Search results for: social learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15636

Search results for: social learning

9756 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data

Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour

Abstract:

Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.

Keywords: physical activity, machine learning, under 5s, disability, accelerometer

Procedia PDF Downloads 216
9755 A Multi-Criteria Decision Making (MCDM) Approach for Assessing the Sustainability Index of Building Façades

Authors: Golshid Gilani, Albert De La Fuente, Ana Blanco

Abstract:

Sustainability assessment of new and existing buildings has generated a growing interest due to the evident environmental, social and economic impacts during their construction and service life. Façades, as one of the most important exterior elements of a building, may contribute to the building sustainability by reducing the amount of energy consumption and providing thermal comfort for the inhabitants, thus minimizing the environmental impact on both the building and on the environment. Various methods have been used for the sustainability assessment of buildings due to the importance of this issue. However, most of the existing methods mainly concentrate on environmental and economic aspects, disregarding the third pillar of sustainability, which is the social aspect. Besides, there is a little focus on comprehensive sustainability assessment of facades, as an important element of a building. This confirms the need of developing methods for assessing the sustainable performance of building façades as an important step in achieving building sustainability. In this respect, this paper aims at presenting a model for assessing the global sustainability of façade systems. for that purpose, the Integrated Value Model for Sustainable Assessment (MIVES), a Multi-Criteria Decision Making model that integrates the main sustainability requirements (economic, environmental and social) and includes the concept of value functions, used as an assessment tool.

Keywords: façade, MCDM, MIVES, sustainability

Procedia PDF Downloads 349
9754 Artificial Intelligence in Patient Involvement: A Comprehensive Review

Authors: Igor A. Bessmertny, Bidru C. Enkomaryam

Abstract:

Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.

Keywords: artificial intelligence, patient engagement, machine learning, patient involvement

Procedia PDF Downloads 83
9753 Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students

Authors: Jutharat Sunprasert, Ekapong Hirunsirisawat, Narongrit Waraporn, Somporn Peansukmanee

Abstract:

Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: “Metal Ship and Robotic Car” is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student’s interest which leads to increased learning achievement and also in developing scientific and engineering skills.

Keywords: hands-on activity, STEM education, computer programming, metal work

Procedia PDF Downloads 469
9752 School Choice and Institutional or Familial Habitus: Reciprocity in Parents-School Relationships

Authors: Fatemeh Yazdani

Abstract:

This paper explores the student intake policies in high-performing private schools in Iran by studying both sides involved in the school choice processes, parents and the school leaders. It is based on in-depth interviews with 27 parents and private schools’ staff and principals supplemented by ethnographic observation in two private schools in Tehran. From the Bourdieusian point of view, this paper argues that the school leadership engineers the composition of private schools’ students via different gatekeeping strategies, and these strategies represent and reconstruct the school’s institutional habitus. It further explores the ways that parents who look for quality education among non-state education providers deal with the school's institutional habitus based on their familial habitus and possessed economic, social, and cultural capital. The conclusion highlights that investigating school choice as a reciprocal process between family and school leadership can shed more light on the ways that an exclusive environment has been created in some high-performing private schools for certain class strata maintaining a distance that needs to be kept from ‘others.’ In a broader sense, this paper engages into an exploration of social inequality reproduction through private education.

Keywords: institutional habitus, private education, school choice, social inequality, student intake

Procedia PDF Downloads 111
9751 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance

Authors: Yash Bingi, Yiqiao Yin

Abstract:

Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.

Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations

Procedia PDF Downloads 146
9750 Australian Multiculturalism in Refugee Education

Authors: N. Coskun

Abstract:

Australia has received over 840,000 refugees since its establishment as a federation. Despite the long history of refugee intake, Australia appears to have prolonged problems in refugee education such as academic and social isolations of refugee background students (RBS), the discriminations towards RBS and the high number of RBS drop-outs. This paper examines the place of RBS in educational policies, which can help to identify the problems and set a foundation for solutions. This paper investigates the educational provisions for RBS in three stages. First, the paper identifies the needs of RBS through a comprehensive literature review, using the framework of Bronfenbrenner’s bio-ecological model. Second, the study explores the place of these needs in Australian national and state educational policies which are informed by multiculturalism. The findings conclude that social, academic and psychological needs of RBS hardly find a place in multicultural educational policies. The students and their specific needs are mostly invisible and are placed under a general category of newly arrived immigrants who learn English as a second language. Third, the study explores the possible reasons for the overlook on RBS and their needs with examining the general socio-political context surrounding refugees in Australia. The overall findings suggest that Australian multiculturalism policy in education are inadequate to address RBS' social, academic and psychological needs due to the disadvantaging socio-political context where refugees are placed.

Keywords: Australia, bio-ecological model, multiculturalism, refugee education

Procedia PDF Downloads 137
9749 The Curse of Vigilante Justice: Killings of Rape Suspects in India and Its Impact on the Discourse on Sexual Violence

Authors: Hrudaya Kamasani

Abstract:

The cultural prevalence of vigilante justice is sustained through the social sanction for foregoing a judicial trial to determine guilt. Precisely due to its roots in social sanction, it has repercussions as more than just being symptomatic of cultural values that condone violence. In the long term, the practice of vigilante justice as a response to incidents of sexual violence, while veiled in civic discontent over the standards of women’s security in society, can adversely affect the discourse on sexual violence. To illustrate the impact that acts of vigilante justice can have in prematurely ending a budding discourse on sexual violence, the paper reviews three cases of heinous crimes committed against women in India that gained popular attention in the discursive spaces. The 2012 Nirbhaya rape and murder case in Delhi demonstrates how the criminal justice system can spur a social movement and can result in legislative changes and a discourse that challenged a wide range of socio-cultural issues of women’s security and treatment. The paper compares it with two incidents of sexual violence in India that ended with the suspects being killed in the name of vigilante justice that had wide social sanction. The two cases are the 2019 extrajudicial killing of Priyanka Reddy rape and murder case suspects in Hyderabad and the 2015 mob lynching of an accused in a rape case in Dimapur. The paper explains why the absence of judicial trials in sexual violence cases results in ending any likelihood of the instances inspiring civic engagement with the discourse on sexual violence.

Keywords: sexual violence, vigilante justice, extrajudicial killing, cultural values of violence, Nirbhaya rape case, mob violence

Procedia PDF Downloads 209
9748 Absent Theaters: A Virtual Reconstruction from Memories

Authors: P. Castillo Muñoz, A. Lara Ramírez

Abstract:

Absent Theaters is a project that virtually reconstructs three theaters that existed in the twentieth century, demolished in the city of Medellin, Colombia: Circo España, Bolívar, and Junín. Virtual reconstruction is used as an excuse to talk with those who lived in their childhood and youth cultural spaces that formed a whole generation. Around 100 people who witnessed these theaters were interviewed. The means used to perform the oral history work was the virtual reconstruction of the interior of the theaters that were presented to the interviewees through the Virtual Reality glasses. The voices of people between 60 and 103 years old were used to generate a transmission of knowledge to the new generations about the importance of theaters as essential places for the city, as spaces generating social relations and knowledge of other cultures. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places, with the purpose of compiling a collective discourse around cultural activities, heritage, and memory of Medellin.

Keywords: culture, heritage, oral history, theaters, virtual reality

Procedia PDF Downloads 138
9747 Effect of Three Instructional Strategies on Pre-service Teachers’ Learning Outcomes in Practical Chemistry in Niger State, Nigeria

Authors: Akpokiere Ugbede Roseline

Abstract:

Chemistry is an activity oriented subject in which many students achievement over the years are not encouraging. Among the reasons found to be responsible for student’s poor performance in chemistry are ineffective teaching strategies. This study, therefore, sought to determine the effect of guided inquiry, guided inquiry with demonstration, and demonstration with conventional approach on pre-service teachers’ cognitive attainment and practical skills acquisition on stoichiometry and chemical reactions in practical chemistry, Two research questions and hypotheses were each answered and tested respectively. The study was a quasi-experimental research involving 50 students in each of the experimental groups and 50 students in the control group. Out of the five instruments used for the study, three were on stimulus and two on response (Test of Cognitive Attainment and Test of Practical Skills in Chemistry) instruments administered, and dataobtained were analyzed with t-test and Analysis of Variance. Findings revealed, among others, that there was a significant effect of treatments on students' cognitive attainment and on practical skills acquisition. Students exposed to guided inquiry (with/without demonstration) strategies achieved better than those exposed to demonstration with conventional strategy. It is therefore recommended, among others, that Lecturers in Colleges of Education should utilize the guided inquiry strategy for teaching concepts in chemistry.

Keywords: instructional strategy, practical chemistry, learning outcomes, pre-service teachers

Procedia PDF Downloads 108
9746 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 137
9745 China Pakistan Economic Corridor: A Changing Mechanism in Pakistan

Authors: Komal Niazi, He Guoqiang

Abstract:

This paper is focused on ‘CPEC (China Pakistan Economic Corridor) a changing mechanism in Pakistan’. China Pakistan Economic Corridor (CPEC) activity under OBOR (One Belt One Road (OBOR) CPEC is a piece of the bigger umbrella and goes for giving another hallway of exchange for China and Pakistan and is relied upon to profit the entire of South Asian area. But this study reveals that significance of acculturation can never be overemphasized in the investigation of diverse impacts and the routes people groups of various ethnic personalities figure out how to adjust and acknowledge the social attributes of a larger part group in a multiethnic culture. This study also deals with the effects of acculturation which can be seen at multiple levels through CPEC for both Pakistani and Chinese people, who were working on this project. China and Pakistan exchanged the cultural and social patterns with each other. Probably the most perceptible gathering level impacts of cultural assimilation regularly incorporate changes in sustenance (food), clothing, and language. At the individual level, the procedure of cultural assimilation alludes to the socialization procedure by which the Pakistani local people and Chinese who were working in Pakistan adopted values, traditions, attitudes, states of mind, and practices. But China has imposed discourse through economic power and language. CPEC dominates Pakistan’s poor area’s and changes their living, social and cultural values. People also claimed this acculturation was a great threat to their cultural values and religious beliefs. Main findings of the study clearly ascertained that research was to find out the conceptual understanding of people about the acculturation process through CPEC. At the cultural level, aggregate activities and social organizations end up plainly adjusted, and at the behavioral level, there are changes in a person's day by day behavioral collection and some of the time in experienced anxiety. Anthropological data methods were used to collect data, like snowball and judgmental sampling, case studied methods.

Keywords: CPEC, acculturation process, language discourse, social norms, cultural values, religious beliefs

Procedia PDF Downloads 295
9744 Improving Medication Understanding, Use and Self-Efficacy among Stroke Patients: A Randomised Controlled Trial; Study Protocol

Authors: Jamunarani Appalasamy, Tha Kyi Kyi, Quek Kia Fatt, Joyce Pauline Joseph, Anuar Zaini M. Zain

Abstract:

Background: The Health Belief Theory had always been associated with chronic disease management. Various health behaviour concepts and perception branching from this Health Belief Theory had involved with medication understanding, use, and self-efficacy which directly link to medication adherence. In a previous quantitative and qualitative study, stroke patients in Malaysia were found to be strongly believing information obtained by various sources such as the internet and social communication. This action leads to lower perception of their stroke preventative medication benefit which in long-term creates non-adherence. Hence, this study intends to pilot an intervention which uses audio-visual concept incorporated with mHealth service to enhance learning and self-reflection among stroke patients to manage their disease. Methods/Design: Twenty patients will be allocated to a proposed intervention whereas another twenty patients are allocated to the usual treatment. The intervention involves a series of developed audio-visual videos sent via mobile phone which later await for responses and feedback from the receiver (patient) via SMS or recorded calls. The primary outcome would be the medication understanding, use and self-efficacy measured over two months pre and post intervention. Secondary outcome is measured from changes of blood parameters and other self-reported questionnaires. Discussion: This study shall also assess uptake/attrition, feasibility, and acceptability of this intervention. Trial Registration: NMRR-15-851-24737 (IIR)

Keywords: health belief, medication understanding, medication use, self-efficacy

Procedia PDF Downloads 226
9743 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 27
9742 Affinity between Sociology and Islamic Economy: An Inquiry into the Possibilities of Social Constructivism

Authors: Hideki Kitamura

Abstract:

Since Islamic banking has broadly started in the late 1970s, Islamic economy has been paid much attention by both academia and the business world. However, despite abundant studies, descriptive exploration of practices of Islamic economy from a sociological/anthropological perspective is underrepresented, and most are basically designed for evaluating current practice or proposing ideal types of Islamic economy in accordance with their religious conviction. Overall, their interest is not paid to actors of Islamic economy such as practitioner’s decision-making and thought, while sociological/anthropological studies on Muslim’s religious life can be observed well. Herein, the paper aims to look into the possibilities of sociology/anthropology for exploration of the role of actors of Islamic economy, by revisiting the benefit of sociological/anthropological studies on the religion of Islam and its adaptability to the research on Islamic economy. The paper suggests that practices of Islamic economy can be assumed as results of practitioner’s dilemma between Islamic ideals and market realities in each society, by applying the perspective of social constructivism. The paper then proposes focusing on the human agency of practitioners in translating Islamic principles into economic behavior, thereby enabling a more descriptive inquiry into how Islamic economy is produced and operated.

Keywords: Islamic economy, economic sociology/anthropology, human agency, social constructivism

Procedia PDF Downloads 162
9741 Audience Engagement in UNHCR Social Media Stories of Displaced People: Emotion and Reason in a Global Public Debate

Authors: Soraya Tharani

Abstract:

Social media has changed how public opinion is shaped by enabling more diversified and inclusive participation of audiences. New online forums provide spaces in which governments, NGOs and other organizations can create content and receive feedback. These forums are sites where debate can constitute public opinion. Studies of audience engagement can give an understanding of how different voices from the civil society participate in debates and how discussions can reinforce or bring into question established societal beliefs. The UN’s refugee agency, UNHCR, produces audio-visual stories about displaced people for global audiences on social media platforms. The availability of many views in these forums can give insight into how dialogues regarding transnational issues are formed. The public sphere, as defined by Habermas, is a discursive arena where reasoned debate can take place. Habermas’ concept is combined with theories on celebrity advocacy, and discussions about the role and effect celebrities have in raising public awareness for humanitarian issues. The personal and public lives of celebrities often create emotional engagement from their fans and other audiences. In this study, quantitative and qualitative methods have been used on YouTube comments for uncovering how emotion and reason are constituted in a global public debate on celebrity endorsed UNHCR stories of displaced people. The study shows that engagement intensity is not equally distributed between comment threads; comments presented as facts or emotional claims are often supported by recourse to intertextuality, and specific linguistic strategies are used to put forward emotional and reasoned claims regarding individual and group identities. The findings from this research aim to contribute to an understanding of audience engagement on issues of human survival and solidarity in a global social media public sphere.

Keywords: emotions, engagement, global public sphere, linguistic strategies, reason, refugees, social media, UNHCR

Procedia PDF Downloads 143
9740 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 141
9739 Window Seat: Examining Public Space, Politics, and Social Identity through Urban Public Transportation

Authors: Sabrina Howard

Abstract:

'Window Seat' uses public transportation as an entry point for understanding the relationship between public space, politics, and social identity construction. This project argues that by bringing people of different races, classes, and genders in 'contact' with one another, public transit operates as a site of exposure, as people consciously and unconsciously perform social identity within these spaces. These performances offer a form of freedom that we associate with being in urban spaces while simultaneously rendering certain racialized, gendered, and classed bodies vulnerable to violence. Furthermore, due to its exposing function, public transit operates as a site through which we, as urbanites and scholars, can read social injustice and reflect on the work that is necessary to become a truly democratic society. The major questions guiding this research are: How does using public transit as the entry point provide unique insights into the relationship between social identity, politics, and public space? What ideas do Americans hold about public space and how might these ideas reflect a liberal yearning for a more democratic society? To address these research questions, 'Window Seat' critically examines ethnographic data collected on public buses and trains in Los Angeles, California, and online news media. It analyzes these sources through literature in socio-cultural psychology, sociology, and political science. It investigates the 'everyday urban hero' narrative or popular news stories that feature an individual or group of people acting against discriminatory or 'Anti-American' behavior on public buses and trains. 'Window Seat' studies these narratives to assert that by circulating stories of civility in news media, United Statsians construct and maintain ideas of the 'liberal city,' which is characterized by ideals of freedom and democracy. Furthermore, for those involved, these moments create an opportunity to perform the role of the Good Samaritan, an identity that is wrapped up in liberal beliefs in diversity and inclusion. This research expands conversations in urban studies by making a case for the political significance of urban public space. It demonstrates how these sites serve as spaces through which liberal beliefs are circulated and upheld through identity performance.

Keywords: social identity, public space, public transportation, liberalism

Procedia PDF Downloads 209
9738 Multimodal Content: Fostering Students’ Language and Communication Competences

Authors: Victoria L. Malakhova

Abstract:

The research is devoted to multimodal content and its effectiveness in developing students’ linguistic and intercultural communicative competences as an indefeasible constituent of their future professional activity. Description of multimodal content both as a linguistic and didactic phenomenon makes the study relevant. The objective of the article is the analysis of creolized texts and the effect they have on fostering higher education students’ skills and their productivity. The main methods used are linguistic text analysis, qualitative and quantitative methods, deduction, generalization. The author studies texts with full and partial creolization, their features and role in composing multimodal textual space. The main verbal and non-verbal markers and paralinguistic means that enhance the linguo-pragmatic potential of creolized texts are covered. To reveal the efficiency of multimodal content application in English teaching, the author conducts an experiment among both undergraduate students and teachers. This allows specifying main functions of creolized texts in the process of language learning, detecting ways of enhancing students’ competences, and increasing their motivation. The described stages of using creolized texts can serve as an algorithm for work with multimodal content in teaching English as a foreign language. The findings contribute to improving the efficiency of the academic process.

Keywords: creolized text, English language learning, higher education, language and communication competences, multimodal content

Procedia PDF Downloads 118
9737 Academic Skills Enhancement in Secondary School Students Undertaking Tertiary Studies

Authors: Richard White, Anne Drabble, Maureen O’Neill

Abstract:

The University of the Sunshine Coast (USC) offers secondary school students in the final two years of school (Years 11 and 12, 16 – 18 years of age) an opportunity to participate in a program which provides an accelerated pathway to tertiary studies. Whilst still at secondary school, the students undertake two first year university subjects that are required subjects in USC undergraduate degree programs. The program is called Integrated Learning Pathway (ILP) and offers a range of disciplines, including business, design, drama, education, and engineering. Between 2010 and 2014, 38% of secondary students who participated in an ILP program commenced undergraduate studies at USC following completion of secondary school studies. The research reported here considers “before and after” literacy and numeracy competencies of students to determine what impact participation in the ILP program has had on their academic skills. Qualitative and quantitative data has been gathered via numeracy and literacy testing of the students, and a survey asking the students to self-evaluate their numeracy and literacy skills, and reflect on their views of these academic skills. The research will enable improved targeting of teaching strategies so that students will acquire not only course-specific learning outcomes but also collateral academic skills. This enhancement of academic skills will improve undergraduate experience and improve student retention.

Keywords: academic skills enhancement, accelerated pathways, improved teaching, student retention

Procedia PDF Downloads 313
9736 Innovative Techniques of Teaching Henrik Ibsen’s a Doll’s House

Authors: Shilpagauri Prasad Ganpule

Abstract:

The teaching of drama is considered as the most significant and noteworthy area in an ESL classroom. Diverse innovative techniques can be used to make the teaching of drama worthwhile and interesting. The paper presents the different innovative techniques that can be used while teaching Henrik Ibsen’s A Doll’s House [2007]. The innovative techniques facilitate students’ understanding and comprehension of the text. The use of the innovative techniques makes them explore the dramatic text and uncover a multihued arena of meanings hidden in it. They arouse the students’ interest and assist them overcome the difficulties created by the second language. The diverse innovative techniques appeal to the imagination of the students and increase their participation in the classroom. They help the students in the appreciation of the dramatic text and make the teaching learning situation a fruitful experience for both the teacher and students. The students successfully overcome the problem of L2 comprehension and grasp the theme, story line and plot-structure of the play effectively. The innovative techniques encourage a strong sense of participation on the part of the students and persuade them to learn through active participation. In brief, the innovative techniques promote the students to perform various tasks and expedite their learning process. Thus the present paper makes an attempt to present varied innovative techniques that can be used while teaching drama. It strives to demonstrate how the use of innovative techniques improve and enhance the students’ understanding and appreciation of Ibsen’s A Doll’s House [2007].

Keywords: ESL classroom, innovative techniques, students’ participation, teaching of drama

Procedia PDF Downloads 629
9735 Experimental Analysis of Tools Used for Doxing and Proposed New Transforms to Help Organizations Protect against Doxing Attacks

Authors: Parul Khanna, Pavol Zavarsky, Dale Lindskog

Abstract:

Doxing is a term derived from documents, and hence consists of collecting information on an organization or individual through social media websites, search engines, password cracking methods, social engineering tools and other sources of publicly displayed information. The main purpose of doxing attacks is to threaten, embarrass, harass and humiliate the organization or individual. Various tools are used to perform doxing. Tools such as Maltego visualize organization’s architecture which helps in determining weak links within the organization. This paper discusses limitations of Maltego Chlorine CE 3.6.0 and suggests measures as to how organizations can use these tools to protect themselves from doxing attacks.

Keywords: advanced persistent threat, FOCA, OSINT, PII

Procedia PDF Downloads 261
9734 Representations of Race and Social Movement Strategies in the US

Authors: Lee Artz

Abstract:

Based on content analyses of major US media, immediately following the George Floyd killing in May 2020, some mayors and local, state, and national officials offered favorable representations of protests against police violence. As the protest movement grew to historic proportions with 26 million joining actions in large cities and small towns, dominant representations of racism by elected officials and leading media shifted—replacing both the voices and demands of protestors with representations by elected officials. Major media quoted Black mayors and Congressional representatives who emphasized concerns about looting and the disruption of public safety. Media coverage privileged elected officials who criticized movement demands for defunding police and deplored isolated instances of property damaged by protestors. Subsequently, public opinion polls saw an increase in concern for law and order tropes and a decrease in support for protests against police violence. Black Lives Matter and local organizations had no coordinated response and no effective means of communication to counter dominant representations voiced by politicians and globally disseminated by major media. Politician and media-instigated public opinion shifts indicate that social movements need their own means of communication and collective decision-making--both of which were largely missing from Black Lives Matter leaders, leading to disaffection and a political split by more than 20 local affiliates. By itself, social media by myriad individuals and groups had limited purchase as a means for social movement communication and organization. Lacking a collaborative, coordinated strategy, organization, and independent media, the loose network of Black Lives Matter groups was unable to offer more accurate, democratic, and favorable representations of protests and their demands for more justice and equality. The fight for equality was diverted by the fight for representation.

Keywords: black lives matter, public opinion, racism, representations, social movements

Procedia PDF Downloads 185
9733 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features

Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han

Abstract:

Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.

Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction

Procedia PDF Downloads 245
9732 Exploring Symptoms, Causes and Treatments of Feline Pruritus Using Thematic Analysis of Pet Owner Social Media Posts

Authors: Sitira Williams, Georgina Cherry, Andrea Wright, Kevin Wells, Taran Rai, Richard Brown, Travis Street, Alasdair Cook

Abstract:

Social media sources (50) were identified, keywords defined by veterinarians and organised into 6 topics known to be indicative of feline pruritus: body areas, behaviors, symptoms, diagnosis, and treatments. These were augmented using academic literature, a cat owner survey, synonyms, and Google Trends. The content was collected using a social intelligence solution, with keywords tagged and filtered. Data were aggregated and de-duplicated. SL content matching body areas, behaviors and symptoms were reviewed manually, and posts were marked relevant if: posted by a pet owner, identifying an itchy cat and not duplicated. A sub-set of 493 posts published from 2009-2022 was used for reflexive thematic analysis in NVIVO (Burlington, MA) to identify themes. Five themes were identified: allergy, pruritus, additional behaviors, unusual or undesirable behaviors, diagnosis, and treatment. Most (258) posts reported the cat was excessively licking, itching, and scratching. The majority were indoor cats and were less playful and friendly when itchy. Half of these posts did not indicate a known cause of pruritus. Bald spots and scabs (123) were reported, often causing swelling and fur loss, and 56 reported bumps, lumps, and dry patches. Other impacts on the cat’s quality of life were ear mites, cat self-trauma and stress. Seven posts reported their cats’ symptoms caused them ongoing anxiety and depression. Cats with food allergies to poultry (often chicken and beef) causing bald spots featured in 23 posts. Veterinarians advised switching to a raw food diet and/or changing their bowls. Some cats got worse after switching, leaving owners’ needs unmet. Allergic reactions to flea bites causing excessive itching, red spots, scabs, and fur loss were reported in 13 posts. Some (3) posts indicated allergic reactions to medication. Cats with seasonal and skin allergies, causing sneezing, scratching, headshaking, watery eyes, and nasal discharge, were reported 17 times. Eighty-five posts identified additional behaviors. Of these, 13 reported their cat’s burst pimple or insect bite. Common behaviors were headshaking, rubbing, pawing at their ears, and aggressively chewing. In some cases, bites or pimples triggered previously unseen itchiness, making the cat irritable. Twenty-four reported their cat had anxiety: overgrooming, itching, losing fur, hiding, freaking out, breathing quickly, sleeplessness, hissing and vocalising. Most reported these cats as having itchy skin, fleas, and bumps. Cats were commonly diagnosed with an ear infection, ringworm, acne, or kidney disease. Acne was diagnosed in cats with an allergy flare-up or overgrooming. Ear infections were diagnosed in itchy cats with mites or other parasites. Of the treatments mentioned, steroids were most frequently used, then anti-parasitics, including flea treatments and oral medication (steroids, antibiotics). Forty-six posts reported distress following poor outcomes after medication or additional vet consultations. SL provides veterinarians with unique insights. Verbatim comments highlight the detrimental effects of pruritus on pets and owner quality of life. This study demonstrates the need for veterinarians to communicate management and treatment options more effectively to relieve owner frustrations. Data analysis could be scaled up using machine learning for topic modeling.

Keywords: content analysis, feline, itch, pruritus, social media, thematic analysis, veterinary dermatology

Procedia PDF Downloads 199
9731 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 103
9730 Community Music in Puerto Rico

Authors: Francisco Luis Reyes

Abstract:

The multiple-case study explores the intricacies of three Puerto Rican Community Music (CM) initiatives. This research concentrates on the teaching and learning dynamics of three of the nation’s traditional musical genres, Plena, Bomba, and Música Jíbara, which have survived for centuries through oral transmission and enculturation in community settings. Accordingly, this research focuses on how music education is carried out in Puerto Rican CM initiatives that foster and preserve the country’s traditional music. This study examines the CM initiatives of La Junta, in Santurce (Plena), Taller Tambuyé in Rio Piedras (Bomba), and Decimanía (Música Jíbara), an initiative that stems from the municipality of Hatillo. In terms of procedure, 45–60-minute semi-structured interviews were conducted with organizers and administrators of the CM initiatives to gain insight into the educational philosophy of each project. Following this, a second series of 45–60-minute semi-structured interviews were undertaken with CM educators to collect data on their musical development, teaching practices, and relationship with learners. Subsequently, four weeks were spent observing/participating in each of the three CM initiatives. In addition to participant observations in these projects, five CM learners from each locale were recruited for two one-on-one semi-structured interviews at the beginning and end of the data collection period. The initial interview centered on the participants’ rationale for joining the CM initiative whereas the exit interview focused on participants’ experience within it. Alumni from each of the CM initiatives partook in 45–60-minute semi-structured interviews to investigate their understanding of what it means to be a member of each musical community. Finally, observations and documentation of additional activities hosted/promoted by each initiative, such as festivals, concerts, social gatherings, and workshops, were undertaken. These three initiatives were chosen because of their robust and dynamic practices in fostering the musical expressions of Puerto Rico. Data collection consisted of participant observation, narrative inquiry, historical research, philosophical inquiry, and semi-structured interviews. Data analysis for this research involved relying on theoretical propositions, which entails comparing the results—from each case and as a collective— to the arguments that led to the basis of the research (e.g., literature review, research questions, hypothesis). Comparisons to the theoretical propositions were made through pattern matching, which requires comparing predicted patterns from the literature review to findings from each case. Said process led to the development of an analytic outlook of each CM case and a cross-case synthesis. The purpose of employing said data analysis methodology is to present robust findings about CM practices in Puerto Rico and elucidate similarities and differences between the cases that comprise this research and the relevant literature. Furthermore, through the use of Sound Links’ Nine Domains of Community Music, comparisons to other community projects are made in order to point out parallels and highlight particularities in Puerto Rico.

Keywords: community music, Puerto Rico, music learning, traditional music

Procedia PDF Downloads 34
9729 Young People’s Perceptions of Disability: The New Generation’s View of a Public Seen as Vulnerable and Marginalized

Authors: Ulysse Lecomte, Maryline Thenot

Abstract:

For a long time, disabled people lived in isolation within the family environment, with little interaction with the outside world and a high risk of social exclusion. However, in a number of countries, progress has been made thanks to changes in legislation on the social integration of disabled people, a significant change in attitudes, and the development of CSR. But the problem of their social, economic, and professional exclusion persists and has been further exacerbated by the COVID-19 pandemic. This societal phenomenon is sufficiently important to be the subject of management science research. We have therefore focused our work on society's current perception of people with disabilities and their possible integration. Our aim is to find out what levers could be put in place to bring about positive change in the situation. We have chosen to focus on the perception of young people in France, who are the new generation responsible for the future of our society and from whom tomorrow's decisionmakers, future employers, and stakeholders who can influence the living conditions of disabled people will be drawn. Our study sample corresponds to the 18-30 age group, which is the population of young adults likely to have sufficient experience and maturity. The aim of this study is not only to find out how this population currently perceives disability but also to identify the factors influencing this perception and the most effective levers for action to act positively on this phenomenon and thus promote better social integration of people with disabilities in the future. The methodology is based on theoretical and empirical research. The literature review includes a historical and etymological approach to disability, a definition of the different concepts of disability, an approach to disability as a vector of social exclusion, and the role of perception and representations in defining the social image of disability. This literature review is followed by an empirical part carried out by means of a questionnaire administered to 110 young people aged 18 to 30. Analysis of our results suggests that, despite a recent improvement, disabled people are still perceived as vulnerable and socially marginalised. The following factors stand out as having a significant influence (positive or negative) on the perception of disability: the individual's familiarity with the 'world of disability', cultural factors, the degree of 'visibility' of the disability and the empathy level of the disabled person him/herself. Others, on the other hand, such as socio-political and economic factors, have little impact on this perception. In addition, it is possible to classify the various levers of action likely to improve the social perception of disability according to their degree of effectiveness. Our study population prioritised training initiatives for the various players and stakeholders (teachers, students, disabled people themselves, companies, sports clubs, etc.). This was followed by communication, ecommunication and media campaigns in favour of disability. Lastly, the sample was judged as 'less effective' positive discrimination actions such as setting a minimum percentage for the representation of disabled people in various fields (studies, employment, politics ...).

Keywords: disability, perception, social image, young people, influencing factors, levers for action

Procedia PDF Downloads 39
9728 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 424
9727 Examination of Teacher Candidates Attitudes Towards Disabled Individuals Employment in terms of Various Variables

Authors: Tuna Şahsuvaroğlu

Abstract:

The concept of disability is a concept that has been the subject of many studies in national and international literature with its social, sociological, political, anthropological, economic and social dimensions as well as with individual and social consequences. A disabled person is defined as a person who has difficulties in adapting to social life and meeting daily needs due to loss of physical, mental, spiritual, sensory and social abilities to various degrees, either from birth or for any reason later, and they are in need of protection, care, rehabilitation, counseling and support services. The industrial revolution and the rapid industrialization it brought with it led to an increase in the rate of disabilities resulting from work accidents, in addition to congenital disabilities. This increase has resulted in disabled people included in the employment policies of nations as a disadvantaged group. Although the participation of disabled individuals in the workforce is of great importance in terms of both increasing their quality of life and their integration with society and although disabled individuals are willing to participate in the workforce, they encounter with many problems. One of these problems is the negative attitudes and prejudices that develop in society towards the employment of disabled individuals. One of the most powerful ways to turn these negative attitudes and prejudices into positive ones is education. Education is a way of guiding societies and transferring existing social characteristics to future generations. This can be maintained thanks to teachers, who are one of the most dynamic parts of society and act as the locomotive of education driven by the need to give direction and transfer and basically to help and teach. For this reason, there is a strong relationship between the teaching profession and the attitudes formed in society towards the employment of disabled individuals, as they can influence each other. Therefore, the purpose of this study is to examine teacher candidates' attitudes towards the employment of disabled individuals in terms of various variables. The participants of the study consist of 665 teacher candidates studying at various departments at Marmara University Faculty of Education in the 2022-2023 academic year. The descriptive survey model of the general survey model was used in this study as it intends to determine the attitudes of teacher candidates towards the employment of disabled individuals in terms of different variables. The Attitude Scale Towards Employment of Disabled People was used to collect data. The data were analyzed according to the variables of age, gender, marital status, the department, and whether there is a disabled relative in the family, and the findings were discussed in the context of further research.

Keywords: teacher candidates, disabled, attitudes towards the employment of disabled people, attitude scale towards the employment of disabled people

Procedia PDF Downloads 71