Search results for: product composition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6015

Search results for: product composition

225 Fuzzy Availability Analysis of a Battery Production System

Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz

Abstract:

In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.

Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)

Procedia PDF Downloads 196
224 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 212
223 Improvement of the Traditional Techniques of Artistic Casting through the Development of Open Source 3D Printing Technologies Based on Digital Ultraviolet Light Processing

Authors: Drago Diaz Aleman, Jose Luis Saorin Perez, Cecile Meier, Itahisa Perez Conesa, Jorge De La Torre Cantero

Abstract:

Traditional manufacturing techniques used in artistic contexts compete with highly productive and efficient industrial procedures. The craft techniques and associated business models tend to disappear under the pressure of the appearance of mass-produced products that compete in all niche markets, including those traditionally reserved for the work of art. The surplus value derived from the prestige of the author, the exclusivity of the product or the mastery of the artist, do not seem to be sufficient reasons to preserve this productive model. In the last years, the adoption of open source digital manufacturing technologies in small art workshops can favor their permanence by assuming great advantages such as easy accessibility, low cost, and free modification, adapting to specific needs of each workshop. It is possible to use pieces modeled by computer and made with FDM (Fused Deposition Modeling) 3D printers that use PLA (polylactic acid) in the procedures of artistic casting. Models printed by PLA are limited to approximate minimum sizes of 3 cm, and optimal layer height resolution is 0.1 mm. Due to these limitations, it is not the most suitable technology for artistic casting processes of smaller pieces. An alternative to solve size limitation, are printers from the type (SLS) "selective sintering by laser". And other possibility is a laser hardens, by layers, metal powder and called DMLS (Direct Metal Laser Sintering). However, due to its high cost, it is a technology that is difficult to introduce in small artistic foundries. The low-cost DLP (Digital Light Processing) type printers can offer high resolutions for a reasonable cost (around 0.02 mm on the Z axis and 0.04 mm on the X and Y axes), and can print models with castable resins that allow the subsequent direct artistic casting in precious metals or their adaptation to processes such as electroforming. In this work, the design of a DLP 3D printer is detailed, using backlit LCD screens with ultraviolet light. Its development is totally "open source" and is proposed as a kit made up of electronic components, based on Arduino and easy to access mechanical components in the market. The CAD files of its components can be manufactured in low-cost FDM 3D printers. The result is less than 500 Euros, high resolution and open-design with free access that allows not only its manufacture but also its improvement. In future works, we intend to carry out different comparative analyzes, which allow us to accurately estimate the print quality, as well as the real cost of the artistic works made with it.

Keywords: traditional artistic techniques, DLP 3D printer, artistic casting, electroforming

Procedia PDF Downloads 122
222 Anti-Graft Instruments and Their Role in Curbing Corruption: Integrity Pact and Its Impact on Indian Procurement

Authors: Jot Prakash Kaur

Abstract:

The paper aims to showcase that with the introduction of anti-graft instruments and willingness of the governments towards their implementation, a significant change can be witnessed in the anti-corruption landscape of any country. Since the past decade anti-graft instruments have been introduced by several international non-governmental organizations with the vision of curbing corruption. Transparency International’s ‘Integrity Pact’ has been one such initiative. Integrity Pact has been described as a tool for preventing corruption in public contracting. Integrity Pact has found its relevance in a developing country like India where public procurement constitutes 25-30 percent of Gross Domestic Product. Corruption in public procurement has been a cause of concern even though India has in place a whole architecture of rules and regulations governing public procurement. Integrity Pact was first adopted by a leading Oil and Gas government company in 2006. Till May 2015, over ninety organizations had adopted Integrity Pact, of which majority of them are central government units. The methodology undertaken to understand impact of Integrity Pact on Public procurement is through analyzing information received from important stakeholders of the instrument. Government, information was sought through Right to Information Act 2005 about the details of adoption of this instrument by various government organizations and departments. Contractor, Company websites and annual reports were used to find out the steps taken towards implementation of Integrity Pact. Civil Society, Transparency International India’s resource materials which include publications and reports on Integrity Pact were also used to understand the impact of Integrity Pact. Some of the findings of the study include organizations adopting Integrity pacts in all kinds of contracts such that 90% of their procurements fall under Integrity Pact. Indian State governments have found merit in Integrity Pact and have adopted it in their procurement contracts. Integrity Pact has been instrumental in creating a brand image of companies. External Monitors, an essential feature of Integrity Pact have emerged as arbitrators for the bidders and are the first line of procurement auditors for the organizations. India has cancelled two defense contracts finding it conflicting with the provisions of Integrity Pact. Some of the clauses of Integrity Pact have been included in the proposed Public Procurement legislation. Integrity Pact has slowly but steadily grown to become an integral part of big ticket procurement in India. Government’s commitment to implement Integrity Pact has changed the way in which public procurement is conducted in India. Public Procurement was a segment infested with corruption but with the adoption of Integrity Pact a number of clean up acts have been performed to make procurement transparent. The paper is divided in five sections. First section elaborates on Integrity Pact. Second section talks about stakeholders of the instrument and the role it plays in its implementation. Third section talks about the efforts taken by the government to implement Integrity Pact in India. Fourth section talks about the role of External Monitor as Arbitrator. The final section puts forth suggestions to strengthen the existing form of Integrity Pact and increase its reach.

Keywords: corruption, integrity pact, procurement, vigilance

Procedia PDF Downloads 313
221 Reducing the Computational Cost of a Two-way Coupling CFD-FEA Model via a Multi-scale Approach for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Kevin Tinkham, Ella Quigley

Abstract:

Structural integrity for cladding products is a key performance parameter, especially concerning fire performance. Cladding products such as PIR-based sandwich panels are tested rigorously, in line with industrial standards. Physical fire tests are necessary to ensure the customer's safety but can give little information about critical behaviours that can help develop new materials. Numerical modelling is a tool that can help investigate a fire's behaviour further by replicating the fire test. However, fire is an interdisciplinary problem as it is a chemical reaction that behaves fluidly and impacts structural integrity. An analysis using Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) is needed to capture all aspects of a fire performance test. One method is a two-way coupling analysis that imports the updated changes in thermal data, due to the fire's behaviour, to the FEA solver in a series of iterations. In light of our recent work with Tata Steel U.K using a two-way coupling methodology to determine the fire performance, it has been shown that a program called FDS-2-Abaqus can make predictions of a BS 476 -22 furnace test with a degree of accuracy. The test demonstrated the fire performance of Tata Steel U.K Trisomet product, a Polyisocyanurate (PIR) based sandwich panel used for cladding. Previous works demonstrated the limitations of the current version of the program, the main limitation being the computational cost of modelling three Trisomet panels, totalling an area of 9 . The computational cost increases substantially, with the intention to scale up to an LPS 1181-1 test, which includes a total panel surface area of 200 .The FDS-2-Abaqus program is developed further within this paper to overcome this obstacle and better accommodate Tata Steel U.K PIR sandwich panels. The new developments aim to reduce the computational cost and error margin compared to experimental data. One avenue explored is a multi-scale approach in the form of Reduced Order Modeling (ROM). The approach allows the user to include refined details of the sandwich panels, such as the overlapping joints, without a computationally costly mesh size.Comparative studies will be made between the new implementations and the previous study completed using the original FDS-2-ABAQUS program. Validation of the study will come from physical experiments in line with governing body standards such as BS 476 -22 and LPS 1181-1. The physical experimental data includes the panels' gas and surface temperatures and mechanical deformation. Conclusions are drawn, noting the new implementations' impact factors and discussing the reasonability for scaling up further to a whole warehouse.

Keywords: fire testing, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 47
220 Control of Belts for Classification of Geometric Figures by Artificial Vision

Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez

Abstract:

The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.

Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB

Procedia PDF Downloads 358
219 Electroactive Ferrocenyl Dendrimers as Transducers for Fabrication of Label-Free Electrochemical Immunosensor

Authors: Sudeshna Chandra, Christian Gäbler, Christian Schliebe, Heinrich Lang

Abstract:

Highly branched dendrimers provide structural homogeneity, controlled composition, comparable size to biomolecules, internal porosity and multiple functional groups for conjugating reactions. Electro-active dendrimers containing multiple redox units have generated great interest in their use as electrode modifiers for development of biosensors. The electron transfer between the redox-active dendrimers and the biomolecules play a key role in developing a biosensor. Ferrocenes have multiple and electrochemically equivalent redox units that can act as electron “pool” in a system. The ferrocenyl-terminated polyamidoamine dendrimer is capable of transferring multiple numbers of electrons under the same applied potential. Therefore, they can be used for dual purposes: one in building a film over the electrode for immunosensors and the other for immobilizing biomolecules for sensing. Electrochemical immunosensor, thus developed, exhibit fast and sensitive analysis, inexpensive and involve no prior sample pre-treatment. Electrochemical amperometric immunosensors are even more promising because they can achieve a very low detection limit with high sensitivity. Detection of the cancer biomarkers at an early stage can provide crucial information for foundational research of life science, clinical diagnosis and prevention of disease. Elevated concentration of biomarkers in body fluid is an early indication of some type of cancerous disease and among all the biomarkers, IgG is the most common and extensively used clinical cancer biomarkers. We present an IgG (=immunoglobulin) electrochemical immunosensor using a newly synthesized redox-active ferrocenyl dendrimer of generation 2 (G2Fc) as glassy carbon electrode material for immobilizing the antibody. The electrochemical performance of the modified electrodes was assessed in both aqueous and non-aqueous media using varying scan rates to elucidate the reaction mechanism. The potential shift was found to be higher in an aqueous electrolyte due to presence of more H-bond which reduced the electrostatic attraction within the amido groups of the dendrimers. The cyclic voltammetric studies of the G2Fc-modified GCE in 0.1 M PBS solution of pH 7.2 showed a pair of well-defined redox peaks. The peak current decreased significantly with the immobilization of the anti-goat IgG. After the immunosensor is blocked with BSA, a further decrease in the peak current was observed due to the attachment of the protein BSA to the immunosensor. A significant decrease in the current signal of the BSA/anti-IgG/G2Fc/GCE was observed upon immobilizing IgG which may be due to the formation of immune-conjugates that blocks the tunneling of mass and electron transfer. The current signal was found to be directly related to the amount of IgG captured on the electrode surface. With increase in the concentration of IgG, there is a formation of an increasing amount of immune-conjugates that decreased the peak current. The incubation time and concentration of the antibody was optimized for better analytical performance of the immunosensor. The developed amperometric immunosensor is sensitive to IgG concentration as low as 2 ng/mL. Tailoring of redox-active dendrimers provides enhanced electroactivity to the system and enlarges the sensor surface for binding the antibodies. It may be assumed that both electron transfer and diffusion contribute to the signal transformation between the dendrimers and the antibody.

Keywords: ferrocenyl dendrimers, electrochemical immunosensors, immunoglobulin, amperometry

Procedia PDF Downloads 309
218 Anisakidosis in Turkey: Serological Survey and Risk for Humans

Authors: E. Akdur Öztürk, F. İrvasa Bilgiç, A. Ludovisi , O. Gülbahar, D. Dirim Erdoğan, M. Korkmaz, M. Á. Gómez Morales

Abstract:

Anisakidosis is a zoonotic human fish-borne parasitic disease caused by accidental ingestion of anisakid third-stage larvae (L3) of members of the Anisakidae family present in infected marine fish or cephalopods. Infection with anisakid larvae can lead to gastric, intestinal, extra-gastrointestinal and gastroallergic forms of the disease. Anisakid parasites have been reported in almost all seas, particularly in the Mediterranean Sea. There is a remarkably high level of risk exposure to these zoonotic parasites as they are present in economically and ecologically important fish of Europe. Anisakid L3 larvae have been also detected in several fish species from the Aegean Sea. Turkey is a peninsular country surrounded by Black, Aegean and the Mediterranean Sea. In this country, fishing habit and fishery product consumption are highly common. In recent years, there was also an increase in the consumption of raw fish due to the increasing interest in the cuisine of the Far East countries. In different regions of Turkey, A. simplex (inMerluccius Merluccius Scomber japonicus, Trachurus mediterraneus, Sardina pilchardus, Engraulis encrasicolus, etc.), Anisakis spp., Contraceucum spp., Pseudoterronova spp. and, C. aduncum were identified as well. Although it is accepted both the presence of anisakid parasites in fish and fishery products in Turkey and the presence of Turkish people with allergic manifestations after fish consumption, there are no reports of human anisakiasis in this country. Given the high prevalence of anisakid parasites in the country, the absence of reports is likely not due to the absence of clinical cases rather to the unavailability of diagnostic tools and the low awareness of the presence of this infection. The aim of the study was to set up an IgE-Western Blot (WB) based test to detect the anisakidosis sensitization among Turkish people with a history of allergic manifestation related to fish consumption. To this end, crude worm antigens (CWA) and allergen enriched fraction (50-66% ) were prepared from L3 of A. simplex (s.l.) collected from Lepidopus caudatus fished in the Mediterranean Sea. These proteins were electrophoretically separated and transferred into the nitrocellulose membranes. By WB, specific proteins recognized by positive control serum samples from sensitized patients were visualized on nitrocellulose membranes by a colorimetric reaction. The CWA and 50–66% fraction showed specific bands, mainly due to Ani s 1 (20-22 kD) and Ani s 4 (9-10 kD). So far, a total of 7 serum samples from people with allergic manifestation and positive skin prick test (SPT) after fish consumption, have been tested and all of them resulted negative by WB, indicating the lack of sensitization to anisakids. This preliminary study allowed to set up a specific test and evidence the lack of correlation between both tests, SPT and WB. However, the sample size should be increased to estimate the anisakidosis burden in Turkish people.

Keywords: anisakidosis, fish parasite, serodiagnosis, Turkey

Procedia PDF Downloads 106
217 Structure Modification of Leonurine to Improve Its Potency as Aphrodisiac

Authors: Ruslin, R. E. Kartasasmita, M. S. Wibowo, S. Ibrahim

Abstract:

An aphrodisiac is a substance contained in food or drug that can arouse sexual instinct and increase pleasure while working, these substances derived from plants, animals, and minerals. When consuming substances that have aphrodisiac activity and duration can improve the sexual instinct. The natural aphrodisiac effect can be obtained through plants, animals, and minerals. Leonurine compound has aphrodisiac activity, these compounds can be isolated from plants of Leonurus Sp, Sundanese people is known as deundereman, this plant is empirical has aphrodisiac activity and based on the isolation of active compounds from plants known to contain compounds leonurine, so that the compound is expected to have activity aphrodisiac. Leonurine compound can be isolated from plants or synthesized chemically with material dasa siringat acid. Leonurine compound can be obtained commercial and derivatives of these compounds can be synthesized in an effort to increase its activity. This study aims to obtain derivatives leonurine better aphrodisiac activity compared with the parent compound, modified the structure of the compounds in the form leonurin guanidino butyl ester group with butyl amin and bromoetanol. ArgusLab program version 4.0.1 is used to determine the binding energy, hydrogen bonds and amino acids involved in the interaction of the compound PDE5 receptor. The in vivo test leonurine compounds and derivatives as an aphrodisiac ingredients and hormone testosterone levels using 27 male rats Wistar strain and 9 female mice of the same species, ages ranged from 12 weeks rats weighing + 200 g / tail. The test animal is divided into 9 groups according to the type of compounds and the dose given. Each treatment group was orally administered 2 ml per day for 5 days. On the sixth day was observed male rat sexual behavior and taking blood from the heart to measure testosterone levels using ELISA technique. Statistical analysis was performed in this study is the ANOVA test Least Square Differences (LSD) using the program Statistical Product and Service Solutions (SPSS). Aphrodisiac efficacy of the leonurine compound and its derivatives have proven in silico and in vivo test, the in silico testing leonurine derivatives have smaller binding energy derivatives leonurine so that activity better than leonurine compounds. Testing in vivo using rats of wistar strain that better leonurine derivative of this compound shows leonurine that in silico studies in parallel with in vivo tests. Modification of the structure in the form of guanidine butyl ester group with butyl amin and bromoethanol increase compared leonurine compound for aphrodisiac activity, testosterone derivatives of compounds leonurine experienced a significant improvement especial is 1RD compounds especially at doses of 100 and 150 mg/bb. The results showed that the compound leonurine and its compounds contain aphrodisiac activity and increase the amount of testosterone in the blood. The compound test used in this study acts as a steroid precursor resulting in increased testosterone.

Keywords: aphrodisiac dysfunction erectile leonurine 1-RD 2-RD, dysfunction, erectile leonurine, 1-RD 2-RD

Procedia PDF Downloads 255
216 ENDO-β-1,4-Xylanase from Thermophilic Geobacillus stearothermophilus: Immobilization Using Matrix Entrapment Technique to Increase the Stability and Recycling Efficiency

Authors: Afsheen Aman, Zainab Bibi, Shah Ali Ul Qader

Abstract:

Introduction: Xylan is a heteropolysaccharide composed of xylose monomers linked together through 1,4 linkages within a complex xylan network. Owing to wide applications of xylan hydrolytic products (xylose, xylobiose and xylooligosaccharide) the researchers are focusing towards the development of various strategies for efficient xylan degradation. One of the most important strategies focused is the use of heat tolerant biocatalysts which acts as strong and specific cleaving agents. Therefore, the exploration of microbial pool from extremely diversified ecosystem is considerably vital. Microbial populations from extreme habitats are keenly explored for the isolation of thermophilic entities. These thermozymes usually demonstrate fast hydrolytic rate, can produce high yields of product and are less prone to microbial contamination. Another possibility of degrading xylan continuously is the use of immobilization technique. The current work is an effort to merge both the positive aspects of thermozyme and immobilization technique. Methodology: Geobacillus stearothermophilus was isolated from soil sample collected near the blast furnace site. This thermophile is capable of producing thermostable endo-β-1,4-xylanase which cleaves xylan effectively. In the current study, this thermozyme was immobilized within a synthetic and a non-synthetic matrice for continuous production of metabolites using entrapment technique. The kinetic parameters of the free and immobilized enzyme were studied. For this purpose calcium alginate and polyacrylamide beads were prepared. Results: For the synthesis of immobilized beads, sodium alginate (40.0 gL-1) and calcium chloride (0.4 M) was used amalgamated. The temperature (50°C) and pH (7.0) optima of immobilized enzyme remained same for xylan hydrolysis however, the enzyme-substrate catalytic reaction time raised from 5.0 to 30.0 minutes as compared to free counterpart. Diffusion limit of high molecular weight xylan (corncob) caused a decline in Vmax of immobilized enzyme from 4773 to 203.7 U min-1 whereas, Km value increased from 0.5074 to 0.5722 mg ml-1 with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability at high temperatures as compared to free enzyme. It retained 18% and 9% residual activity at 70°C and 80°C, respectively whereas; free enzyme completely lost its activity at both temperatures. The Immobilized thermozyme displayed sufficient recycling efficiency and can be reused up to five reaction cycles, indicating that this enzyme can be a plausible candidate in paper processing industry. Conclusion: This thermozyme showed better immobilization yield and operational stability with the purpose of hydrolyzing the high molecular weight xylan. However, the enzyme immobilization properties can be improved further by immobilizing it on different supports for industrial purpose.

Keywords: immobilization, reusability, thermozymes, xylanase

Procedia PDF Downloads 357
215 Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme

Authors: Takeru Furuawa, Kohei Takizawa, Daisuke Kuwahara, Shunjiro Shinohara

Abstract:

In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed.

Keywords: electric propulsion, electrodeless thruster, helicon plasma, rotating magnetic field

Procedia PDF Downloads 239
214 Knowledge, Attitude, and Practices of Nurses on the Pain Assessment and Management in Level 3 Hospitals in Manila

Authors: Florence Roselle Adalin, Misha Louise Delariarte, Fabbette Laire Lagas, Sarah Emanuelle Mejia, Lika Mizukoshi, Irish Paullen Palomeno, Gibrianne Alistaire Ramos, Danica Pauline Ramos, Josefina Tuazon, Jo Leah Flores

Abstract:

Pain, often a missed and undertreated symptom, affects the quality of life of individuals. Nurses are key players in providing effective pain management to decrease morbidity and mortality of patients in pain. Nurses’ knowledge and attitude on pain greatly affect their ability on assessment and management. The Pain Society of the Philippines recognized the inadequacy and inaccessibility of data on the knowledge, skills, and attitude of nurses on pain management in the country. This study may be the first of its kind in the county, giving it the potential to contribute greatly to nursing education and practice through providing valuable baseline data. Objectives: This study aims to describe the level of knowledge and attitude, and current practices of nurses on pain assessment and management; and determine the relationship of nurses’ knowledge and attitude with years of experience, training on pain management and clinical area of practice. Methodology: A survey research design was employed. Four hospitals were selected through purposive sampling. A total of 235 Medical-Surgical Unit and Intensive Care Unit (ICU) nurses participated in the study. The tool used is a combination of demographic survey, Nurses’ Knowledge and Attitude Survey Regarding Pain (NKASRP), Acute Pain Evidence Based Practice Questionnaire (APEBPQ) with self-report questions on non-pharmacologic pain management. The data obtained was analysed using descriptive statistics, two sample T-tests for clinical areas and training; and Pearson product correlation to identify relationship of level of knowledge and attitude with years of experience. Results and Analysis: The mean knowledge and attitude score of the nurses was 47.14%. Majority answered ‘most of the time’ or ‘all the time’ on 84.12% of practice items on pain assessment, implementation of non-pharmacologic interventions, evaluation and documentation. Three of 19 practice items describing morphine and opioid administration in special populations were only done ‘a little of the time’. Most utilized non-pharmacologic interventions were deep breathing exercises (79.66%), massage therapy (27.54%), and ice therapy (26.69%). There was no significant relationship between knowledge scores and years of clinical experience (p = 0.05, r= -0.09). Moreover, there was not enough evidence to show difference in nurses’ knowledge and attitude scores in relation to presence of training (p = 0.41) or areas (Medical-Surgical or ICU) of clinical practice (p = 0.53). Conclusion and Recommendations: Findings of the study showed that the level of knowledge and attitude of nurses on pain assessment and management is suboptimal; and no relationship between nurses’ knowledge and attitude and years of experience. It is recommended that further studies look into the nursing curriculum on pain education, culture-specific pain management protocols and evidence-based practices in the country.

Keywords: knowledge and attitude, nurses, pain management, practices on pain management

Procedia PDF Downloads 321
213 Essential Oils of Polygonum L. Plants Growing in Kazakhstan and Their Antibacterial and Antifungal Activity

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina

Abstract:

Bioactive substances of plant origin can be one of the advanced means of solution to the issue of combined therapy to inflammation. The main advantages of medical plants are softness and width of their therapeutic effect on an organism, the absence of side effects and complications even if the used continuously, high tolerability by patients. Moreover, medial plants are often the only and (or) cost-effective sources of natural biologically active substances and medicines. Along with other biologically active groups of chemical compounds, essential oils with wide range of pharmacological effects became very ingrained in medical practice. Essential oil was obtained by the method hydrodistillation air-dry aerial part of Polygonum L. plants using Clevenger apparatus. Qualitative composition of essential oils was analyzed by chromatography-mass-spectrometry method using Agilent 6890N apparatus. The qualitative analysis is based on the comparison of retention time and full mass-spectra with respective data on components of reference oils and pure compounds, if there were any, and with the data of libraries of mass-spectra Wiley 7th edition and NIST 02. The main components of essential oil are for: Polygonum amphibium L. - γ-terpinene, borneol, piperitol, 1,8-cyneole, α-pinene, linalool, terpinolene and sabinene; Polygonum minus Huds. Fl. Angl. – linalool, terpinolene, camphene, borneol, 1,8-cyneole, α-pinene, 4-terpineol and 1-octen-3-ol; Polygonum alpinum All. – camphene, sabinene, 1-octen-3-ol, 4-carene, p- and o-cymol, γ-terpinene, borneol, -terpineol; Polygonum persicaria L. - α-pinene, sabinene, -terpinene, 4-carene, 1,8-cyneole, borneol, 4-terpineol. Antibacterial activity was researched relating to strains of gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Streptococcus agalacticae, relating to gram-negative strain Escherichia coli and to yeast fungus Сandida albicans using agar diffusion method. The medicines of comparison were gentamicin for bacteria and nystatin for yeast fungus Сandida albicans. It has been shown that Polygonum L. essential oils has moderate antibacterial effect to gram-positive microorganisms and weak antifungal activity to Candida albicans yeast fungus. At the second stage of our researches wound healing properties of ointment form of 3% essential oil was researched on the model of flat dermal wounds. To assess the influence of essential oil on healing processes the model of flat dermal wound. The speed of wound healing on rats of different groups was judged based on assessment the area of a wound from time to time. During research of wound healing properties disturbance of integral in neither group: general condition and behavior of animals, food intake, and excretion. Wound healing action of 3% ointment on base of Polygonum L. essential oil and polyethyleneglycol is comparable with the action of reference substances. As more favorable healing dynamics was observed in the experimental group than in control group, the tested ointment can be deemed more promising for further detailed study as wound healing means.

Keywords: antibacterial, antifungal, bioactive substances, essential oils, isolation, Polygonum L.

Procedia PDF Downloads 513
212 Processing of Flexible Dielectric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Wearable Technology Applications

Authors: D. Sun, L. Saw, A. Onyianta, D. O’Rourke, Z. Lu, C. See, C. Wilson, C. Popescu, M. Dorris

Abstract:

With the rapid development of wearable technology (e.g., smartwatch, activity trackers and health monitor devices), flexible dielectric materials with environmental-friendly, low-cost and high-energy efficiency characteristics are in increasing demand. In this work, a flexible dielectric nanocomposite was processed by incorporating two components: cellulose nanofibrils and alum sludge in a polymer matrix. The two components were used in the reinforcement phase as well as for enhancing the dielectric properties; they were processed using waste materials that would otherwise be disposed to landfills. Alum sludge is a by-product of the water treatment process in which aluminum sulfate is prevalently used as the primary coagulant. According to the data from a project partner-Scottish Water: there are approximately 10k tons of alum sludge generated as a waste from the water treatment work to be landfilled every year in Scotland. The industry has been facing escalating financial and environmental pressure to develop more sustainable strategies to deal with alum sludge wastes. In the available literature, some work on reusing alum sludge has been reported (e.g., aluminum recovery or agriculture and land reclamation). However, little work can be found in applying it to processing energy materials (e.g., dielectrics) for enhanced energy density and efficiency. The alum sludge was collected directly from a water treatment plant of Scottish Water and heat-treated and refined before being used in preparing composites. Cellulose nanofibrils were derived from water hyacinth, an invasive aquatic weed that causes significant ecological issues in tropical regions. The harvested water hyacinth was dried and processed using a cost-effective method, including a chemical extraction followed by a homogenization process in order to extract cellulose nanofibrils. Biodegradable elastomer polydimethylsiloxane (PDMS) was used as the polymer matrix and the nanocomposites were processed by casting raw materials in Petri dishes. The processed composites were characterized using various methods, including scanning electron microscopy (SEM), rheological analysis, thermogravimetric and X-ray diffraction analysis. The SEM result showed that cellulose nanofibrils of approximately 20nm in diameter and 100nm in length were obtained and the alum sludge particles were of approximately 200um in diameters. The TGA/DSC analysis result showed that a weight loss of up to 48% can be seen in the raw material of alum sludge and its crystallization process has been started at approximately 800°C. This observation coincides with the XRD result. Other experiments also showed that the composites exhibit comprehensive mechanical and dielectric performances. This work depicts that it is a sustainable practice of reusing such waste materials in preparing flexible, lightweight and miniature dielectric materials for wearable technology applications.

Keywords: cellulose, biodegradable, sustainable, alum sludge, nanocomposite, wearable technology, dielectric

Procedia PDF Downloads 63
211 Food Safety in Wine: Removal of Ochratoxin a in Contaminated White Wine Using Commercial Fining Agents

Authors: Antònio Inês, Davide Silva, Filipa Carvalho, Luís Filipe-Riberiro, Fernando M. Nunes, Luís Abrunhosa, Fernanda Cosme

Abstract:

The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L-β-phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption. The maximum acceptable level of OTA in wines is 2.0 μg/kg according to the Commission regulation No. 1881/2006. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analyses were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatin, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatin, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatin, bentonite and activated carbon reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.

Keywords: wine, ota removal, food safety, fining

Procedia PDF Downloads 505
210 Drivers of Satisfaction and Dissatisfaction in Camping Tourism: A Case Study from Croatia

Authors: Darko Prebežac, Josip Mikulić, Maja Šerić, Damir Krešić

Abstract:

Camping tourism is recognized as a growing segment of the broader tourism industry, currently evolving from an inexpensive, temporary sojourn in a rural environment into a highly fragmented niche tourism sector. The trends among public-managed campgrounds seem to be moving away from rustic campgrounds that provide only a tent pad and a fire ring to more developed facilities that offer a range of different amenities, where campers still search for unique experiences that go above the opportunity to experience nature and social interaction. In addition, while camping styles and options changed significantly over the last years, coastal camping in particular became valorized as is it regarded with a heightened sense of nostalgia. Alongside this growing interest in the camping tourism, a demand for quality servicing infrastructure emerged in order to satisfy the wide variety of needs, wants, and expectations of an increasingly demanding traveling public. However, camping activity in general and quality of camping experience and campers’ satisfaction in particular remain an under-researched area of the tourism and consumption behavior literature. In this line, very few studies addressed the issue of quality product/service provision in satisfying nature based tourists and in driving their future behavior with respect to potential re-visitation and recommendation intention. The present study thus aims to investigate the drivers of positive and negative campsite experience using the case of Croatia. Due to the well-preserved nature and indented coastline, camping tourism has a long tradition in Croatia and represents one of the most important and most developed tourism products. During the last decade the number of tourist overnights in Croatian camps has increased by 26% amounting to 16.5 million in 2014. Moreover, according to Eurostat the market share of campsites in the EU is around 14%, indicating that the market share of Croatian campsites is almost double large compared to the EU average. Currently, there are a total of 250 camps in Croatia with approximately 75.8 thousands accommodation units. It is further noteworthy that Croatian camps have higher average occupancy rates and a higher average length of stay as compared to the national average of all types of accommodation. In order to explore the main drivers of positive and negative campsite experiences, this study uses principal components analysis (PCA) and an impact-asymmetry analysis (IAA). Using the PCA, first the main dimensions of the campsite experience are extracted in an exploratory manner. Using the IAA, the extracted factors are investigated for their potentials to create customer delight and/or frustration. The results provide valuable insight to both researchers and practitioners regarding the understanding of campsite satisfaction.

Keywords: Camping tourism, campsite, impact-asymmetry analysis, satisfaction

Procedia PDF Downloads 162
209 Environmental Catalysts for Refining Technology Application: Reduction of CO Emission and Gasoline Sulphur in Fluid Catalytic Cracking Unit

Authors: Loganathan Kumaresan, Velusamy Chidambaram, Arumugam Velayutham Karthikeyani, Alex Cheru Pulikottil, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar

Abstract:

Environmentally driven regulations throughout the world stipulate dramatic improvements in the quality of transportation fuels and refining operations. The exhaust gases like CO, NOx, and SOx from stationary sources (e.g., refinery) and motor vehicles contribute to a large extent for air pollution. The refining industry is under constant environmental pressure to achieve more rigorous standards on sulphur content in the fuel used in the transportation sector and other off-gas emissions. Fluid catalytic cracking unit (FCCU) is a major secondary process in refinery for gasoline and diesel production. CO-combustion promoter additive and gasoline sulphur reduction (GSR) additive are catalytic systems used in FCCU to assist the combustion of CO to CO₂ in the regenerator and regulate sulphur in gasoline faction respectively along with main FCC catalyst. Effectiveness of these catalysts is governed by the active metal used, its dispersion, the type of base material employed, and retention characteristics of additive in FCCU such as attrition resistance and density. The challenge is to have a high-density microsphere catalyst support for its retention and high activity of the active metals as these catalyst additives are used in low concentration compare to the main FCC catalyst. The present paper discusses in the first part development of high dense microsphere of nanocrystalline alumina by hydro-thermal method for CO combustion promoter application. Performance evaluation of additive was conducted under simulated regenerator conditions and shows CO combustion efficiency above 90%. The second part discusses the efficacy of a co-precipitation method for the generation of the active crystalline spinels of Zn, Mg, and Cu with aluminium oxides as an additive. The characterization and micro activity test using heavy combined hydrocarbon feedstock at FCC unit conditions for evaluating gasoline sulphur reduction activity are studied. These additives were characterized by X-Ray Diffraction, NH₃-TPD & N₂ sorption analysis, TPR analysis to establish structure-activity relationship. The reaction of sulphur removal mechanisms involving hydrogen transfer reaction, aromatization and alkylation functionalities are established to rank GSR additives for their activity, selectivity, and gasoline sulphur removal efficiency. The sulphur shifting in other liquid products such as heavy naphtha, light cycle oil, and clarified oil were also studied. PIONA analysis of liquid product reveals 20-40% reduction of sulphur in gasoline without compromising research octane number (RON) of gasoline and olefins content.

Keywords: hydrothermal, nanocrystalline, spinel, sulphur reduction

Procedia PDF Downloads 76
208 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 320
207 Probabilistic Study of Impact Threat to Civil Aircraft and Realistic Impact Energy

Authors: Ye Zhang, Chuanjun Liu

Abstract:

In-service aircraft is exposed to different types of threaten, e.g. bird strike, ground vehicle impact, and run-way debris, or even lightning strike, etc. To satisfy the aircraft damage tolerance design requirements, the designer has to understand the threatening level for different types of the aircraft structures, either metallic or composite. Exposing to low-velocity impacts may produce very serious internal damages such as delaminations and matrix cracks without leaving visible mark onto the impacted surfaces for composite structures. This internal damage can cause significant reduction in the load carrying capacity of structures. The semi-probabilistic method provides a practical and proper approximation to establish the impact-threat based energy cut-off level for the damage tolerance evaluation of the aircraft components. Thus, the probabilistic distribution of impact threat and the realistic impact energy level cut-offs are the essential establishments required for the certification of aircraft composite structures. A new survey of impact threat to civil aircraft in-service has recently been carried out based on field records concerning around 500 civil aircrafts (mainly single aisles) and more than 4.8 million flight hours. In total 1,006 damages caused by low-velocity impact events had been screened out from more than 8,000 records including impact dents, scratches, corrosions, delaminations, cracks etc. The impact threat dependency on the location of the aircraft structures and structural configuration was analyzed. Although the survey was mainly focusing on the metallic structures, the resulting low-energy impact data are believed likely representative to general civil aircraft, since the service environments and the maintenance operations are independent of the materials of the structures. The probability of impact damage occurrence (Po) and impact energy exceedance (Pe) are the two key parameters for describing the statistic distribution of impact threat. With the impact damage events from the survey, Po can be estimated as 2.1x10-4 per flight hour. Concerning the calculation of Pe, a numerical model was developed using the commercial FEA software ABAQUS to backward estimate the impact energy based on the visible damage characteristics. The relationship between the visible dent depth and impact energy was established and validated by drop-weight impact experiments. Based on survey results, Pe was calculated and assumed having a log-linear relationship versus the impact energy. As the product of two aforementioned probabilities, Po and Pe, it is reasonable and conservative to assume Pa=PoxPe=10-5, which indicates that the low-velocity impact events are similarly likely as the Limit Load events. Combing Pa with two probabilities Po and Pe obtained based on the field survey, the cutoff level of realistic impact energy was estimated and valued as 34 J. In summary, a new survey was recently done on field records of civil aircraft to investigate the probabilistic distribution of impact threat. Based on the data, two probabilities, Po and Pe, were obtained. Considering a conservative assumption of Pa, the cutoff energy level for the realistic impact energy has been determined, which provides potential applicability in damage tolerance certification of future civil aircraft.

Keywords: composite structure, damage tolerance, impact threat, probabilistic

Procedia PDF Downloads 285
206 The Effectiveness of Using Dramatic Conventions as the Teaching Strategy on Self-Efficacy for Children With Autism Spectrum Disorder

Authors: Tso Sheng-Yang, Wang Tien-Ni

Abstract:

Introduction and Purpose: Previous researchers have documented children with ASD (Autism Spectrum Disorders) prefer to escaping internal privates and external privates when they face tough conditions they can’t control or they don’t like.Especially, when children with ASD need to learn challenging tasks, such us Chinese language, their inappropriate behaviors will occur apparently. Recently, researchers apply positive behavior support strategies for children with ASD to enhance their self-efficacy and therefore to reduce their adverse behaviors. Thus, the purpose of this research was to design a series of lecture based on art therapy and to evaluate its effectiveness on the child’s self-efficacy. Method: This research was the single-case design study that recruited a high school boy with ASD. Whole research can be separated into three conditions. First, baseline condition, before the class started and ended, the researcher collected participant’s competencies of self-efficacy every session. In intervention condition, the research used dramatic conventions to teach the child in Chinese language twice a week.When the data was stable across three documents, the period entered to the maintenance condition. In maintenance condition, the researcher only collected the score of self-efficacynot to do other interventions five times a month to represent the effectiveness of maintenance.The time and frequency of data collection among three conditions are identical. Concerning art therapy, the common approach, e.g., music, drama, or painting is to use art medium as independent variable. Due to visual cues of art medium, the ASD can be easily to gain joint attention with teachers. Besides, the ASD have difficulties in understanding abstract objectives Thus, using the drama convention is helpful for the ASD to construct the environment and understand the context of Classical Chinese. By real operation, it can improve the ASD to understand the context and construct prior knowledge. Result: Bassd on the 10-points Likert scale and research, we product following results. (a) In baseline condition, the average score of self-efficacyis 1.12 points, rangedfrom 1 to 2 points, and the level change is 0 point. (b)In intervention condition, the average score of self-efficacy is 7.66 points rangedfrom 7 to 9 points, and the level change is 1 point. (c)In maintenance condition, the average score of self-efficacy is 6.66 points rangedfrom 6 to 7 points, and the level change is 1 point. Concerning immediacy of change, between baseline and intervention conditions, the difference is 5 points. No overlaps were found between these two conditions. Conclusion: According to the result, we find that it is effective that using dramatic conventions a s teaching strategies to teach children with ASD. The result presents the score of self-efficacyimmediately enhances when the dramatic conventions commences. Thus, we suggest the teacher can use this approach and adjust, based on the student’s trait, to teach the ASD on difficult task.

Keywords: dramatic conventions, autism spectrum disorder, slef-efficacy, teaching strategy

Procedia PDF Downloads 62
205 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 47
204 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 119
203 The Impact of Inconclusive Results of Thin Layer Chromatography for Marijuana Analysis and It’s Implication on Forensic Laboratory Backlog

Authors: Ana Flavia Belchior De Andrade

Abstract:

Forensic laboratories all over the world face a great challenge to overcame waiting time and backlog in many different areas. Many aspects contribute to this situation, such as an increase in drug complexity, increment in the number of exams requested and cuts in funding limiting laboratories hiring capacity. Altogether, those facts pose an essential challenge for forensic chemistry laboratories to keep both quality and time of response within an acceptable period. In this paper we will analyze how the backlog affects test results and, in the end, the whole judicial system. In this study data from marijuana samples seized by the Federal District Civil Police in Brazil between the years 2013 and 2017 were tabulated and the results analyzed and discussed. In the last five years, the number of petitioned exams increased from 822 in February 2013 to 1358 in March 2018, representing an increase of 32% in 5 years, a rise of more than 6% per year. Meanwhile, our data shows that the number of performed exams did not grow at the same rate. Product numbers are stationed as using the actual technology scenario and analyses routine the laboratory is running in full capacity. Marijuana detection is the most prevalence exam required, representing almost 70% of all exams. In this study, data from 7,110 (seven thousand one hundred and ten) marijuana samples were analyzed. Regarding waiting time, most of the exams were performed not later than 60 days after receipt (77%). Although some samples waited up to 30 months before being examined (0,65%). When marijuana´s exam is delayed we notice the enlargement of inconclusive results using thin-layer chromatography (TLC). Our data shows that if a marijuana sample is stored for more than 18 months, inconclusive results rise from 2% to 7% and when if storage exceeds 30 months, inconclusive rates increase to 13%. This is probably because Cannabis plants and preparations undergo oxidation under storage resulting in a decrease in the content of Δ9-tetrahydrocannabinol ( Δ9-THC). An inconclusive result triggers other procedures that require at least two more working hours of our analysts (e.g., GC/MS analysis) and the report would be delayed at least one day. Those new procedures increase considerably the running cost of a forensic drug laboratory especially when the backlog is significant as inconclusive results tend to increase with waiting time. Financial aspects are not the only ones to be observed regarding backlog cases; there are also social issues as legal procedures can be delayed and prosecution of serious crimes can be unsuccessful. Delays may slow investigations and endanger public safety by giving criminals more time on the street to re-offend. This situation also implies a considerable cost to society as at some point, if the exam takes a long time to be performed, an inconclusive can turn into a negative result and a criminal can be absolved by flawed expert evidence.

Keywords: backlog, forensic laboratory, quality management, accreditation

Procedia PDF Downloads 97
202 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector

Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini

Abstract:

Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.

Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products

Procedia PDF Downloads 125
201 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 159
200 La0.80Ag0.15MnO3 Magnetic Nanoparticles for Self-Controlled Magnetic Fluid Hyperthermia

Authors: Marian Mihalik, Kornel Csach, Martin Kovalik, Matúš Mihalik, Martina Kubovčíková, Maria Zentková, Martin Vavra, Vladimír Girman, Jaroslav Briančin, Marija Perovic, Marija Boškovic, Magdalena Fitta, Robert Pelka

Abstract:

Current nanomaterials for use in biomedicine are based mainly on iron oxides and on present knowledge on magnetic nanostructures. Manganites can represent another material which can be used optionally. Manganites and their unique electronic properties have been extensively studied in the last decades not only due to fundamental interest but to possible applications of colossal magnetoresistance, magnetocaloric effect, and ferroelectric properties. It was found that the oxygen-reduction reaction on perovskite oxide is intimately connected with metal ion e.g., orbital occupation. The effect of oxygen deviation from the stoichiometric composition on crystal structure was studied very carefully by many authors on LaMnO₃. Depending on oxygen content, the crystal structure changes from orthorhombic one to rhombohedric for oxygen content 3.1. In the case of hole-doped manganites, the change from the orthorhombic crystal structure, which is typical for La1-xCaxMnO3 based manganites, to the rhombohedric crystal structure (La1-xMxMnO₃ where M = K, Ag, and Sr based materials) results in an enormous increase of the Curie temperature. In our paper, we study the effect of oxygen content on crystal structure, thermal, and magnetic properties (including magnetocaloric effect) of La1-xAgxMnO₃nano particle system. The content of oxygen in samples was tuned by heat treatment in different thermal regimes and in various environment (air, oxygen, argon). Water nanosuspensions based on La0.80Ag0.15MnO₃ magnetic particles with the Curie temperature of about 43oC were prepared by two different approaches. First, by using a laboratory circulation mill for milling of powder in the presence of sodium dodecyl sulphate (SDS) and subsequent centrifugation. Second nanosuspension was prepared using an agate bowl, etching in citric acid and HNO3, ultrasound homogeniser, centrifugation, and dextran 40 kDA or 15 kDA as surfactant. Electrostatic stabilisation obtained by the first approach did not offer long term kinetic and aggregation colloidal stability and was unable to compensate for attractive forces between particles under a magnetic field. By the second approach, we prepared suspension oversaturated by dextran 40 kDA for steric stabilisation, with evidence of the presence of superparamagnetic behaviour. Low concentration of nanoparticles and not ideal coverage of nanoparticles impacting the stability of ferrofluids was the disadvantage of this approach. Strong steric stabilisation was observable at alcaic conditions under pH = ~10. Application of dextran 15 kDA leads to relatively stable ferrofluid with pH around physiological conditions, but desegregation of powder by HNO₃ was not effective enough, and the average size of fragments was to large of about 150 nm, and we did not see any signature of superparamagnetic behaviour. The prepared ferrofluids were characterised by scanning and transition microscope method, thermogravimetry, magnetization, and AC susceptibility measurements. Specific Absorption Rate measurements were undertaken on powder as well on ferrofluids in order to estimate the potential application of La₀.₈₀Ag₀.₁₅MnO₃ magnetic particles based ferrofluid for hyperthermia. Our complex study contains an investigation of biocompatibility and potential biohazard of this material.

Keywords: manganites, magnetic nanoparticles, oxygen content, magnetic phase transition, magnetocaloric effect, ferrofluid, hyperthermia

Procedia PDF Downloads 66
199 A Critical Analysis of the Current Concept of Healthy Eating and Its Impact on Food Traditions

Authors: Carolina Gheller Miguens

Abstract:

Feeding is, and should be, pleasurable for living beings so they desire to nourish themselves while preserving the continuity of the species. Social rites usually revolve around the table and are closely linked to the cultural traditions of each region and social group. Since the beginning, food has been closely linked with the products each region provides, and, also, related to the respective seasons of production. With the globalization and facilities of modern life we are able to find an ever increasing variety of products at any time of the year on supermarket shelves. These lifestyle changes end up directly influencing food traditions. With the era of uncontrolled obesity caused by the dazzle with the large and varied supply of low-priced to ultra-processed industrial products now in the past, today we are living a time when people are putting aside the pleasure of eating to exclusively eat food dictated by the media as healthy. Recently the medicalization of food in our society has become so present in daily life that almost without realizing we make food choices conditioned to the studies of the properties of these foods. The fact that people are more attentive to their health is interesting. However, when this care becomes an obsessive disorder, which imposes itself on the pleasure of eating and extinguishes traditional customs, it becomes dangerous for our recognition as citizens belonging to a culture and society. This new way of living generates a rupture with the social environment of origin, possibly exposing old traditions to oblivion after two or three generations. Based on these facts, the presented study analyzes these social transformations that occur in our society that triggered the current medicalization of food. In order to clarify what is actually a healthy diet, this research proposes a critical analysis on the subject aiming to understand nutritional rationality and relate how it acts in the medicalization of food. A wide bibliographic review on the subject was carried out followed by an exploratory research in online (especially social) media, a relevant source in this context due to the perceived influence of such media in contemporary eating habits. Finally, this data was crossed, critically analyzing the current situation of the concept of healthy eating and medicalization of food. Throughout this research, it was noticed that people are increasingly seeking information about the nutritional properties of food, but instead of seeking the benefits of products that traditionally eat in their social environment, they incorporate external elements that often bring benefits similar to the food already consumed. This is because the access to information is directed by the media and exalts the exotic, since this arouses more interest of the population in general. Efforts must be made to clarify that traditional products are also healthy foods, rich in history, memory and tradition and cannot be replaced by a standardized diet little concerned with the construction of taste and pleasure, having a relationship with food as if it were a Medicinal product.

Keywords: food traditions, food transformations, healthy eating, medicalization of food

Procedia PDF Downloads 297
198 Evaluation of Coupled CFD-FEA Simulation for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham

Abstract:

Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.

Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 65
197 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan

Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad

Abstract:

Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.

Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules

Procedia PDF Downloads 68
196 Structured-Ness and Contextual Retrieval Underlie Language Comprehension

Authors: Yao-Ying Lai, Maria Pinango, Ashwini Deo

Abstract:

While grammatical devices are essential to language processing, how comprehension utilizes cognitive mechanisms is less emphasized. This study addresses this issue by probing the complement coercion phenomenon: an entity-denoting complement following verbs like begin and finish receives an eventive interpretation. For example, (1) “The queen began the book” receives an agentive reading like (2) “The queen began [reading/writing/etc.…] the book.” Such sentences engender additional processing cost in real-time comprehension. The traditional account attributes this cost to an operation that coerces the entity-denoting complement to an event, assuming that these verbs require eventive complements. However, in closer examination, examples like “Chapter 1 began the book” undermine this assumption. An alternative, Structured Individual (SI) hypothesis, proposes that the complement following aspectual verbs (AspV; e.g. begin, finish) is conceptualized as a structured individual, construed as an axis along various dimensions (e.g. spatial, eventive, temporal, informational). The composition of an animate subject and an AspV such as (1) engenders an ambiguity between an agentive reading along the eventive dimension like (2), and a constitutive reading along the informational/spatial dimension like (3) “[The story of the queen] began the book,” in which the subject is interpreted as a subpart of the complement denotation. Comprehenders need to resolve the ambiguity by searching contextual information, resulting in additional cost. To evaluate the SI hypothesis, a questionnaire was employed. Method: Target AspV sentences such as “Shakespeare began the volume.” were preceded by one of the following types of context sentence: (A) Agentive-biasing, in which an event was mentioned (…writers often read…), (C) Constitutive-biasing, in which a constitutive meaning was hinted (Larry owns collections of Renaissance literature.), (N) Neutral context, which allowed both interpretations. Thirty-nine native speakers of English were asked to (i) rate each context-target sentence pair from a 1~5 scale (5=fully understandable), and (ii) choose possible interpretations for the target sentence given the context. The SI hypothesis predicts that comprehension is harder for the Neutral condition, as compared to the biasing conditions because no contextual information is provided to resolve an ambiguity. Also, comprehenders should obtain the specific interpretation corresponding to the context type. Results: (A) Agentive-biasing and (C) Constitutive-biasing were rated higher than (N) Neutral conditions (p< .001), while all conditions were within the acceptable range (> 3.5 on the 1~5 scale). This suggests that when lacking relevant contextual information, semantic ambiguity decreases comprehensibility. The interpretation task shows that the participants selected the biased agentive/constitutive reading for condition (A) and (C) respectively. For the Neutral condition, the agentive and constitutive readings were chosen equally often. Conclusion: These findings support the SI hypothesis: the meaning of AspV sentences is conceptualized as a parthood relation involving structured individuals. We argue that semantic representation makes reference to spatial structured-ness (abstracted axis). To obtain an appropriate interpretation, comprehenders utilize contextual information to enrich the conceptual representation of the sentence in question. This study connects semantic structure to human’s conceptual structure, and provides a processing model that incorporates contextual retrieval.

Keywords: ambiguity resolution, contextual retrieval, spatial structured-ness, structured individual

Procedia PDF Downloads 303