producing electricity from the sun. It has a vital role in fulfilling the present need for clean and renewable energy to get rid of conventional and non-renewable energy sources that emit high levels of greenhouse gases. Solar energy is embraced because of its availability, easy accessibility, and effectiveness in the provision of power, chiefly in country areas. In solar charging, device charge entails a change of light power into electricity using photovoltaic or PV panels, which supply direct current electric power or DC. Here, the solar charge controller has a very crucial role to play regarding the voltages and the currents coming from the solar panels to take up the changing needs of a battery without overcharging the same. Certain devices, such as inverters, are required to transform the DC power produced by the solar panels into an AC to serve the normal electrical appliances and the current power network. This project was initiated for a project of a solar charge controller and power converter with the MULTISIM. The formation of this project begins with a literature survey to obtain basic knowledge about power converters, charge controllers, and photovoltaic systems. Fundamentals of the operation of solar panels include the process by which light is converted into electricity and a comparison of PWM and MPPT chargers with controllers. Knowledge of rectifiers is built to help achieve AC-to-DC and DC-AC change. Choosing a resistor, capacitance, MOSFET, and OP-AMP is done by the need of the system. The circuit diagrams of converters and charge controllers are designed using the Multisim program. Pulse width modulation, Bubba oscillator circuit, and inverter circuits are modeled and simulated. In the subsequent steps, the analysis of the simulation outcomes indicates the efficiency of the intended converter systems. The various outputs from the different configurations, with the transformer incorporated as well as without it, are then monitored for effective power conversion as well as power regulation.Keywords: solar charge controller, MULTISIM, converter, inverter
Procedia PDF Downloads 211678 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance
Authors: Abdullah Al Farwan, Ya Zhang
Abstract:
In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance
Procedia PDF Downloads 1651677 Seminal Attributes, Cooling Procedure and Post Thaw Quality of Semen of Indigenous Khari Bucks (Capra hircus) of Nepal
Authors: Pankaj Kumar Jha, Saroj Sapkota, Dil Bahadur Gurung, Raju Kadel, Neena Amatya Gorkhali, Bhola Shankar Shrestha
Abstract:
The study was conducted to evaluate the seminal attributes, effectiveness of cooling process and post-thawed semen quality of a Nepalese indigenous Khari buck. Thirty-two ejaculates, 16 from each buck were studied for seminal attributes of fresh semen: volume, color, mass activity, motility, viability, sperm concentration, and morphology. The pooled mean values for each seminal attributes were: volume 0.7±0.3 ml; colour 3.1±0.3 (milky white); mass activity 3.8±0.4 (rapid wave motion with formation of eddies at the end of waves to very rapid wave motion with distinct eddies formation); sperm motility 80.9±5.6%; sperm viability 94.6±2.0%; sperm concentration 2597.0±406.8x106/ml; abnormal acrosome, mid-piece and tail 10.7±1.8% and abnormal head 5±1.7%. For freezing semen, further 6 ejaculates from each buck were studied with Tris based egg yolk citrate extender. The pooled mean values of motility and viability of post diluted semen for 90 and 120 minutes each for cooling and glycerol equilibration were 73.8±4.8%, 88.1±2.6% and 69.2±6.0%, 85.0±1.7%, respectively. The pooled mean values of post thaw motility and viability with advancement of preservation time were: 0hour 49.0±4.6%, 81.2±1.9%; 2nd day 41±2.2%, 79±1%; 5th day 41±2.2%, 78.6±0.9% and 10th day 41±2.2%, 78.6±0.9%. We concluded from the above study that the seminal attributes and results of post-thaw semen quality were satisfactory and in accordance with other work in foreign countries, which indicated the feasibility of cryopreserving buck semen. For more validation, research with large number of bucks, different types of diluents and freezing trials by removing seminal plasma followed by pregnancy rate is recommended.Keywords: cryopreservation, Nepalese indigenous Khari (Hill goat) buck, post-thaw semen quality, seminal attributes
Procedia PDF Downloads 3991676 The Effectiveness of Tehran Municipality's Transformation of a Metro Station into Pedestrian-Friendly Public Spaces
Authors: Homa Hedayat
Abstract:
Public spaces have been a central concern of urban planners for centuries but have been neglected for a long time. In the modernist planning, the focus has been on the requirements of cars rather than the needs and expectations of pedestrians, and therefore, cities have lost many qualities. Urban public space is a space within the city area which is accessible to all people and is the ground for their activity. People’s public life occurs in urban public spaces in a complex set of forms and functions. These spaces must facilitate diverse behavior, uses, and activities such as shopping, walking, conversation, entertainment, relaxation or even passing the time during festivities and events. One of the public spaces is the surrounding space of public transportation stations. Subway stations, although potentially encompass many different groups of people accommodate few social interactions. Making the surrounding areas of subway stations pedestrian-oriented, potentially increases the socialization capacity. The Sadeghieh Subway Station can be considered as the most important subway station in Tehran, which on the one hand is the rail port of Tehran's western entrance, and on the other is the port for railway journeys inside the city. The main concern of this study is to assess the success or failure of the interventions made by the municipality for changing the surrounding area of the Sadeghieh Subway Station into a pedestrian-oriented space and examine the amount of the area's improvement into a desirable space. The method used in this study is surveying, in which the data were collected using a questionnaire and interview. The study's population is all people who use Sadeghieh Subway, and the sample size for the study was 140 subjects. Using parametric one-sample t-test, we found improvement in factors such as transportation, security, pedestrian infrastructure, vitality and climate comfort. However, there was no improvement in mix use, recreational activity, readability.Keywords: public space, public transportation stations, pedestrian-oriented space, socialization
Procedia PDF Downloads 2071675 Hybrid Incentives for Excellent Abroad Students Study for High Education Degrees
Authors: L. Sun, C. Hardacre, A. Garforth, N. Zhang
Abstract:
Higher Education (HE) degrees in the UK are attractive for international students. The recognized reputation of the HE and the world-leading researchers in some areas in the UK imply that the HE degree from the UK might be a passport to a successful career for abroad students. However, it is a challenge to inspire outstanding students applying for the universities in the UK. The incentives should be country-specific for undergraduates and postgraduates. The potential obstacles to stop students applying for the study in the UK mainly lie in these aspects: different HE systems between the UK and other countries, such as China; less information for the application procedures; worries for the study in English for those non-native speakers; and expensive international tuition fees. The hybrid incentives have been proposed by the efforts from the institutions, stuffs, and students themselves. For example, excellent students from top universities would join us based on the abroad exchange programs or ‘2+2 programme’ with discount tuition. They are potential PhD candidates in the further study in the UK. Diversity promotions are implemented to share information and answer queries for potential students and their guardians. Face to face presentations, workshops, and seminars deliver chances for students to admire teaching and learning in the UK, and give students direct answers for their confusions. WeChat official account and Twitter as the online information platform are set up to post messages of recruitment, the guidance for the application procedures, and international collaboration in teaching and research as well. Students who are studying in the UK and the alumni would share their experiences in the study and lives in the UK and their careers after obtaining the HE degree would play as a positive stimulus to our potential students. Short term modules in the UK with exchangeable credits in summer holidays would give abroad students firsthand experiences of the study in the reputable schools with excellent academics, different cultures and the network with international students. Successful cases at the University of Manchester illustrated the effectiveness of these presented methodologies.Keywords: abroad students, degree study, high education, hybrid incentives
Procedia PDF Downloads 1641674 The Effectiveness of Copegus (Ribavirin) Placed in a Field of Unexplored Properties of Low-Level Laser Radiation in the Treatment of Long-Covid Syndrome
Authors: Naylya Djumaeva
Abstract:
Since the end of 2019, the world has been shaken by an infection that has claimed the lives of more than six and a half million patients. Currently, SARS-CoV-2 not only causes acute damage but has long-term consequences affecting every organ and has brought a wave of a new chronic disabling condition called Long-Covid..This preliminary study describes an application of un-explored properties of low-level laser radiation with laser- light emitter in the field of which is placed Copegus (Ribavirin) with the aim of treatment of patients with Long-Covid syndrome. The difference from the traditional use of the drug is that Copegus was not prescribed to the patient by the traditional method - orally or intravenously, and the medicinal properties of the drug were introduced into the patient’s body using the un-explored properties of low-power laser radiation. Ninety eight patients with Long- Covid syndrome were observed. The obtained findings suggest that under the influence of the field formed into the laser- light emitter with a Copegus placed inside the field, the remote transfer of pharmacological properties of Сopegus occurs. Conclusions about the produced effect of exposure were made based on improvement in the condition of patients, the disappearance of complaints, and positive changes in various diagnostic tests performed by the patients. Biography: Djumaeva N completed her PhD from the Institute of Epidemiology, Microbiology and Infectious Diseases in 2000. In her dissertation work devoted to the treatment of patients with chronic hepatitis B virus infection, she presented data on the possible influence of Complex Homeopathic Preparations on the organization of bound intracellular water in the cells of the body. She is the Consultant (Neurologist) at the Scientific-Research Institute for Virology, Uzbekistan, and an expert in “medicament testing” method (30 years). She has published 43 papers, including 2 patents.Keywords: long covid, low level laser, copegus, laser- light emmiter
Procedia PDF Downloads 931673 Phytoremediation of Textile Wastewater Laden with 1,4-Dioxane Using Eichhornia crassipes: A Sustainable Development Approach
Authors: Hadeer Ibrahiem, Mahmoud Nasr, Masarrat M. M. Migahid, Mohamed A. Ghazy
Abstract:
The release of textile wastewater loaded with 1,4 dioxane into aquatic ecosystems has been associated with various human health risks and adverse environmental impacts. In parallel, phytoremediation has been recently employed to treat highly polluted wastewater because various plant species tend to produce certain enzymes as a defense mechanism against a toxic environment. To our best knowledge, this study is the first to investigate the ability of phytoremediation using Eichhornia crassipes for the removal of various pollutants, including 1,4 dioxane, from textile wastewater. A phytoremediation system composed of Eichhornia crassipes was acclimatized for 10 d, and then operated in four lab-scale hydroponic systems, viz., negative control, positive control, and two different 1,4 dioxane concentration (400 and 500 mg/L). After 11 d of operation, the phytoremediation system achieved removal efficiencies of 67.5±3.4%, 89.4±4.4%, 83.6±3.8% for 1,4 dioxane (at initial concentration 400 mg/L), chemical oxygen demand (COD) (at initial concentration 679 mg/L), and cumulative heavy metals, respectively. The removal of these pollutants was mainly supported by the phyto-sorption and phytodegradation mechanisms. The economic feasibility of this phytoremediation system was validated by estimating the capital and operating costs, requiring 4.6 USD for the treatment of 1 m3 textile wastewater. The study concluded that the phytoremediation process could be used as a practical and economical approach to treat textile wastewater laden with various organic and inorganic pollutants. Due to the observed pollution reduction and human health protection, the study objectives would fulfill the targets of SDG 3 “Good Health and Well-being” and SDG 6 “Clean Water and Sanitation”. Further studies are required to (i) investigate the ability of plant species to withstand higher concentrations of 1,4 dioxane for an extended operation time and (ii) understand the biochemical pathways for the degradation of 1,4 dioxane via the action of plant enzymes and the associated microbial community.Keywords: 1, 4 dioxane concentrations, hydrophytes, Eichhornia crassipes, phytoremediation effectiveness, SDGs, textile industrial effluent
Procedia PDF Downloads 991672 Production of Vermiwash from Medicinal Plants and Its Potential Use as Fungicide against the Alternaria Alternata (fr.) Keissl. Affecting Cucumber (Cucumis sativus L.) in Guyana
Authors: Abdullah Ansari, Sinika Rambaran, Sirpaul Jaikishun
Abstract:
Vermiwash could be used to enhance plant productivity and resistance to some harmful plant pathogens, as well as provide benefit through the disposal of waste matter. Alternaria rot caused by the fungus Alternaria alternata (Fr.) Keissl., is a common soil-borne pathogen that results in postharvest fruit rot of cucumbers, peppers and other cash crops. The production and distribution of Cucumis sativus L. (cucumber) could be severely affected by Alternaria rot. Fungicides are the traditional treatment however; they are not only expensive but can also cause environmental and health problems. Vermiwash was prepared from various medicinal plants (Ocimum tenuiflorum L. {Tulsi}, Azadirachta indica A. Juss. {neem}, Cymbopogon citratus (DC. ex Nees) Stapf. {lemon grass} and Oryza sativa L. {paddy straw} and applied, in vitro, to A. alternata to investigate their effectiveness as organic alternatives to traditional fungicides. All of the samples of vermiwash inhibited the growth of A. alternata. The inhibitive effects on the fungus appeared most effective when A. indica and O. tenuiflorum were used in the production of the vermiwash. Using the serial dilution method, vermiwash from O. tenuiflorum showed the highest percent of inhibition (93.2%), followed by C. citratus (74.7%), A. indica (68.7%), O. sativa, combination, and combination without worms. Using the sterile disc diffusion method, all of the samples produced zones of inhibition against A. alternata. Vermiwash from A. indica produced a zone of inhibition, averaging 15.3mm, followed by O. tenuiflorum (14.0mm), combination without worms, combination, C. citratus and O. sativa. Nystatin produced a zone of inhibition of 10mm. The results indicate that vermiwash is not simply an organic alternative to more traditional chemical fungicides, but it may in fact be a better and more effective product in treating certain fungal plant infections, particularly A. alternata.Keywords: vermiwash, earthworms, soil, bacteria, alternaria alternata, antifungal, antibacterial
Procedia PDF Downloads 2501671 Water Footprint for the Palm Oil Industry in Malaysia
Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz
Abstract:
Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method
Procedia PDF Downloads 1731670 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite
Authors: Jayson Cheyne, David Butler, Iain Bomphray
Abstract:
In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway
Procedia PDF Downloads 1411669 The Importance of the Fluctuation in Blood Sugar and Blood Pressure of Insulin-Dependent Diabetic Patients with Chronic Kidney Disease
Authors: Hitoshi Minakuchi, Izumi Takei, Shu Wakino, Koichi Hayashi, Hiroshi Itoh
Abstract:
Objectives: Among type 2 diabetics, patients with CKD(chronic kidney disease), insulin resistance, impaired glyconeogenesis in kidney and reduced degradation of insulin are recognized, and we observed different fluctuational patterns of blood sugar between CKD patients and non-CKD patients. On the other hand, non-dipper type blood pressure change is the risk of organ damage and mortality. We performed cross-sectional study to elucidate the characteristic of the fluctuation of blood glucose and blood pressure at insulin-treated diabetic patients with chronic kidney disease. Methods: From March 2011 to April 2013, at the Ichikawa General Hospital of Tokyo Dental College, we recruited 20 outpatients. All participants are insulin-treated type 2 diabetes with CKD. We collected serum samples, urine samples for several hormone measurements, and performed CGMS(Continuous glucose measurement system), ABPM (ambulatory blood pressure monitoring), brain computed tomography, carotid artery thickness, ankle brachial index, PWV, CVR-R, and analyzed these data statistically. Results: Among all 20 participants, hypoglycemia was decided blood glucose 70mg/dl by CGMS of 9 participants (45.0%). The event of hypoglycemia was recognized lower eGFR (29.8±6.2ml/min:41.3±8.5ml/min, P<0.05), lower HbA1c (6.44±0.57%:7.53±0.49%), higher PWV (1858±97.3cm/s:1665±109.2cm/s), higher serum glucagon (194.2±34.8pg/ml:117.0±37.1pg/ml), higher free cortisol of urine (53.8±12.8μg/day:34.8±7.1μg/day), and higher metanephrin of urine (0.162±0.031mg/day:0.076±0.029mg/day). Non-dipper type blood pressure change in ABPM was detected 8 among 9 participants with hypoglycemia (88.9%), 4 among 11 participants (36.4%) without hypoglycemia. Multiplex logistic-regression analysis revealed that the event of hypoglycemia is the independent factor of non-dipper type blood pressure change. Conclusions: Among insulin-treated type 2 diabetic patients with CKD, the events of hypoglycemia were frequently detected, and can associate with the organ derangements through the medium of non-dipper type blood pressure change.Keywords: chronic kidney disease, hypoglycemia, non-dipper type blood pressure change, diabetic patients
Procedia PDF Downloads 4111668 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 1051667 Coagulation-flocculation Process with Metal Salts, Synthetic Polymers and Biopolymers for the Removal of Trace Metals (Cu, Pb, Ni, Zn) from Wastewater
Authors: Andrew Hargreaves, Peter Vale, Jonathan Whelan, Carlos Constantino, Gabriela Dotro, Pablo Campo
Abstract:
As a consequence of their potential to cause harm, there are strong regulatory drivers that require metals to be removed as part of the wastewater treatment process. Bioavailability-based standards have recently been specified for copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) and are expected to reduce acceptable metal concentrations. In order to comply with these standards, wastewater treatment works may require new treatment types to enhance metal removal and it is, therefore, important to examine potential treatment options. A substantial proportion of Cu, Pb, Ni and Zn in effluent is adsorbed to and/or complexed with macromolecules (eg. proteins, polysaccharides, aminosugars etc.) that are present in the colloidal size fraction. Therefore, technologies such as coagulation-flocculation (CF) that are capable of removing colloidal particles have good potential to enhance metals removal from wastewater. The present study investigated the effectiveness of CF at removing trace metals from humus effluent using the following coagulants; ferric chloride (FeCl3), the synthetic polymer polyethyleneimine (PEI), and the biopolymers chitosan and Tanfloc. Effluent samples were collected from a trickling filter treatment works operating in the UK. Using jar tests, the influence of coagulant dosage and the velocity and time of the slow mixing stage were studied. Chitosan and PEI had a limited effect on the removal of trace metals (<35%). FeCl3 removed 48% Cu, 56% Pb and 41% Zn at the recommended dose of 0.10 mg/L. At the recommended dose of 0.25 mg/L Tanfloc removed 77% Cu, 68% Pb, 18% Ni and 42% Zn. The dominant mechanism for particle removal by FeCl3 was enmeshment in the precipitates (i.e. sweep flocculation) whereas, for Tanfloc, inter-particle bridging was the dominant removal mechanism. Overall, FeCl3 and Tanfloc were found to be most effective at removing trace metals from wastewater.Keywords: coagulation-flocculation, jar test, trace metals, wastewater
Procedia PDF Downloads 238