Search results for: cloud service models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10594

Search results for: cloud service models

4834 Study the Impact of Welding Poles Type on the Tensile Strength Steel of Low Alloys and High Resistance

Authors: Abdulmagid A. Khattabi, Abdul Fatah M. Emhamed

Abstract:

The steel alloy Introduced after becoming carbon-steel does not meet the requirements of engineering industry; and it cannot be obtained tensile strength from carbon-steel higher than (700MPa), the low alloy steel enters in a lot of heavy engineering equipment parts, molds, agricultural equipment and other industry. In addition, that may be exposed to in-service failure, which may require returned to work, to do the repairs or maintenance by one of the welding methods available. The ability of steel weld determined through palpation of the cracks, which can reduce by many ways. These ways are often expensive and difficult to implement, perhaps the control to choose the type of electrode welding user is one of the easiest and least expensive applications. It has been welding the steel low alloys high resistance by manual metal arc (MMA), and by using a set of welding electrodes which varying in chemical composition and in their prices as well and test their effect on tensile strength. Results showed that using the poles of welding, which have a high proportion of iron powder and low hydrogen. The Tensile resistance is (484MPa) and the weld joint efficiency was (56.9%), but when (OK 47.04) electrode was used the tensile strength increased to (720MPa) and the weld joint efficiency to (84.7%). Using the cheapest electrode (OK 45.00) the weld joint efficiency did not exceed (24.2%), but when using the most expensive electrode (OK 91.28) the weld joint efficiency is (38.1%).

Keywords: steel low alloys high resistance, electrodes welding, tensile test

Procedia PDF Downloads 322
4833 Promoting Psychosocial Intervention in Social Work to Manage Intersectional Stigma among Sexual Minorities during COVID-19 Pandemic in Uganda: Implications for Social Work Practice

Authors: Simon Mwima, Kasule Solomon Kibirige, Evans Jennifer Mann, Bosco Mukuba, Edson Chipalo, Agnes Nzomene, Eusebius Small, Moses Okumu

Abstract:

Introduction: Social workers must create, implement, and evaluate client-centered psychosocial interventions (CCPI) to reduce the impact of intersectional stigma on HIV service utilization among sexual minorities. We contribute to the scarcity of evidence about sexual minorities in Uganda by using social support theory to explore clients' perceptions that shape CCPI. Based on Focused Group Discussion (FGD) with 31 adolescents recruited from Kampala's HIV clinics in 2021, our findings reveal the positive influence of instrumental, informational, esteem, emotional, and social network support as intersectional stigma reduction interventions. Men who have sex with men, lesbians, and bisexual women used such strategies to navigate a heavily criminalized and stigmatizing setting during the COVID-19 pandemic in Uganda. Conclusion: This study provides evidence for the social work profession to develop and implement psychosocial interventions that reduce HIV stigma and discrimination among MSM, lesbians, and bisexual young people living with HIV in Uganda.

Keywords: pyschosocial interventions, social work, intersectional stigma, HIV/AIDS, adolescents, sexual minorities, Uganda

Procedia PDF Downloads 115
4832 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 135
4831 Team Cognitive Heterogeneity and Strategic Decision-Making Flexibility: The Role of Transactive Memory System and Task Complexity

Authors: Rui Xing, Baolin Ye, Nan Zhou, Guohong Wang

Abstract:

Drawing upon a perspective of cognitive interaction, this study explores the relationship between team cognitive heterogeneity and team strategic decision-making flexibility, treating the transactive memory system as a mediator and task complexity as a moderator. The hypotheses were tested in linear regression models by using data gathered from 67 strategic decision-making teams in the new-energy vehicle industry. It is found that team cognitive heterogeneity has a positive impact on strategic decision-making flexibility through the mediation of specialization and coordination of the transactive memory system, which is positively moderated by task complexity.

Keywords: strategic decision-making flexibility, team cognitive heterogeneity, transactive memory system, task complexity

Procedia PDF Downloads 83
4830 Targeted Effects of Subsidies on Prices of Selected Commodities in Iran Market

Authors: Sayedramin Hashemianesfehani, Seyed Hossein Hosseinilargani

Abstract:

In this study, we attempt to realize that to what extent the increase in selected commodities in Iran Market is originated from the implementation of the targeted subsidies law. Hence, an econometric model based on existing theories of increasing and transferring prices in order to transferring inflation is developed. In other words, world price index and virtual variables defined for targeted subsidies has significant and positive impact on the producer price index. The obtained results indicated that the targeted subsidies act in Iran has influential long and short-term impacts on producer price indexes. Finally, world prices of dairy products and dairy price with respect to major parameters is carried out to obtain some managerial ‎results.

Keywords: econometric models, targeted subsidies, consumer price index (CPI), producer price index (PPI)

Procedia PDF Downloads 364
4829 Optimum Locations for Intercity Bus Terminals with the AHP Approach: Case Study of the City of Esfahan

Authors: Mehrdad Arabi, Ehsan Beheshtitabar, Bahador Ghadirifaraz, Behrooz Forjanizadeh

Abstract:

Interaction between human, location and activity defines space. In the framework of these relations, space is a container for current specifications in relations of the 3 mentioned elements. The change of land utility considered with average performance range, urban regulations, society requirements etc. will provide welfare and comfort for citizens. From an engineering view it is fundamental that choosing a proper location for a specific civil activity requires evaluation of locations from different perspectives. The debate of desirable establishment of municipal service elements in urban regions is one of the most important issues related to urban planning. In this paper, the research type is applicable based on goal, and is descriptive and analytical based on nature. Initially existing terminals in Esfahan are surveyed and then new locations are presented based on evaluated criteria. In order to evaluate terminals based on the considered factors, an AHP model is used at first to estimate weight of different factors and then existing and suggested locations are evaluated using Arc GIS software and AHP model results. The results show that existing bus terminals are located in fairly proper locations. Further results of this study suggest new locations to establish terminals based on urban criteria.

Keywords: Arc GIS, Esfahan city, optimum locations, terminals

Procedia PDF Downloads 292
4828 Effect of Process Parameters on Mechanical Properties of Friction Stir Welded Aluminium Alloy Joints Using Factorial Design

Authors: Gurjinder Singh, Ankur Gill, Amardeep Singh Kang

Abstract:

In the present work an effort has been made to study the influence of the welding parameters on tensile strength of friction stir welding of aluminum. Three process parameters tool rotation speed, welding speed, and shoulder diameter were selected for the study. Two level factorial design of eight runs was selected for conducting the experiments. The mathematical model was developed from the data obtained. The significance of coefficients and adequacy of developed models were tested by ‘t’ test and ‘F’ test respectively. The effects of process parameters on mechanical properties have been represented in the form of graphs for better understanding.

Keywords: friction stir welding, aluminium alloy, mathematical model, welding speed

Procedia PDF Downloads 444
4827 Food Service Waste Management In Nigeria: Emerging Opportunities And Policy Initiatives For Mitigation

Authors: Victor Oyewumi Ogunbiyi

Abstract:

Food waste is recognised as one of the major global challenges in achieving a sustainable future. Currently, very little is known about the multi-stakeholder approach to food waste management downstream of the supply chain, particularly in the foodservice sector. In order to better understand and explain the complex issues of food waste, a qualitative study was conducted on the generation of food waste in food services (restaurants, catering, canteens, and local food vendors) and policy initiatives to mitigate it from the perspective of the stakeholders. A semi-structured interview approach and observation were used to collect data from some 32 selected stakeholders in Garki, Abuja, Nigeria. Thematic analysis was employed to analyse the data from the qualitative instrument adopted in this study. Results revealed that the attitude of stakeholders, poor environmental hygiene, poor food cooking skills and handling, and lack of communication are the major causes of food waste. This study identified seven policy initiatives: regulations, information and education campaigns, economic instruments, mobile applications, stakeholders’ collaboration, firm internal action, and training. Finally, we link policy initiatives to food waste mitigation to provide a response to the damaging shock of food waste.

Keywords: food waste, foodservices, emerging opportunities, policy initiatives, food waste prevention, multistakeholder. garki district-abuja

Procedia PDF Downloads 85
4826 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination

Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq

Abstract:

Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.

Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing

Procedia PDF Downloads 97
4825 Mechanical Behaviour of High Strength Steel Thin-Walled Profiles for Automated Rack Supported Warehouses

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore, José Humberto Matias de Paula Filho, Patrick Pol

Abstract:

In the framework of the evaluation of the applicability of high strength steel to produce thin-walled elements to be used in Automated Rack Supported Warehouses, an experimental campaign is carried outto evaluate the structural performance of typical profile shapes adopted for such purposes and made of high strength steel. Numerical models are developed to fit the observed failure modes, stresses, and deformation patterns, and proper directions are proposed to simplify the numerical simulations to be used in further applications and to evaluate the mechanical behavior and performance of profiles.

Keywords: Steel racks, Automated Rack Supported Warehouse, thin walled cold-formed elements, high strength steel.

Procedia PDF Downloads 184
4824 An Improvement Study for Mattress Manufacturing Line with a Simulation Model

Authors: Murat Sarı, Emin Gundogar, Mumtaz Ipek

Abstract:

Nowadays, in a furniture sector, competition of market share (portion) and production variety and changeability enforce the firm to reengineer operations on manufacturing line to increase the productivity. In this study, spring mattress manufacturing line of the furniture manufacturing firm is analyzed analytically. It’s intended to search and find the bottlenecks of production to balance the semi-finished material flow. There are four base points required to investigate in bottleneck elimination process. These are bottlenecks of Method, Material, Machine and Man (work force) resources, respectively. Mentioned bottlenecks are investigated and varied scenarios are created for recruitment of manufacturing system. Probable near optimal alternatives are determined by system models built in Arena simulation software.

Keywords: bottleneck search, buffer stock, furniture sector, simulation

Procedia PDF Downloads 359
4823 Range Suitability Model for Livestock Grazing in Taleghan Rangelands

Authors: Hossein Arzani, Masoud Jafari Shalamzari, Z. Arzani

Abstract:

This paper follows FAO model of suitability analysis. Influential factors affecting extensive grazing were determined and converted into a model. Taleghan rangelands were examined for common types of grazing animals as an example. Advantages and limitations were elicited. All range ecosystems’ components affect range suitability but due to the time and money restrictions, the most important and feasible elements were investigated. From which three sub-models including water accessibility, forage production and erosion sensitivity were considered. Suitable areas in four levels of suitability were calculated using GIS. This suitability modeling approach was adopted due to its simplicity and the minimal time that is required for transforming and analyzing the data sets. Managers could be benefited from the model to devise the measures more wisely to cope with the limitations and enhance the rangelands health and condition.

Keywords: range suitability, land-use, extensive grazing, modeling, land evaluation

Procedia PDF Downloads 345
4822 Clean Technology: Hype or Need to Have

Authors: Dirk V. H. K. Franco

Abstract:

For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.

Keywords: clean technologies, catastrophic, climate, possible solutions

Procedia PDF Downloads 502
4821 Hand Gestures Based Emotion Identification Using Flex Sensors

Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan

Abstract:

In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.

Keywords: emotion identification, emotion models, gesture recognition, user perception

Procedia PDF Downloads 289
4820 Direct Transient Stability Assessment of Stressed Power Systems

Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara

Abstract:

This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.

Keywords: power system, transient stability, critical trajectory method, energy function method

Procedia PDF Downloads 388
4819 Survival and Growth Factors of Korean Start-Ups: Focusing on the Industrial Characteristics

Authors: Hanei Son

Abstract:

Since the beginning of the 2010s, ‘start-up boom’ has continued with the creation of many new enterprises in Korea. Such tendency was led by various changes in society such as emergence and diffusion of smartphones. Especially, the Korean government has been interested in start-ups and entrepreneurship as an alternative engine for Korea's economic growth. With strong support from the government, as a result, many new enterprises have been established for recent years and the Korean government seems to have achieved its goal: expanding the basis of start-ups. However, it is unclear which factors affect the survival and growth of these new enterprises after their creation. Therefore, this study aims to identify which start-ups from early 2010s survived and which factors influenced their survival and growth. The study will strongly focus on which industries the new enterprises were in, as environmental elements are expected to be critical factors for business of start-ups in Korean context. For this purpose, 105 companies which were introduced as high potential start-ups from 2010 to 2012 were considered in the analysis. According to their current status, dead or alive, the start-ups were categorized by their industries and service area. Through this analysis, it was observed that many start-ups that are still in business are in internet or mobile platform businesses and four major sectors. In each group, a representative case has been studied to reveal its survival and growth factors. The results point to the importance of industrial characteristics for the survival and success of Korean startups and offer political implications in which sector and business more potentials for start-ups in Korea lie in.

Keywords: government support for start-ups, industrial characteristics, Korean start-ups, survival of start-ups

Procedia PDF Downloads 188
4818 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 513
4817 Use of Life Cycle Data for State-Oriented Maintenance

Authors: Maximilian Winkens, Matthias Goerke

Abstract:

The state-oriented maintenance enables the preventive intervention before the failure of a component and guarantees avoidance of expensive breakdowns. Because the timing of the maintenance is defined by the component’s state, the remaining service life can be exhausted to the limit. The basic requirement for the state-oriented maintenance is the ability to define the component’s state. New potential for this is offered by gentelligent components. They are developed at the Corporative Research Centre 653 of the German Research Foundation (DFG). Because of their sensory ability they enable the registration of stresses during the component’s use. The data is gathered and evaluated. The methodology developed determines the current state of the gentelligent component based on the gathered data. This article presents this methodology as well as current research. The main focus of the current scientific work is to improve the quality of the state determination based on the life-cycle data analysis. The methodology developed until now evaluates the data of the usage phase and based on it predicts the timing of the gentelligent component’s failure. The real failure timing though, deviate from the predicted one because the effects from the production phase aren’t considered. The goal of the current research is to develop a methodology for state determination which considers both production and usage data.

Keywords: state-oriented maintenance, life-cycle data, gentelligent component, preventive intervention

Procedia PDF Downloads 500
4816 Northern Nigeria Vaccine Direct Delivery System

Authors: Evelyn Castle, Adam Thompson

Abstract:

Background: In 2013, the Kano State Primary Health Care Management Board redesigned its Routine immunization supply chain from diffused pull to direct delivery push. It addressed issues around stockouts and reduced time spent by health facility staff collecting, and reporting on vaccine usage. The health care board sought the help of a 3PL for twice-monthly deliveries from its cold store to 484 facilities across 44 local governments. eHA’s Health Delivery Systems group formed a 3PL to serve 326 of these new facilities in partnership with the State. We focused on designing and implementing a technology system throughout. Basic methodologies: GIS Mapping: - Planning the delivery of vaccines to hundreds of health facilities requires detailed route planning for delivery vehicles. Mapping the road networks across Kano and Bauchi with a custom routing tool provided information for the optimization of deliveries. Reducing the number of kilometers driven each round by 20%, - reducing cost and delivery time. Direct Delivery Information System: - Vaccine Direct Deliveries are facilitated through pre-round planning (driven by health facility database, extensive GIS, and inventory workflow rules), manager and driver control panel customizing delivery routines and reporting, progress dashboard, schedules/routes, packing lists, delivery reports, and driver data collection applications. Move: Last Mile Logistics Management System: - MOVE has improved vaccine supply information management to be timely, accurate and actionable. Provides stock management workflow support, alerts management for cold chain exceptions/stock outs, and on-device analytics for health and supply chain staff. Software was built to be offline-first with user-validated interface and experience. Deployed to hundreds of vaccine storage site the improved information tools helps facilitate the process of system redesign and change management. Findings: - Stock-outs reduced from 90% to 33% - Redesigned current health systems and managing vaccine supply for 68% of Kano’s wards. - Near real time reporting and data availability to track stock. - Paperwork burdens of health staff have been dramatically reduced. - Medicine available when the community needs it. - Consistent vaccination dates for children under one to prevent polio, yellow fever, tetanus. - Higher immunization rates = Lower infection rates. - Hundreds of millions of Naira worth of vaccines successfully transported. - Fortnightly service to 326 facilities in 326 wards across 30 Local Government areas. - 6,031 cumulative deliveries. - Over 3.44 million doses transported. - Minimum travel distance covered in a round of delivery is 2000 kms & maximum of 6297 kms. - 153,409 kms travelled by 6 drivers. - 500 facilities in 326 wards. - Data captured and synchronized for the first time. - Data driven decision making now possible. Conclusion: eHA’s Vaccine Direct delivery has met challenges in Kano and Bauchi State and provided a reliable delivery service of vaccinations that ensure t health facilities can run vaccination clinics for children under one. eHA uses innovative technology that delivers vaccines from Northern Nigerian zonal stores straight to healthcare facilities. Helped healthcare workers spend less time managing supplies and more time delivering care, and will be rolled out nationally across Nigeria.

Keywords: direct delivery information system, health delivery system, GIS mapping, Northern Nigeria, vaccines

Procedia PDF Downloads 377
4815 Evolution of Classroom Languaging over the Years: Prospects for Teaching Mathematics Differently

Authors: Jabulani Sibanda, Clemence Chikiwa

Abstract:

This paper traces diverse language practices representative of equally diverse conceptions of language. To be dynamic with languaging practices, one needs to appreciate nuanced languaging practices, their challenges, prospects, and opportunities. The paper presents what we envision as three major conceptions of language that give impetus to diverse language practices. It examines theoretical models of the bilingual mental lexicon and how they inform language practices. The paper explores classroom languaging practices that have been promulgated and experimented with. The paper advocates the deployment of multisensory semiotic systems to complement linguistic classroom communication and the acknowledgement of learners’ linguistic and semiotic resources as valid in the learning enterprise. It recommends the enactment of specific clauses on language in education policies and curriculum documents that empower classroom interactants to exercise discretion in languaging practices.

Keywords: languaging, monolingual, multilingual, semiotic and linguistic repertoire

Procedia PDF Downloads 79
4814 Effect of Information and Communication Intervention on Stable Economic Growth in Ethiopia

Authors: Medhin Haftom Hailu

Abstract:

The advancement of information technology has significantly impacted Ethiopia's economy, driving innovation, productivity, job creation, and global connectivity. This research examined the impact of contemporary information and communication technologies on Ethiopian economic progress. The study examined eight variables, including mobile, internet, and fixed-line penetration rates, and five macroeconomic control variables. The results showed a positive and strong effect of ICT on economic growth in Ethiopia, with 1% increase in mobile, internet, and fixed line services penetration indexes resulting in an 8.03, 10.05, and 30.06% increase in real GDP. The Granger causality test showed that all ICT variables Granger caused economic growth, but economic growth Granger caused mobile penetration rate only. The study suggests that coordinated ICT infrastructure development, increased telecom service accessibility, and increased competition in the telecom market are crucial for Ethiopia's economic growth. Ethiopia is attempting to establish a digital economy through massive investment in ensuring ICT quality and accessibility. Thus, the research could enhance in understanding of the economic impact of ICT expansion for successful ICT policy interventions for future research.

Keywords: economic growth, cointegration and error correction, ICT expansion, granger causality, penetration

Procedia PDF Downloads 85
4813 Flexural Behaviour of Normal Strength and High Strength Fibre Concrete Beams

Authors: Mostefa Hamrat, Bensaid Boulekbache, Mohamed Chemrouk, Sofiane Amziane

Abstract:

The paper presents the results of an experimental work on the flexural behaviour of two types of concrete in terms of the progressive cracking process until failure and the crack opening, and beam deflection, using Digital Image Correlation (DIC) technique. At serviceability limit states, comparisons of the building code equations and the equations developed by some researchers for the short-term deflections and crack widths have been made using the reinforced concrete test beams. The experimental results show that the addition of steel fibers increases the first cracking load and amplify the number of cracks that conducts to a remarkable decreasing in the crack width with an increasing in ductility. This study also shows that there is a good agreement between the deflection values for RC beams predicted by the major codes (Eurocode2, ACI 318, and the CAN/CSA-S806) and the experimental results for beams with steel fibers at service load. The most important added benefit of the DIC technique is that it allows detecting the first crack with a high precision easily measures the crack opening and follows the progressive cracking process until failure of reinforced concrete members.

Keywords: beams, digital image correlation (DIC), deflection, crack width, serviceability, codes provisions

Procedia PDF Downloads 338
4812 Pension Policy and Police Retirement: An Exploratory Study Applied to Special Policy Enforcement in Taiwan

Authors: Yung-Ching Chou, Albert Shangpao Yeh, Luke H. C. Hsiao

Abstract:

Police used to be an honor job. However, the police are no longer concerned about the mission and public safety instead of the issue of retirement. The main reason is the amendment of 'Public Servants Retirement Act' in Taiwan was effective since January 2011. The purposes of change were to solve the problem of the financial crisis which caused by the Hugh deficit of the civil servants pension fund. The policy of the civil servants pension reform was not only seriously impact the motives of policy, but also negatively impact the workforce of police. This research conducted a secondary data of Baoanjingcha Fifth Police Corps during the period between 2011 and 2015. Secondly, the research interviewed six representatives from the retired police in order to explore the retirement motives. In short, there were several major findings and suggestions in the following: 1. The police won't choice to retire which the nature of task is simple. 2. The ranking level of positions positively correlated with the retired age of police. 3. The police officers who are categorized as 'hazardous work' first class personnel should decrease the standard of the retirement age and allow the option of a monthly pension. 4. The information of the retirees' rights, as well as protection, are correlated with the service as well professional of personnel officer. More findings, as well as suggestions, will be elaborated on the content of this paper.

Keywords: human resource management, pension policy change, police retirement rush, public servants retirement act

Procedia PDF Downloads 326
4811 Investigating the Capacity of Cracking Torsion of Rectangular and Cylindrical RC Beams with Spiral and Normal Stirrups

Authors: Hadi Barghlame, M. A. Lotfollahi-Yaghin, Mehdi Mohammad Rezaei, Saeed Eskanderzadeh

Abstract:

In this paper, the capacity of cracking torsion on rectangular and cylindrical beams with spiral and normal stirrups in similar properties are investigated. Also, in the beams with spiral stirrups, stirrups are not wrapping and spiral stirrups similar to normal stirrups in ACI code. Therefore, models of above-mentioned beams have been numerically analyzed under various loads using ANSYS software. In this research, the behavior of rectangular reinforced concrete beams is compared with the cylindrical reinforced concrete beams. The capacity of cracking torsion of rectangular and cylindrical RC beams with spiral and normal stirrups are same. In the other words, the behavior of rectangular RC beams is similar to cylindrical beams.

Keywords: cracking torsion, RC beams, spiral stirrups, normal stirrups

Procedia PDF Downloads 295
4810 Selecting the Best Software Product Using Analytic Hierarchy Process and Fuzzy-Analytic Hierarchy Process Modules

Authors: Anas Hourani, Batool Ahmad

Abstract:

Software applications play an important role inside any institute. They are employed to manage all processes and store entities-related data in the computer. Therefore, choosing the right software product that meets institute requirements is not an easy decision in view of considering multiple criteria, different points of views, and many standards. As a case study, Mutah University, located in Jordan, is in essential need of customized software, and several companies presented their software products which are very similar in quality. In this regard, an analytic hierarchy process (AHP) and a fuzzy analytic hierarchy process (Fuzzy-AHP) models are proposed in this research to identify the most suitable and best-fit software product that meets the institute requirements. The results indicate that both modules are able to help the decision-makers to make a decision, especially in complex decision problems.

Keywords: analytic hierarchy process, decision modeling, fuzzy analytic hierarchy process, software product

Procedia PDF Downloads 397
4809 Performance Prediction Methodology of Slow Aging Assets

Authors: M. Ben Slimene, M.-S. Ouali

Abstract:

Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.

Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation

Procedia PDF Downloads 115
4808 Analyzing the Evolution and Maturation of Bitcoin Improvement Proposals

Authors: Rodrigo Costa, Thomas Mazzuchi, Shahram Sarkani

Abstract:

This study analyzes the evolution of Bitcoin Improvement Proposals (BIPs), the self-governing mechanism that enables updates to the Bitcoin protocol. By modeling BIP submission frequencies with a Negative Binomial distribution and detecting change points with the Pelt Rupture model, we identify three distinct intervals of proposal activity, suggesting shifts in development priorities over time. Long-term growth patterns, captured by Gompertz and Weibull models, indicate an S-shaped trend in cumulative BIP counts, pointing toward a maturation phase in Bitcoin’s protocol. Our findings suggest that Bitcoin may be entering a stable stage, with fewer fundamental changes and more incremental enhancements. This trend highlights the need for further research into BIP content and more studies into its dynamics to better understand decentralized protocol governance and maturation.

Keywords: bitcoin improvement proposals, innovation management, change point detection, systems modeling, simulation

Procedia PDF Downloads 22
4807 An Empirical Study of Critical Success Factors for the Adoption of M-Government Services in Tanzania

Authors: Fredrick Ishengoma, Leonard Mselle, Hector Mongi

Abstract:

The growing number of mobile phone subscribers in Tanzania offers the government a new channel for the delivery of information and government services to citizens, thus mobile Government (m-Government). In Tanzania, m-Government services usage is in the early stages, and factors that influence its adoption are yet to be known. This study seeks to identify and understand the critical success factors (CSFs) that influence citizens’ behavioural intention (BI) to adopt m-Government services in Tanzania. The study employed the mobile services acceptance model (MSAM) and extends it with external factors relevant in the Tanzanian context. A survey questionnaire was used to collect primary data from users of m-Government services in Dar es salaam and Dodoma cities, and 253 responses were received. Data were analyzed by IBM-SPSS AMOS 23.0 software using structural equation modeling (SEM). The findings of the study indicate that perceived usefulness, trust, perceived mobility, power distance, quality of service, awareness, perceived cost, personal initiatives, and characteristics significantly influence the BI to adopt m-Government services. However, perceived ease of use was found statistically insignificant to predict BI. Furthermore, the interplay between CSFs, discussion on theoretical and practical implications that follow from the results are presented.

Keywords: adoption, critical success factors, structural equation modeling, m-Government, MSAM, Tanzania

Procedia PDF Downloads 152
4806 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking

Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser

Abstract:

The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.

Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC

Procedia PDF Downloads 431
4805 Ageing Population and Generational Turn-Over in the Italian Labour Market: Towards a Sustainable Solidarity

Authors: Marianna Russo

Abstract:

Ageing population and youth unemployment are the major challenges that Western Countries – and Italy in particular – are facing in recent years. These phenomena have a significant impact not only on the labour market and the welfare system, but also on the organisational models of work. Therefore, in Italy, in the past few years, there have been some attempts to regulate the management of generational turn-over: intergenerational pacts, early retirement incentives, solidarity contracts, etc. In particular, this paper aims to focus on the expansive solidarity contracts, that were introduced in the Italian legal system for the first time in 1984. Indeed, they have been little used during the thirty years of their lives, so the Legislative Decree no. 148/2015, implementing the so-called Jobs Act, has given them another opportunity. The paper tries to analyse the rules and the empirical data, looking for a sustainable model of generational turn-over management.

Keywords: ageing population, generational turn-over, Italian jobs' act, solidarity contracts

Procedia PDF Downloads 258