Search results for: speed hump detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6103

Search results for: speed hump detection

433 Ribotaxa: Combined Approaches for Taxonomic Resolution Down to the Species Level from Metagenomics Data Revealing Novelties

Authors: Oshma Chakoory, Sophie Comtet-Marre, Pierre Peyret

Abstract:

Metagenomic classifiers are widely used for the taxonomic profiling of metagenomic data and estimation of taxa relative abundance. Small subunit rRNA genes are nowadays a gold standard for the phylogenetic resolution of complex microbial communities, although the power of this marker comes down to its use as full-length. We benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then built a pipeline called RiboTaxa to generate a highly sensitive and specific metataxonomic approach. Using metagenomics data, RiboTaxa gave the best results compared to other tools (Kraken2, Centrifuge (1), METAXA2 (2), PhyloFlash (3)) with precise taxonomic identification and relative abundance description, giving no false positive detection. Using real datasets from various environments (ocean, soil, human gut) and from different approaches (metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not seen by current bioinformatics analysis opening new biological perspectives in human and environmental health. In a study focused on corals’ health involving 20 metagenomic samples (4), an affiliation of prokaryotes was limited to the family level with Endozoicomonadaceae characterising healthy octocoral tissue. RiboTaxa highlighted 2 species of uncultured Endozoicomonas which were dominant in the healthy tissue. Both species belonged to a genus not yet described, opening new research perspectives on corals’ health. Applied to metagenomics data from a study on human gut and extreme longevity (5), RiboTaxa detected the presence of an uncultured archaeon in semi-supercentenarians (aged 105 to 109 years) highlighting an archaeal genus, not yet described, and 3 uncultured species belonging to the Enorma genus that could be species of interest participating in the longevity process. RiboTaxa is user-friendly, rapid, allowing microbiota structure description from any environment and the results can be easily interpreted. This software is freely available at https://github.com/oschakoory/RiboTaxa under the GNU Affero General Public License 3.0.

Keywords: metagenomics profiling, microbial diversity, SSU rRNA genes, full-length phylogenetic marker

Procedia PDF Downloads 107
432 A Rare Case Report of Non-Langerhans Cell Cutaneous Histiocytosis in a 6-Month Old Infant

Authors: Apoorva D. R.

Abstract:

INTRODUCTION: Hemophagocytic lymphohistiocytosis (HLH) is a severe, potentially fatal syndrome in which there is excessive immune activation. The disease is seen in children and people of all ages, but infants from birth to 18 months are most frequently affected. HLH is a sporadic or familial condition that can be triggered by various events that disturb immunological homeostasis. In cases with a genetic predisposition and sporadic occurrences, infection is a frequent trigger. Because of the rarity of this disease, the diverse clinical presentation, and the lack of specificity in the clinical and laboratory results, prompt treatment is essential, but the biggest obstacle to a favorable outcome is frequently a delay in identification. CASE REPORT: Here we report a case of a 6-month-old male infant who presented to the dermatology outpatient with disseminated skin lesions present over the face, abdomen, scalp, and bilateral upper and lower limbs for the past month. The lesions were insidious in onset, initially started over the abdomen, and gradually progressed to involve other body parts. The patient also had a history of fever which was moderate in grade, on and off in nature for 1 month. There were no significant complaints in the past, family, or drug history. There was no history of feeding difficulties in the baby. Parents gave a history of developmental milestones appropriate for age. Examination findings include multiple well-defined monomorphic erythematous papules with a central crater present over bilateral cheeks. Few lichenoid shiny papules present over bilateral arms, legs, and abdomen. Ultrasound of the abdomen and pelvis showed mild degree hepatosplenomegaly, intraabdominal lymphadenopathy, and bilateral inguinal lymphadenopathy. Routine blood investigations showed anemia and lymphopenia. Multiple X-rays of the skull, chest, and bilateral upper and lower limbs were done and were normal. Histopathology features were suggestive of non-Langerhans cell cutaneous histiocytosis. CONCLUSION: HLH is a fatal and rare disease. A high level of suspicion and an interdisciplinary approach among experienced clinicians, pathologists, and microbiologists to define the diagnosis and causative disease are key to diagnosing this case. Early detection and treatment can reduce patient morbidity and mortality.

Keywords: histiocytosis, non langerhans cell, case report, fatal, rare

Procedia PDF Downloads 81
431 Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L

Authors: Yunhan Zhang, Xiaopeng Li, Zhongxiao Peng

Abstract:

Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life.

Keywords: degradation process, additive manufacturing, stainless steel, surface features

Procedia PDF Downloads 61
430 Analysis of Thermal Comfort in Educational Buildings Using Computer Simulation: A Case Study in Federal University of Parana, Brazil

Authors: Ana Julia C. Kfouri

Abstract:

A prerequisite of any building design is to provide security to the users, taking the climate and its physical and physical-geometrical variables into account. It is also important to highlight the relevance of the right material elements, which arise between the person and the agent, and must provide improved thermal comfort conditions and low environmental impact. Furthermore, technology is constantly advancing, as well as computational simulations for projects, and they should be used to develop sustainable building and to provide higher quality of life for its users. In relation to comfort, the more satisfied the building users are, the better their intellectual performance will be. Based on that, the study of thermal comfort in educational buildings is of relative relevance, since the thermal characteristics in these environments are of vital importance to all users. Moreover, educational buildings are large constructions and when they are poorly planned and executed they have negative impacts to the surrounding environment, as well as to the user satisfaction, throughout its whole life cycle. In this line of thought, to evaluate university classroom conditions, it was accomplished a detailed case study on the thermal comfort situation at Federal University of Parana (UFPR). The main goal of the study is to perform a thermal analysis in three classrooms at UFPR, in order to address the subjective and physical variables that influence thermal comfort inside the classroom. For the assessment of the subjective components, a questionnaire was applied in order to evaluate the reference for the local thermal conditions. Regarding the physical variables, it was carried out on-site measurements, which consist of performing measurements of air temperature and air humidity, both inside and outside the building, as well as meteorological variables, such as wind speed and direction, solar radiation and rainfall, collected from a weather station. Then, a computer simulation based on results from the EnergyPlus software to reproduce air temperature and air humidity values of the three classrooms studied was conducted. The EnergyPlus outputs were analyzed and compared with the on-site measurement results to be possible to come out with a conclusion related to the local thermal conditions. The methodological approach included in the study allowed a distinct perspective in an educational building to better understand the classroom thermal performance, as well as the reason of such behavior. Finally, the study induces a reflection about the importance of thermal comfort for educational buildings and propose thermal alternatives for future projects, as well as a discussion about the significant impact of using computer simulation on engineering solutions, in order to improve the thermal performance of UFPR’s buildings.

Keywords: computer simulation, educational buildings, EnergyPlus, humidity, temperature, thermal comfort

Procedia PDF Downloads 377
429 A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages

Authors: Olivia A. Wilson, Hannah E. Power, Murray Kendall

Abstract:

Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.

Keywords: emergency management, sydney, tide-tsunami interaction, tsunami impact

Procedia PDF Downloads 231
428 Exploring Attitudes and Experiences of the Cervical Screening Programme in Brighton, United Kingdom

Authors: Kirsty Biggs, Peter Larsen-Disney

Abstract:

Background: The UK cervical screening programme significantly reduces cancer mortality through the early detection of abnormal cells. Despite this, over a quarter of eligible women choose not to attend their appointment. Objective: To qualitatively explore patients’ barriers to attending cervical smear appointments and identify key trends of cervical screening behaviour, knowledge, and attitudes in primary and secondary care. Methods: A cross-sectional study was conducted to evaluate smear services in Brighton and Hove using questionnaires in general practice and colposcopy. 226 patients participated in the voluntary questionnaire between 10/11/2017 and 02/02/2018. 118 patients were recruited from general practice surgeries and 108 from the colposcopy department. Women were asked about their smear knowledge, self-perceived risks factors, prior experiences and reasons for non-attendance. Demographic data was also collected. Results: Approximately a third of women did not engage in smear testing services. This was consistent across primary and secondary care groups. Over 90% were aware of the role of the screening process in relation to cervical cancer; however, over two thirds believed the smear was also a tool to screen for other pathologies. The most commonly cited reasons for non-attendance were negative emotions or previous experiences. Inconvenient appointment times were also commonly described. In a comparison of attenders versus non-attenders previous negative experiences (p < 0.01) and number of identified risk factors (p = 0.02) were statistically significant with non-attenders describing more prior negative smears and identifying more risk factors. Smear knowledge, risk perception and perceived importance of screening were not significant. Negative previous experiences were described in relation to poor bedside manner, pain, embarrassment and staff competency. Conclusions: In contrary to the literature, our white Caucasian cohort experienced significant barriers to accessing smear services. Women’s prior negative experiences are overriding their perceived importance to attend the screening programme; therefore, efforts need to focus on improving clinical experiences through auditing tools, training and providing a supportive appointment setting. Positive changes can also be expected by improving appointment availabilities with extended hours and self-booking systems.

Keywords: barriers, cervical, Papanicolaou, screening, smear

Procedia PDF Downloads 133
427 In Vivo Evaluation of Exposure to Electromagnetic Fields at 27 GHz (5G) of Danio Rerio: A Preliminary Study

Authors: Elena Maria Scalisi, Roberta Pecoraro, Martina Contino, Sara Ignoto, Carmelo Iaria, Santi Concetto Pavone, Gino Sorbello, Loreto Di Donato, Maria Violetta Brundo

Abstract:

5G Technology is evolving to satisfy a variety of service requirements that may allow high data-rate connections (1Gbps) and lower latency times than current (<1ms). In order to support a high data transmission speed and a high traffic service for eMBB (enhanced mobile broadband) use cases, 5G systems have the characteristic of using different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus taking advantage of higher frequencies than previous mobile radio generations (1G-4G). However, waves at higher frequencies have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern over the past few months about possible harmful effects on human health. The aim of this preliminary study is to evaluate possible short term effects induced by 5G-millimeter waves on embryonic development and early life stages of Danio rerio by Z-FET. We exposed developing zebrafish at frequency of 27 GHz, with a standard pyramidal horn antenna placed at 15 cm far from the samples holder ensuring an incident power density of 10 mW/cm2. During the exposure cycle, from 6 h post fertilization (hpf) to 96 hpf, we measured a different morphological endpoints every 24 hours. Zebrafish embryo toxicity test (Z-FET) is a short term test, carried out on fertilized eggs of zebrafish and it represents an effective alternative to acute test with adult fish (OECD, 2013). We have observed that 5G did not reveal significant impacts on mortality nor on morphology because exposed larvae showed a normal detachment of the tail, presence of heartbeat, well-organized somites, therefore hatching rate was lower than untreated larvae even at 48 h of exposure. Moreover, the immunohistochemical analysis performed on larvae showed a negativity to the HSP-70 expression used as a biomarkers. This is a preliminary study on evaluation of potential toxicity induced by 5G and it seems appropriate to underline the importance that further studies would take, aimed at clarifying the probable real risk of exposure to electromagnetic fields.

Keywords: Biomarker of exposure, embryonic development, 5G waves, zebrafish embryo toxicity test

Procedia PDF Downloads 117
426 A Comparison of Proxemics and Postural Head Movements during Pop Music versus Matched Music Videos

Authors: Harry J. Witchel, James Ackah, Carlos P. Santos, Nachiappan Chockalingam, Carina E. I. Westling

Abstract:

Introduction: Proxemics is the study of how people perceive and use space. It is commonly proposed that when people like or engage with a person/object, they will move slightly closer to it, often quite subtly and subconsciously. Music videos are known to add entertainment value to a pop song. Our hypothesis was that by adding appropriately matched video to a pop song, it would lead to a net approach of the head to the monitor screen compared to simply listening to an audio-only version of the song. Methods: We presented to 27 participants (ages 21.00 ± 2.89, 15 female) seated in front of 47.5 x 27 cm monitor two musical stimuli in a counterbalanced order; all stimuli were based on music videos by the band OK Go: Here It Goes Again (HIGA, boredom ratings (0-100) = 15.00 ± 4.76, mean ± SEM, standard-error-of-the-mean) and Do What You Want (DWYW, boredom ratings = 23.93 ± 5.98), which did not differ in boredom elicited (P = 0.21, rank-sum test). Each participant experienced each song only once, and one song (counterbalanced) as audio-only versus the other song as a music video. The movement was measured by video-tracking using Kinovea 0.8, based on recording from a lateral aspect; before beginning, each participant had a reflective motion tracking marker placed on the outer canthus of the left eye. Analysis of the Kinovea X-Y coordinate output in comma-separated-variables format was performed in Matlab, as were non-parametric statistical tests. Results: We found that the audio-only stimuli (combined for both HIGA and DWYW, mean ± SEM, 35.71 ± 5.36) were significantly more boring than the music video versions (19.46 ± 3.83, P = 0.0066 Wilcoxon Signed Rank Test (WSRT), Cohen's d = 0.658, N = 28). We also found that participants' heads moved around twice as much during the audio-only versions (speed = 0.590 ± 0.095 mm/sec) compared to the video versions (0.301 ± 0.063 mm/sec, P = 0.00077, WSRT). However, the participants' mean head-to-screen distances were not detectably smaller (i.e. head closer to the screen) during the music videos (74.4 ± 1.8 cm) compared to the audio-only stimuli (73.9 ± 1.8 cm, P = 0.37, WSRT). If anything, during the audio-only condition, they were slightly closer. Interestingly, the ranges of the head-to-screen distances were smaller during the music video (8.6 ± 1.4 cm) compared to the audio-only (12.9 ± 1.7 cm, P = 0.0057, WSRT), the standard deviations were also smaller (P = 0.0027, WSRT), and their heads were held 7 mm higher (video 116.1 ± 0.8 vs. audio-only 116.8 ± 0.8 cm above floor, P = 0.049, WSRT). Discussion: As predicted, sitting and listening to experimenter-selected pop music was more boring than when the music was accompanied by a matched, professionally-made video. However, we did not find that the proxemics of the situation led to approaching the screen. Instead, adding video led to efforts to control the head to a more central and upright viewing position and to suppress head fidgeting.

Keywords: boredom, engagement, music videos, posture, proxemics

Procedia PDF Downloads 160
425 AAV-Mediated Human Α-Synuclein Expression in a Rat Model of Parkinson's Disease –Further Characterization of PD Phenotype, Fine Motor Functional Effects as Well as Neurochemical and Neuropathological Changes over Time

Authors: R. Pussinen, V. Jankovic, U. Herzberg, M. Cerrada-Gimenez, T. Huhtala, A. Nurmi, T. Ahtoniemi

Abstract:

Targeted over-expression of human α-synuclein using viral-vector mediated gene delivery into the substantia nigra of rats and non-human primates has been reported to lead to dopaminergic cell loss and the formation of α-synuclein aggregates reminiscent of Lewy bodies. We have previously shown how AAV-mediated expression of α-synuclein is seen in the chronic phenotype of the rats over 16 week follow-up period. In the context of these findings, we attempted to further characterize this long term PD related functional and motor deficits as well as neurochemical and neuropathological changes in AAV-mediated α-synuclein transfection model in rats during chronic follow-up period. Different titers of recombinant AAV expressing human α-synuclein (A53T) were stereotaxically injected unilaterally into substantia nigra of Wistar rats. Rats were allowed to recover for 3 weeks prior to initial baseline behavioral testing with rotational asymmetry test, stepping test and cylinder test. A similar behavioral test battery was applied again at weeks 5, 9,12 and 15. In addition to traditionally used rat PD model tests, MotoRater test system, a high speed kinematic gait performance monitoring was applied during the follow-up period. Evaluation focused on animal gait between groups. Tremor analysis was performed on weeks 9, 12 and 15. In addition to behavioral end-points, neurochemical evaluation of dopamine and its metabolites were evaluated in striatum. Furthermore, integrity of the dopamine active transport (DAT) system was evaluated by using 123I- β-CIT and SPECT/CT imaging on weeks 3, 8 and 12 after AAV- α-synuclein transfection. Histopathology was examined from end-point samples at 3 or 12 weeks after AAV- α-synuclein transfection to evaluate dopaminergic cell viability and microglial (Iba-1) activation status in substantia nigra by using stereological analysis techniques. This study focused on the characterization and validation of previously published AAV- α-synuclein transfection model in rats but with the addition of novel end-points. We present the long term phenotype of AAV- α-synuclein transfected rats with traditionally used behavioral tests but also by using novel fine motor analysis techniques and tremor analysis which provide new insight to unilateral effects of AAV α-synuclein transfection. We also present data about neurochemical and neuropathological end-points for the dopaminergic system in the model and how well they correlate with behavioral phenotype.

Keywords: adeno-associated virus, alphasynuclein, animal model, Parkinson’s disease

Procedia PDF Downloads 286
424 Production of Ferroboron by SHS-Metallurgy from Iron-Containing Rolled Production Wastes for Alloying of Cast Iron

Authors: G. Zakharov, Z. Aslamazashvili, M. Chikhradze, D. Kvaskhvadze, N. Khidasheli, S. Gvazava

Abstract:

Traditional technologies for processing iron-containing industrial waste, including steel-rolling production, are associated with significant energy costs, the long duration of processes, and the need to use complex and expensive equipment. Waste generated during the industrial process negatively affects the environment, but at the same time, it is a valuable raw material and can be used to produce new marketable products. The study of the effectiveness of self-propagating high-temperature synthesis (SHS) methods, which are characterized by the simplicity of the necessary equipment, the purity of the final product, and the high processing speed, is under the wide scientific and practical interest to solve the set problem. The work presents technological aspects of the production of Ferro boron by the method of SHS - metallurgy from iron-containing wastes of rolled production for alloying of cast iron and results of the effect of alloying element on the degree of boron assimilation with liquid cast iron. Features of Fe-B system combustion have been investigated, and the main parameters to control the phase composition of synthesis products have been experimentally established. Effect of overloads on patterns of cast ligatures formation and mechanisms structure formation of SHS products was studied. It has been shown that an increase in the content of hematite Fe₂O₃ in iron-containing waste leads to an increase in the content of phase FeB and, accordingly, the amount of boron in the ligature. Boron content in ligature is within 3-14%, and the phase composition of obtained ligatures consists of Fe₂B and FeB phases. Depending on the initial composition of the wastes, the yield of the end product reaches 91 - 94%, and the extraction of boron is 70 - 88%. Combustion processes of high exothermic mixtures allow to obtain a wide range of boron-containing ligatures from industrial wastes. In view of the relatively low melting point of the obtained SHS-ligature, the positive dynamics of boron absorption by liquid iron is established. According to the obtained data, the degree of absorption of the ligature by alloying gray cast iron at 1450°C is 80-85%. When combined with the treatment of liquid cast iron with magnesium, followed by alloying with the developed ligature, boron losses are reduced by 5-7%. At that, uniform distribution of boron micro-additives in the volume of treated liquid metal is provided. Acknowledgment: This work was supported by Shota Rustaveli Georgian National Science Foundation of Georgia (SRGNSFG) under the GENIE project (grant number № CARYS-19-802).

Keywords: self-propagating high-temperature synthesis, cast iron, industrial waste, ductile iron, structure formation

Procedia PDF Downloads 115
423 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 123
422 Factors Contributing to Adverse Maternal and Fetal Outcome in Patients with Eclampsia

Authors: T. Pradhan, P. Rijal, M. C. Regmi

Abstract:

Background: Eclampsia is a multisystem disorder that involves vital organs and failure of these may lead to deterioration of maternal condition and hypoxia and acidosis of fetus resulting in high maternal and perinatal mortality and morbidity. Thus, evaluation of the contributing factors for this condition and its complications leading to maternal deaths should be the priority. Formulating the plan and protocol to decrease these losses should be our goal. Aims and Objectives: To evaluate the risk factors associated with adverse maternal and fetal outcome in patients with eclampsia and to correlate the risk factors associated with maternal and fetal morbidity and mortality. Methods: All patients with eclampsia admitted in Department of Obstetrics and Gynecology, B. P. Koirala Institute of Health Sciences were enrolled after informed consent from February 2013 to February 2014. Questions as per per-forma were asked to patients, and attendants like Antenatal clinic visits, parity, number of episodes of seizures, duration from onset of seizure to magnesium sulfate and the patients were followed as per the hospital protocol, the mode of delivery, outcome of baby, post partum maternal condition like maternal Intensive Care Unit admission, neurological impairment and mortality were noted before discharge. Statistical analysis was done using Statistical Package for the Social Sciences (SPSS 11). Mean and percentage were calculated for demographic variables. Pearson’s correlation test and chi-square test were applied to find the relation between the risk factors and the outcomes. P value less than 0.05 was considered significant. Results: There were 10,000 antenatal deliveries during the study period. Fifty-two patients with eclampsia were admitted. All of the patients were unbooked for our institute. Thirty-nine patients were antepartum eclampsia. Thirty-one patients required mechanical ventilator support. Twenty-four patients were delivered by emergency c-section and 21 babies were Low Birth Weight and there were 9 stillbirths. There was one maternal mortality and 45 patients were discharged with improvement but 3 patients had neurological impairment. Mortality was significantly related with number of seizure episodes and time interval between seizure onset and administration of magnesium sulphate. Conclusion: Early detection and management of hypertensive complicating pregnancy during antenatal clinic check up. Early hospitalization and management with magnesium sulphate for eclampsia can help to minimize the maternal and fetal adverse outcomes.

Keywords: eclampsia, maternal mortality, perinatal mortality, risk factors

Procedia PDF Downloads 158
421 Reading and Writing of Biscriptal Children with and Without Reading Difficulties in Two Alphabetic Scripts

Authors: Baran Johansson

Abstract:

This PhD dissertation aimed to explore children’s writing and reading in L1 (Persian) and L2 (Swedish). It adds new perspectives to reading and writing studies of bilingual biscriptal children with and without reading and writing difficulties (RWD). The study used standardised tests to examine linguistic and cognitive skills related to word reading and writing fluency in both languages. Furthermore, all participants produced two texts (one descriptive and one narrative) in each language. The writing processes and the writing product of these children were explored using logging methodologies (Eye and Pen) for both languages. Furthermore, this study investigated how two bilingual children with RWD presented themselves through writing across their languages. To my knowledge, studies utilizing standardised tests and logging tools to investigate bilingual children’s word reading and writing fluency across two different alphabetic scripts are scarce. There have been few studies analysing how bilingual children construct meaning in their writing, and none have focused on children who write in two different alphabetic scripts or those with RWD. Therefore, some aspects of the systemic functional linguistics (SFL) perspective were employed to examine how two participants with RWD created meaning in their written texts in each language. The results revealed that children with and without RWD had higher writing fluency in all measures (e.g. text lengths, writing speed) in their L2 compared to their L1. Word reading abilities in both languages were found to influence their writing fluency. The findings also showed that bilingual children without reading difficulties performed 1 standard deviation below the mean when reading words in Persian. However, their reading performance in Swedish aligned with the expected age norms, suggesting greater efficient in reading Swedish than in Persian. Furthermore, the results showed that the level of orthographic depth, consistency between graphemes and phonemes, and orthographic features can probably explain these differences across languages. The analysis of meaning-making indicated that the participants with RWD exhibited varying levels of difficulty, which influenced their knowledge and usage of writing across languages. For example, the participant with poor word recognition (PWR) presented himself similarly across genres, irrespective of the language in which he wrote. He employed the listing technique similarly across his L1 and L2. However, the participant with mixed reading difficulties (MRD) had difficulties with both transcription and text production. He produced spelling errors and frequently paused in both languages. He also struggled with word retrieval and producing coherent texts, consistent with studies of monolingual children with poor comprehension or with developmental language disorder. The results suggest that the mother tongue instruction provided to the participants has not been sufficient for them to become balanced biscriptal readers and writers in both languages. Therefore, increasing the number of hours dedicated to mother tongue instruction and motivating the children to participate in these classes could be potential strategies to address this issue.

Keywords: reading, writing, reading and writing difficulties, bilingual children, biscriptal

Procedia PDF Downloads 59
420 Comparison of Gait Variability in Individuals with Trans-Tibial and Trans-Femoral Lower Limb Loss: A Pilot Study

Authors: Hilal Keklicek, Fatih Erbahceci, Elif Kirdi, Ali Yalcin, Semra Topuz, Ozlem Ulger, Gul Sener

Abstract:

Objectives and Goals: The stride-to-stride fluctuations in gait is a determinant of qualified locomotion as known as gait variability. Gait variability is an important predictive factor of fall risk and useful for monitoring the effects of therapeutic interventions and rehabilitation. Comparison of gait variability in individuals with trans-tibial lower limb loss and trans femoral lower limb loss was the aim of the study. Methods: Ten individuals with traumatic unilateral trans femoral limb loss(TF), 12 individuals with traumatic transtibial lower limb loss(TT) and 12 healthy individuals(HI) were the participants of the study. All participants were evaluated with treadmill. Gait characteristics including mean step length, step length variability, ambulation index, time on each foot of participants were evaluated with treadmill. Participants were walked at their preferred speed for six minutes. Data from 4th minutes to 6th minutes were selected for statistical analyses to eliminate learning effect. Results: There were differences between the groups in intact limb step length variation, time on each foot, ambulation index and mean age (p < .05) according to the Kruskal Wallis Test. Pairwise analyses showed that there were differences between the TT and TF in residual limb variation (p=.041), time on intact foot (p=.024), time on prosthetic foot(p=.024), ambulation index(p = .003) in favor of TT group. There were differences between the TT and HI group in intact limb variation (p = .002), time on intact foot (p<.001), time on prosthetic foot (p < .001), ambulation index result (p < .001) in favor of HI group. There were differences between the TF and HI group in intact limb variation (p = .001), time on intact foot (p=.01) ambulation index result (p < .001) in favor of HI group. There was difference between the groups in mean age result from HI group were younger (p < .05).There were similarity between the groups in step lengths (p>.05) and time of prosthesis using in individuals with lower limb loss (p > .05). Conclusions: The pilot study provided basic data about gait stability in individuals with traumatic lower limb loss. Results of the study showed that to evaluate the gait differences between in different amputation level, long-range gait analyses methods may be useful to get more valuable information. On the other hand, similarity in step length may be resulted from effective prosthetic using or effective gait rehabilitation, in conclusion, all participants with lower limb loss were already trained. The differences between the TT and HI; TF and HI may be resulted from the age related features, therefore, age matched population in HI were recommended future studies. Increasing the number of participants and comparison of age-matched groups also recommended to generalize these result.

Keywords: lower limb loss, amputee, gait variability, gait analyses

Procedia PDF Downloads 274
419 Effects of Sacubitril and Valsartan on Gut Microbiome

Authors: Wei-Ju Huang, Hung-Pin Hsu

Abstract:

[Background] In congestive heart failure (CHF), it has always been the principle of clinical treatment to control the water retention mechanism in the body to prevent excessive fluid retention. Early control of sympathetic nerves, Renin-Angiotensin-Aldosterone system (RAA system, RAAS), or strengthening of Atrial Natriuretic Peptide (ANP) was the point. In RAA system, related hormones, such as angiotensin, or enzymes in the pathway, such as ACE-I, can be used with corresponding inhibitors to reduce water content.[Aim] In recent years, clinical studies have pointed out that if different mechanisms are combined, the control effect seems to be better. For example, recent studies showed that ENTRESTO, a combination of Sacubitril and Valsartan, is a good new drug for CHF. Sacubitril is a prodrug. After activation, it can inhibit neprilysin and act as a neprilysin inhibitor (ARNI) to reduce the breakdown of natriuretic peptides(ANP). Valsartan is a kind of angiotensin receptor blocker (ARB), both of which are used to treat heart failure at the same time, have excellent curative effects.[Materials and Methods] Considering the side effects of this drug, coughing and a few cases of diarrhea were observed. However, the effect of this drug on the patient's intestinal tract has not been confirmed. On the other hand, studies have pointed out that ANP supplement can improve the CHF and increase the inhibitory effect on cancer cells. Therefore, the purpose of this study is to use a special microbial detection method to prove that whether oral drugs have an effect on microorganisms.The experimental method uses Nissui Compact Dry to observe the situation in different types of microorganisms. After the drug is dissolved in water, it is implanted in a petri dish, and the presence of different microorganisms is detected through different antibody reactions to confirm whether the drug has some toxicology in the gut.[Results and Discussion]From the above experimental results, it can be known that among the effects of Sacubitril and Valsartan on the basic microbial flora of the human body, low doses had no significant effect on Escherichia coli or intestinal bacteria. If Sacubitril or Valsartan with a high concentration of 3mg/ml is used alone or under the stimulation of a high concentration of the two drugs, it has a significant inhibitory effect on Escherichia coli. However, in terms of the effect on intestinal bacteria, high concentration of Sacubitril has a more significant inhibitory effect on intestinal bacteria, while high concentration of Valsartan has a less significant inhibitory effect on intestinal bacteria. The inhibitory effect of the combination of the two drugs on intestinal bacteria is also less significant.[Conclusion]The results of this study can be used as a further reference for the possible side effects of the clinical use of Sacubitril and Valsartan on the intestinal tract of patients,

Keywords: sacubitril, valsartan, entresto, congestive heart failure (CHF)

Procedia PDF Downloads 60
418 Chemical, Physical and Microbiological Characteristics of a Texture-Modified Beef- Based 3D Printed Functional Product

Authors: Elvan G. Bulut, Betul Goksun, Tugba G. Gun, Ozge Sakiyan Demirkol, Kamuran Ayhan, Kezban Candogan

Abstract:

Dysphagia, difficulty in swallowing solid foods and thin liquids, is one of the common health threats among the elderly who require foods with modified texture in their diet. Although there are some commercial food formulations or hydrocolloids to thicken the liquid foods for dysphagic individuals, there is still a need for developing and offering new food products with enriched nutritional, textural and sensory characteristics to safely nourish these patients. 3D food printing is an appealing alternative in creating personalized foods for this purpose with attractive shape, soft and homogenous texture. In order to modify texture and prevent phase separation, hydrocolloids are generally used. In our laboratory, an optimized 3D printed beef-based formulation specifically for people with swallowing difficulties was developed based on the research project supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK Project # 218O017). The optimized formulation obtained from response surface methodology was 60% beef powder, 5.88% gelatin, and 0.74% kappa-carrageenan (all in a dry basis). This product was enriched with powders of freeze-dried beet, celery, and red capia pepper, butter, and whole milk. Proximate composition (moisture, fat, protein, and ash contents), pH value, CIE lightness (L*), redness (a*) and yellowness (b*), and color difference (ΔE*) values were determined. Counts of total mesophilic aerobic bacteria (TMAB), lactic acid bacteria (LAB), mold and yeast, total coliforms were conducted, and detection of coagulase positive S. aureus, E. coli, and Salmonella spp. were performed. The 3D printed products had 60.11% moisture, 16.51% fat, 13.68% protein, and 1.65% ash, and the pH value was 6.19, whereas the ΔE* value was 3.04. Counts of TMAB, LAB, mold and yeast and total coliforms before and after 3D printing were 5.23-5.41 log cfu/g, < 1 log cfu/g, < 1 log cfu/g, 2.39-2.15 log EMS/g, respectively. Coagulase positive S. aureus, E. coli, and Salmonella spp. were not detected in the products. The data obtained from this study based on determining some important product characteristics of functional beef-based formulation provides an encouraging basis for future research on the subject and should be useful in designing mass production of 3D printed products of similar composition.

Keywords: beef, dysphagia, product characteristics, texture-modified foods, 3D food printing

Procedia PDF Downloads 101
417 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media

Procedia PDF Downloads 99
416 Simulation of the Flow in a Circular Vertical Spillway Using a Numerical Model

Authors: Mohammad Zamani, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. A circular vertical spillway with various inlet forms is very effective when there is not enough space for the other spillway. Hydraulic flow in a vertical circular spillway is divided into three groups: free, orifice, and under pressure (submerged). In this research, the hydraulic flow characteristics of a Circular Vertical Spillway are investigated with the CFD model. Two-dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k-ε and k-ω, were chosen to model Reynolds shear stress term. The power law scheme was used for the discretization of momentum, k, ε, and ω equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. In this study, three types of computational grids (coarse, intermediate, and fine) were used to discriminate the simulation environment. In order to simulate the flow, the k-ε (Standard, RNG, Realizable) and k-ω (standard and SST) models were used. Also, in order to find the best wall function, two types, standard wall, and non-equilibrium wall function, were investigated. The laminar model did not produce satisfactory flow depth and velocity along the Morning-Glory spillway. The results of the most commonly used two-equation turbulence models (k-ε and k-ω) were identical. Furthermore, the standard wall function produced better results compared to the non-equilibrium wall function. Thus, for other simulations, the standard k-ε with the standard wall function was preferred. The comparison criterion in this study is also the trajectory profile of jet water. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k-ε (Standard) has the most consistent results with experimental results. When the jet gets closer to the end of the basin, the computational results increase with the numerical results of their differences. The mesh with 10602 nodes, turbulent model k-ε standard and the standard wall function, provide the best results for modeling the flow in a vertical circular Spillway. There was a good agreement between numerical and experimental results in the upper and lower nappe profiles. In the study of water level over crest and discharge, in low water levels, the results of numerical modeling are good agreement with the experimental, but with the increasing water level, the difference between the numerical and experimental discharge is more. In the study of the flow coefficient, by decreasing in P/R ratio, the difference between the numerical and experimental result increases.

Keywords: circular vertical, spillway, numerical model, boundary conditions

Procedia PDF Downloads 74
415 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products

Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola

Abstract:

The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.

Keywords: decision making, design euristics, product design, product design process, design paradigms

Procedia PDF Downloads 110
414 An A-Star Approach for the Quickest Path Problem with Time Windows

Authors: Christofas Stergianos, Jason Atkin, Herve Morvan

Abstract:

As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.

Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling

Procedia PDF Downloads 220
413 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution

Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino

Abstract:

This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.

Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization

Procedia PDF Downloads 122
412 Detection, Isolation, and Raman Spectroscopic Characterization of Acute and Chronic Staphylococcus aureus Infection in an Endothelial Cell Culture Model

Authors: Astrid Tannert, Anuradha Ramoji, Christina Ebert, Frederike Gladigau, Lorena Tuchscherr, Jürgen Popp, Ute Neugebauer

Abstract:

Staphylococcus aureus is a facultative intracellular pathogen, which by entering host cells may evade immunologic host response as well as antimicrobial treatment. In that way, S. aureus can cause persistent intracellular infections which are difficult to treat. Depending on the strain, S. aureus may persist at different intracellular locations like the phagolysosome. The first barrier invading pathogens from the blood stream that they have to cross are the endothelial cells lining the inner surface of blood and lymphatic vessels. Upon proceeding from an acute to a chronic infection, intracellular pathogens undergo certain biochemical and structural changes including a deceleration of metabolic processes to adopt for long-term intracellular survival and the development of a special phenotype designated as small colony variant. In this study, the endothelial cell line Ea.hy 926 was used as a model for acute and chronic S. aureus infection. To this end, Ea.hy 926 cells were cultured on QIAscout™ Microraft Arrays, a special graded cell culture substrate that contains around 12,000 microrafts of 200 µm edge length. After attachment to the substrate, the endothelial cells were infected with GFP-expressing S. aureus for 3 weeks. The acute infection and the development of persistent bacteria was followed by confocal laser scanning microscopy, scanning the whole Microraft Array for the presence and for detailed determination of the intracellular location of fluorescent intracellular bacteria every second day. After three weeks of infection representative microrafts containing infected cells, cells with protruded infections and cells that did never show any infection were isolated and fixed for Raman micro-spectroscopic investigation. For comparison, also microrafts with acute infection were isolated. The acquired Raman spectra are correlated with the fluorescence microscopic images to give hints about a) the molecular alterations in endothelial cells during acute and chronic infection compared to non-infected cells, and b) metabolic and structural changes within the pathogen when entering a mode of persistence within host cells. We thank Dr. Ruth Kläver from QIAGEN GmbH for her support regarding QIAscout technology. Financial support by the BMBF via the CSCC (FKZ 01EO1502) and from the DFG via the Jena Biophotonic and Imaging Laboratory (JBIL, FKZ PO 633/29-1, BA 1601/10-1) is highly acknowledged.

Keywords: correlative image analysis, intracellular infection, pathogen-host adaption, Raman micro-spectroscopy

Procedia PDF Downloads 173
411 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 44
410 In-Plume H₂O, CO₂, H₂S and SO₂ in the Fumarolic Field of La Fossa Cone (Vulcano Island, Aeolian Archipelago)

Authors: Cinzia Federico, Gaetano Giudice, Salvatore Inguaggiato, Marco Liuzzo, Maria Pedone, Fabio Vita, Christoph Kern, Leonardo La Pica, Giovannella Pecoraino, Lorenzo Calderone, Vincenzo Francofonte

Abstract:

The periods of increased fumarolic activity at La Fossa volcano have been characterized, since early 80's, by changes in the gas chemistry and in the output rate of fumaroles. Excepting the direct measurements of the steam output from fumaroles performed from 1983 to 1995, the mass output of the single gas species has been recently measured, with various methods, only sporadically or for short periods. Since 2008, a scanning DOAS system is operating in the Palizzi area for the remote measurement of the in-plume SO₂ flux. On these grounds, the need of a cross-comparison of different methods for the in situ measurement of the output rate of different gas species is envisaged. In 2015, two field campaigns have been carried out, aimed at: 1. The mapping of the concentration of CO₂, H₂S and SO₂ in the fumarolic plume at 1 m from the surface, by using specific open-path diode tunable lasers (GasFinder Boreal Europe Ltd.) and an Active DOAS for SO₂, respectively; these measurements, coupled to simultaneous ultrasonic wind speed and meteorological data, have been elaborated to obtain the dispersion map and the output rate of single species in the overall fumarolic field; 2. The mapping of the concentrations of CO₂, H₂S, SO₂, H₂O in the fumarolic plume at 0.5 m from the soil, by using an integrated system, including IR spectrometers and specific electrochemical sensors; this has provided the concentration ratios of the analysed gas species and their distribution in the fumarolic field; 3. The in-fumarole sampling of vapour and measurement of the steam output, to validate the remote measurements. The dispersion map of CO₂, obtained from the tunable laser measurements, shows a maximum CO₂ concentration at 1m from the soil of 1000 ppmv along the rim, and 1800 ppmv in the inner slopes. As observed, the largest contribution derives from a wide fumarole of the inner-slope, despite its present outlet temperature of 230°C, almost 200°C lower than those measured at the rim fumaroles. Actually, fumaroles in the inner slopes are among those emitting the largest amount of magmatic vapour and, during the 1989-1991 crisis, reached the temperature of 690°C. The estimated CO₂ and H₂S fluxes are 400 t/d and 4.4 t/d, respectively. The coeval SO₂ flux, measured by the scanning DOAS system, is 9±1 t/d. The steam output, recomputed from CO₂ flux measurements, is about 2000 t/d. The various direct and remote methods (as described at points 1-3) have produced coherent results, which encourage to the use of daily and automatic DOAS SO₂ data, coupled with periodic in-plume measurements of different acidic gases, to obtain the total mass rates.

Keywords: DOAS, fumaroles, plume, tunable laser

Procedia PDF Downloads 388
409 Association between Organophosphate Pesticides Exposure and Cognitive Behavior in Taipei Children

Authors: Meng-Ying Chiu, Yu-Fang Huang, Pei-Wei Wang, Yi-Ru Wang, Yi-Shuan Shao, Mei-Lien Chen

Abstract:

Background: Organophosphate pesticides (OPs) are the most heavily used pesticides in agriculture in Taiwan. Therefore, they are commonly detected in general public including pregnant women and children. These compounds are proven endocrine disrupters that may affect the neural development in humans. The aim of this study is to assess the OPs exposure of children in 2 years of age and to examine the association between the exposure concentrations and neurodevelopmental effects in children. Methods: In a prospective cohort of 280 mother-child pairs, urine samples of prenatal and postnatal were collected from each participant and analyzed for metabolites of OPs by using gas chromatography-mass spectrometry. Six analytes were measured including dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP). This study created a combined concentration measure for dimethyl compounds (DMs) consisting of the three dimethyl metabolites (DMP, DMTP, and DMDTP), for diethyl compounds (DEs) consisting of the three diethyl metabolites (DEP, DETP, and DEDTP) and six dialkyl phosphate (DAPs). The Bayley Scales of Infant and Toddler Development (Bayley-III) was used to assess children's cognitive behavior at 2 years old. The association between OPs exposure and Bayley-III scale score was determined by using the Mann-Whitney U test. Results: The measurements of urine samples are still on-going. This preliminary data are the report of 56 children aged 2 from the cohort. The detection rates for DMP, DMTP, DMDTP, DEP, DETP, and DEDTP are 80.4%, 69.6%, 64.3%, 64.3%, 62.5%, and 75%, respectively. After adjusting the creatinine concentrations of urine, the median (nmol/g creatinine) of urinary DMP, DMTP, DMDTP, DEP, DETP, DEDTP, DMs, DEs, and DAPs are 153.14, 53.32, 52.13, 19.24, 141.65, 192.17, 308.8, 311.6, and 702.11, respectively. The concentrations of urine are considerably higher than that in other countries. Children’s cognitive behavior was used three scales for Bayley-III, including cognitive, language and motor. In Mann-Whitney U test, the higher levels of DEs had significantly lower motor score (p=0.037), but no significant association was found between the OPs exposure levels and the score of either cognitive or language. Conclusion: The limited sample size suggests that Taipei children are commonly exposed to OPs and OPs exposure might affect the cognitive behavior of young children. This report will present more data to verify the results. The predictors of OPs concentrations, such as dietary pattern will also be included.

Keywords: biomonitoring, children, neurodevelopment, organophosphate pesticides exposure

Procedia PDF Downloads 132
408 Movie and Theater Marketing Using the Potentials of Social Networks

Authors: Seyed Reza Naghibulsadat

Abstract:

The nature of communication includes various forms of media productions, which include film and theater. In the current situation, since social networks have emerged, they have brought their own communication capabilities and have features that show speed, public access, lack of media organization and the production of extensive content, and the development of critical thinking; Also, they contain capabilities to develop access to all kinds of media productions, including movies and theater shows; Of course, this works differently in different conditions and communities. In terms of the scale of exploitation, the film has a more general audience, and the theater has a special audience. The film industry is more developed based on more modern technologies, but the theater, based on the older ways of communication, contains more intimate and emotional aspects. ; But in general, the main focus is the development of access to movies and theater shows, which is emphasized by those involved in this field due to the capabilities of social networks. In this research, we will look at these 2 areas and the relevant components for both areas through social networks and also the common points of both types of media production. The main goal of this research is to know the strengths and weaknesses of using social networks for the marketing of movies and theater shows and, at the same time are, also considered the opportunities and threats of this field. The attractions of these two types of media production, with the emergence of social networks, and the ability to change positions, can provide the opportunity to become a media with greater exploitation and higher profitability; But the main consideration is the opinions about these capabilities and the ability to use them for film and theater marketing. The main question of the research is, what are the marketing components for movies and theaters using social media capabilities? What are its strengths and weaknesses? And what opportunities and threats are facing this market? This research has been done with two methods SWOT and meta-analysis. Non-probability sampling has been used with purposeful technique. The results show that a recent approach is an approach based on eliminating threats and weaknesses and emphasizing strengths, and exploiting opportunities in the direction of developing film and theater marketing based on the capabilities of social networks within the framework of local cultural values and presenting achievements on an international scale or It is universal. This introduction leads to the introduction of authentic Iranian culture and foreign enthusiasts in the framework of movies and theater art. Therefore, for this issue, the model for using the capabilities of social networks for movie or theater marketing, according to the results obtained from Respondents, is a model based on SO strategies and, in other words, offensive strategies so that it can take advantage of the internal strengths and made maximum use of foreign situations and opportunities to develop the use of movies and theater performances.

Keywords: marketing, movies, theatrical show, social network potentials

Procedia PDF Downloads 64
407 The Importance of Efficient and Sustainable Water Resources Management and the Role of Artificial Intelligence in Preventing Forced Migration

Authors: Fateme Aysin Anka, Farzad Kiani

Abstract:

Forced migration is a situation in which people are forced to leave their homes against their will due to political conflicts, wars and conflicts, natural disasters, climate change, economic crises, or other emergencies. This type of migration takes place under conditions where people cannot lead a sustainable life due to reasons such as security, shelter and meeting their basic needs. This type of migration may occur in connection with different factors that affect people's living conditions. In addition to these general and widespread reasons, water security and resources will be one that is starting now and will be encountered more and more in the future. Forced migration may occur due to insufficient or depleted water resources in the areas where people live. In this case, people's living conditions become unsustainable, and they may have to go elsewhere, as they cannot obtain their basic needs, such as drinking water, water used for agriculture and industry. To cope with these situations, it is important to minimize the causes, as international organizations and societies must provide assistance (for example, humanitarian aid, shelter, medical support and education) and protection to address (or mitigate) this problem. From the international perspective, plans such as the Green New Deal (GND) and the European Green Deal (EGD) draw attention to the need for people to live equally in a cleaner and greener world. Especially recently, with the advancement of technology, science and methods have become more efficient. In this regard, in this article, a multidisciplinary case model is presented by reinforcing the water problem with an engineering approach within the framework of the social dimension. It is worth emphasizing that this problem is largely linked to climate change and the lack of a sustainable water management perspective. As a matter of fact, the United Nations Development Agency (UNDA) draws attention to this problem in its universally accepted sustainable development goals. Therefore, an artificial intelligence-based approach has been applied to solve this problem by focusing on the water management problem. The most general but also important aspect in the management of water resources is its correct consumption. In this context, the artificial intelligence-based system undertakes tasks such as water demand forecasting and distribution management, emergency and crisis management, water pollution detection and prevention, and maintenance and repair control and forecasting.

Keywords: water resource management, forced migration, multidisciplinary studies, artificial intelligence

Procedia PDF Downloads 74
406 Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator

Authors: Sharib Ahmed, Mansoor Rafi, Kamran Ali Awan, Faraz Khaskhali, Amir Maqbool, Altaf Hashmi

Abstract:

Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons.

Keywords: equivalent doses, neutron contamination, neutron detector, photon energy

Procedia PDF Downloads 444
405 The Connection Between the Semiotic Theatrical System and the Aesthetic Perception

Authors: Păcurar Diana Istina

Abstract:

The indissoluble link between aesthetics and semiotics, the harmonization and semiotic understanding of the interactions between the viewer and the object being looked at, are the basis of the practical demonstration of the importance of aesthetic perception within the theater performance. The design of a theater performance includes several structures, some considered from the beginning, art forms (i.e., the text), others being represented by simple, common objects (e.g., scenographic elements), which, if reunited, can trigger a certain aesthetic perception. The audience is delivered, by the team involved in the performance, a series of auditory and visual signs with which they interact. It is necessary to explain some notions about the physiological support of the transformation of different types of stimuli at the level of the cerebral hemispheres. The cortex considered the superior integration center of extransecal and entanged stimuli, permanently processes the information received, but even if it is delivered at a constant rate, the generated response is individualized and is conditioned by a number of factors. Each changing situation represents a new opportunity for the viewer to cope with, developing feelings of different intensities that influence the generation of meanings and, therefore, the management of interactions. In this sense, aesthetic perception depends on the detection of the “correctness” of signs, the forms of which are associated with an aesthetic property. Fairness and aesthetic properties can have positive or negative values. Evaluating the emotions that generate judgment and implicitly aesthetic perception, whether we refer to visual emotions or auditory emotions, involves the integration of three areas of interest: Valence, arousal and context control. In this context, superior human cognitive processes, memory, interpretation, learning, attribution of meanings, etc., help trigger the mechanism of anticipation and, no less important, the identification of error. This ability to locate a short circuit produced in a series of successive events is fundamental in the process of forming an aesthetic perception. Our main purpose in this research is to investigate the possible conditions under which aesthetic perception and its minimum content are generated by all these structures and, in particular, by interactions with forms that are not commonly considered aesthetic forms. In order to demonstrate the quantitative and qualitative importance of the categories of signs used to construct a code for reading a certain message, but also to emphasize the importance of the order of using these indices, we have structured a mathematical analysis that has at its core the analysis of the percentage of signs used in a theater performance.

Keywords: semiology, aesthetics, theatre semiotics, theatre performance, structure, aesthetic perception

Procedia PDF Downloads 77
404 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images

Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi

Abstract:

Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.

Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis

Procedia PDF Downloads 48