Search results for: anticipate method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19176

Search results for: anticipate method

13506 Clustering-Based Threshold Model for Condition Rating of Concrete Bridge Decks

Authors: M. Alsharqawi, T. Zayed, S. Abu Dabous

Abstract:

To ensure safety and serviceability of bridge infrastructure, accurate condition assessment and rating methods are needed to provide basis for bridge Maintenance, Repair and Replacement (MRR) decisions. In North America, the common practices to assess condition of bridges are through visual inspection. These practices are limited to detect surface defects and external flaws. Further, the thresholds that define the severity of bridge deterioration are selected arbitrarily. The current research discusses the main deteriorations and defects identified during visual inspection and Non-Destructive Evaluation (NDE). NDE techniques are becoming popular in augmenting the visual examination during inspection to detect subsurface defects. Quality inspection data and accurate condition assessment and rating are the basis for determining appropriate MRR decisions. Thus, in this paper, a novel method for bridge condition assessment using the Quality Function Deployment (QFD) theory is utilized. The QFD model is designed to provide an integrated condition by evaluating both the surface and subsurface defects for concrete bridges. Moreover, an integrated condition rating index with four thresholds is developed based on the QFD condition assessment model and using K-means clustering technique. Twenty case studies are analyzed by applying the QFD model and implementing the developed rating index. The results from the analyzed case studies show that the proposed threshold model produces robust MRR recommendations consistent with decisions and recommendations made by bridge managers on these projects. The proposed method is expected to advance the state of the art of bridges condition assessment and rating.

Keywords: concrete bridge decks, condition assessment and rating, quality function deployment, k-means clustering technique

Procedia PDF Downloads 227
13505 A Study on the Impact of Covid-19 on Primary Healthcare Workers in Ekiti State, South-West Nigeria

Authors: Adeyinka Adeniran, Omowunmi Bakare, Esther Oluwole, Florence Chieme, Temitope Durojaiye, Modupe Akinyinka, Omobola Ojo, Babatunde Olujobi, Marcus Ilesanmi, Akintunde Ogunsakin

Abstract:

Introduction: Globally, COVID-19 has greatly impacted the human race physically, socially, mentally, and economically. However, healthcare workers seemed to bear the greatest impact. The study, therefore, sought to assess the impact of COVID-19 on the primary healthcare workers in Ekiti, South-west Nigeria. Methods: The study was a cross-sectional descriptive study using a quantitative data collection method of 716 primary healthcare workers in Ekiti state. Respondents were selected using an online convenience sampling method via their social media platforms. Data was collected, collated, and analyzed using SPSS version 25 software and presented as frequency tables, mean and standard deviation. Bivariate and multivariate analyses were conducted using a t-test, and the level of statistical significance was set at p<0.05. Results: Less than half (47.1%) of respondents were between 41-50 age group and a mean age of 44.4+6.4SD. A majority (89.4%) were female, and almost all (96.2%) were married. More than (90%) had ever heard of Coronavirus, and (85.8%) had to spend more money on activities of daily living such as transportation (90.1%), groceries (80.6%), assisting relations (95.8%) and sanitary measures (disinfection) at home (95.0%). COVID-19 had a huge negative impact on about (89.7%) of healthcare workers, with a mean score of 22+4.8. Conclusion: COVID-19 negatively impacted the daily living and professional duties of primary healthcare workers, which reflected their psychological, physical, social, and economic well-being. Disease outbreaks are unlikely to disappear in the near future. Hence, global proactive interventions and homegrown measures should be adopted to protect healthcare workers and save lives.

Keywords: Covid-19, health workforce, primary health care, health systems, depression

Procedia PDF Downloads 89
13504 Using the ISO 9705 Room Corner Test for Smoke Toxicity Quantification of Polyurethane

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Polyurethane (PU) foam is typically sold as acoustic foam that is often used as sound insulation in settings such as night clubs and bars. As a construction product, PU is tested by being glued to the walls and ceiling of the ISO 9705 room corner test room. However, when heat is applied to PU foam, it melts and burns as a pool fire due to it being a thermoplastic. The current test layout is unable to accurately measure mass loss and doesn’t allow for the material to burn as a pool fire without seeping out of the test room floor. The lack of mass loss measurement means gas yields pertaining to smoke toxicity analysis can’t be calculated, which makes data comparisons from any other material or test method difficult. Additionally, the heat release measurements are not representative of the actual measurements taken as a lot of the material seeps through the floor (when a tray to catch the melted material is not used). This research aimed to modify the ISO 9705 test to provide the ability to measure mass loss to allow for better calculation of gas yields and understanding of decomposition. It also aimed to accurately measure smoke toxicity in both the doorway and duct and enable dilution factors to be calculated. Finally, the study aimed to examine if doubling the fuel loading would force under-ventilated flaming. The test layout was modified to be a combination of the SBI (single burning item) test set up inside oof the ISO 9705 test room. Polyurethane was tested in two different ways with the aim of altering the ventilation condition of the tests. Test one was conducted using 1 x SBI test rig aiming for well-ventilated flaming. Test two was conducted using 2 x SBI rigs (facing each other inside the test room) (doubling the fuel loading) aiming for under-ventilated flaming. The two different configurations used were successful in achieving both well-ventilated flaming and under-ventilated flaming, shown by the measured equivalence ratios (measured using a phi meter designed and created for these experiments). The findings show that doubling the fuel loading will successfully force under-ventilated flaming conditions to be achieved. This method can therefore be used when trying to replicate post-flashover conditions in future ISO 9705 room corner tests. The radiative heat generated by the two SBI rigs facing each other facilitated a much higher overall heat release resulting in a more severe fire. The method successfully allowed for accurate measurement of smoke toxicity produced from the PU foam in terms of simple gases such as oxygen depletion, CO and CO2. Overall, the proposed test modifications improve the ability to measure the smoke toxicity of materials in different fire conditions on a large-scale.

Keywords: flammability, ISO9705, large-scale testing, polyurethane, smoke toxicity

Procedia PDF Downloads 81
13503 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 110
13502 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble

Authors: Jaehong Yu, Seoung Bum Kim

Abstract:

Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.

Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking

Procedia PDF Downloads 342
13501 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 373
13500 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 106
13499 Grey Relational Analysis Coupled with Taguchi Method for Process Parameter Optimization of Friction Stir Welding on 6061 AA

Authors: Eyob Messele Sefene, Atinkut Atinafu Yilma

Abstract:

The highest strength-to-weight ratio criterion has fascinated increasing curiosity in virtually all areas where weight reduction is indispensable. One of the recent advances in manufacturing to achieve this intention endears friction stir welding (FSW). The process is widely used for joining similar and dissimilar non-ferrous materials. In FSW, the mechanical properties of the weld joints are impelled by property-selected process parameters. This paper presents verdicts of optimum process parameters in attempting to attain enhanced mechanical properties of the weld joint. The experiment was conducted on a 5 mm 6061 aluminum alloy sheet. A butt joint configuration was employed. Process parameters, rotational speed, traverse speed or feed rate, axial force, dwell time, tool material and tool profiles were utilized. Process parameters were also optimized, making use of a mixed L18 orthogonal array and the Grey relation analysis method with larger is better quality characteristics. The mechanical properties of the weld joint are examined through the tensile test, hardness test and liquid penetrant test at ambient temperature. ANOVA was conducted in order to investigate the significant process parameters. This research shows that dwell time, rotational speed, tool shape, and traverse speed have become significant, with a joint efficiency of about 82.58%. Nine confirmatory tests are conducted, and the results indicate that the average values of the grey relational grade fall within the 99% confidence interval. Hence the experiment is proven reliable.

Keywords: friction stir welding, optimization, 6061 AA, Taguchi

Procedia PDF Downloads 106
13498 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 102
13497 Characterization of Thin Woven Composites Used in Printed Circuit Boards by Combining Numerical and Experimental Approaches

Authors: Gautier Girard, Marion Martiny, Sebastien Mercier, Mohamad Jrad, Mohamed-Slim Bahi, Laurent Bodin, Francois Lechleiter, David Nevo, Sophie Dareys

Abstract:

Reliability of electronic devices has always been of highest interest for Aero-MIL and space applications. In any electronic device, Printed Circuit Board (PCB), providing interconnection between components, is a key for reliability. During the last decades, PCB technologies evolved to sustain and/or fulfill increased original equipment manufacturers requirements and specifications, higher densities and better performances, faster time to market and longer lifetime, newer material and mixed buildups. From the very beginning of the PCB industry up to recently, qualification, experiments and trials, and errors were the most popular methods to assess system (PCB) reliability. Nowadays OEM, PCB manufacturers and scientists are working together in a close relationship in order to develop predictive models for PCB reliability and lifetime. To achieve that goal, it is fundamental to characterize precisely base materials (laminates, electrolytic copper, …), in order to understand failure mechanisms and simulate PCB aging under environmental constraints by means of finite element method for example. The laminates are woven composites and have thus an orthotropic behaviour. The in-plane properties can be measured by combining classical uniaxial testing and digital image correlation. Nevertheless, the out-of-plane properties cannot be evaluated due to the thickness of the laminate (a few hundred of microns). It has to be noted that the knowledge of the out-of-plane properties is fundamental to investigate the lifetime of high density printed circuit boards. A homogenization method combining analytical and numerical approaches has been developed in order to obtain the complete elastic orthotropic behaviour of a woven composite from its precise 3D internal structure and its experimentally measured in-plane elastic properties. Since the mechanical properties of the resin surrounding the fibres are unknown, an inverse method is proposed to estimate it. The methodology has been applied to one laminate used in hyperfrequency spatial applications in order to get its elastic orthotropic behaviour at different temperatures in the range [-55°C; +125°C]. Next; numerical simulations of a plated through hole in a double sided PCB are performed. Results show the major importance of the out-of-plane properties and the temperature dependency of these properties on the lifetime of a printed circuit board. Acknowledgements—The support of the French ANR agency through the Labcom program ANR-14-LAB7-0003-01, support of CNES, Thales Alenia Space and Cimulec is acknowledged.

Keywords: homogenization, orthotropic behaviour, printed circuit board, woven composites

Procedia PDF Downloads 208
13496 Understanding the Utilization of Luffa Cylindrica in the Adsorption of Heavy Metals to Clean Up Wastewater

Authors: Akanimo Emene, Robert Edyvean

Abstract:

In developing countries, a low cost method of wastewater treatment is highly recommended. Adsorption is an efficient and economically viable treatment process for wastewater. The utilisation of this process is based on the understanding of the relationship between the growth environment and the metal capacity of the biomaterial. Luffa cylindrica (LC), a plant material, was used as an adsorbent in adsorption design system of heavy metals. The chemically modified LC was used to adsorb heavy metals ions, lead and cadmium, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion concentration, ionic strength and pH of solution were studied. The chemical nature and surface area of the tissues adsorbing heavy metals in LC biosorption systems were characterised by using electron microscopy and infra-red spectroscopy. It showed an increase in the surface area and improved adhesion capacity after chemical treatment. Metal speciation of the metal ions showed the binary interaction between the ions and the LC surface as the pH increases. Maximum adsorption was shown between pH 5 and pH 6. The ionic strength of the metal ion solution has an effect on the adsorption capacity based on the surface charge and the availability of the adsorption sites on the LC. The nature of the metal-surface complexes formed as a result of the experimental data were analysed with kinetic and isotherm models. The pseudo second order kinetic model and the two-site Langmuir isotherm model showed the best fit. Through the understanding of this process, there will be an opportunity to provide an alternative method for water purification. This will be provide an option, for when expensive water treatment technologies are not viable in developing countries.

Keywords: adsorption, luffa cylindrica, metal-surface complexes, pH

Procedia PDF Downloads 94
13495 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project

Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen

Abstract:

This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.

Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project

Procedia PDF Downloads 174
13494 Drone On-Time Obstacle Avoidance for Static and Dynamic Obstacles

Authors: Herath M. P. C. Jayaweera, Samer Hanoun

Abstract:

Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GME′s velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use, and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks, including their tendency to generate longer routes when the obstacles are sideways of the drone′s route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilized on most types of drones that have basic distance measurement sensors and autopilot-supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS-supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.

Keywords: drones, force field methods, obstacle avoidance, path planning

Procedia PDF Downloads 97
13493 Implementation Research on the Singapore Physical Activity and Nutrition Program: A Mixed-Method Evaluation

Authors: Elaine Wong

Abstract:

Introduction: The Singapore Physical Activity and Nutrition Study (SPANS) aimed to assess the effects of a community-based intervention on physical activity (PA) and nutrition behaviours as well as chronic disease risk factors for Singaporean women aged above 50 years. This article examines the participation, dose, fidelity, reach, satisfaction and reasons for completion and non-completion of the SPANS. Methods: The SPANS program integrated constructs of Social Cognitive Theory (SCT) and is composed of PA activities; nutrition workshops; dietary counselling coupled with motivational interviewing (MI) through phone calls; and text messages promoting healthy behaviours. Printed educational resources and health incentives were provided to participants. Data were collected via a mixed-method design strategy from a sample of 295 intervention participants. Quantitative data were collected using self-completed survey (n = 209); qualitative data were collected via research assistants’ notes, post feedback sessions and exit interviews with program completers (n = 13) and non-completers (n = 12). Results: Majority of participants reported high ‘satisfactory to excellent’ ratings for the program pace, suitability of interest and overall program (96.2-99.5%). Likewise, similar ratings for clarity of presentation; presentation skills, approachability, knowledge; and overall rating of trainers and program ambassadors were achieved (98.6-100%). Phone dietary counselling had the highest level of participation (72%) at less than or equal to 75% attendance rate followed by nutrition workshops (65%) and PA classes (60%). Attrition rate of the program was 19%; major reasons for withdrawal were personal commitments, relocation and health issues. All participants found the program resources to be colourful, informative and practical for their own reference. Reasons for program completion and maintenance were: desired health benefits; social bonding opportunities and to learn more about PA and nutrition. Conclusions: Process evaluation serves as an appropriate tool to identify recruitment challenges, effective intervention strategies and to ensure program fidelity. Program participants were satisfied with the educational resources, program components and delivery strategies implemented by the trainers and program ambassadors. The combination of printed materials and intervention components, when guided by the SCT and MI, were supportive in encouraging and reinforcing lifestyle behavioural changes. Mixed method evaluation approaches are integral processes to pinpoint barriers, motivators, improvements and effective program components in optimising the health status of Singaporean women.

Keywords: process evaluation, Singapore, older adults, lifestyle changes, program challenges

Procedia PDF Downloads 127
13492 Measuring Biobased Content of Building Materials Using Carbon-14 Testing

Authors: Haley Gershon

Abstract:

The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.

Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials

Procedia PDF Downloads 163
13491 Exploring Women's Needs Referring to Health Care Centers for Doing Pap Smear Test

Authors: Arezoo Fallahi, Fateme Aslibigi, Parvaneh Taymoori, Babak Nematshahrbabaki

Abstract:

Background and Aims: Cancer of the cervix, one of cancer-related death, is the second most common cancer in women worldwide. It develops over time but it is one of the most preventable types of cancer and there is the available proper screening program for its preventing. Since Pap smear test is vital to prevent and control of disease but women do not accomplish it regularly. Therefore, this study was aimed to explore women's needs referring to health care centers for doing Pap smear test. Material and methods: In this study, an inductive qualitative method with content analysis approach was used. This survey was done in varamin city (is located capital of Iran) in year 2014. Through the purposive sampling 15 women's view of point referring to health care centers of for doing Pap smear test was surveyed. Inclusion criteria were: 20-50 years old married women, having experience Pap smear test and attendance to participate in the Study. Recorded semi- structured interviews were typed and analyzed through of content analysis method. To obtain trustworthiness and rigor of the data, the criteria of credibility, dependability, confirmability and transferability was used. Results: During the data analysis, four main categories of “role of health care team”, “role of organizations”, “social support” and “policies and administration system” were developed. The participants emphasized on making motivational rules and coordination among organizations to do behaviors related to women health. Conclusion: The findings of study showed that doing Pap smear test are attributed to appropriate and intimate interactions with health professionals, family support, encouraging legislation and policies and coordination and notification of organizations. Therefore, designers and stockholders of policies and health system should more consider to growth and involve other organizations toward women's health.

Keywords: qualitative approach, pap smear test, women, health care centers

Procedia PDF Downloads 500
13490 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 141
13489 A 0-1 Goal Programming Approach to Optimize the Layout of Hospital Units: A Case Study in an Emergency Department in Seoul

Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee

Abstract:

This paper proposes a method to optimize the layout of an emergency department (ED) based on real executions of care processes by considering several planning objectives simultaneously. Recently, demand for healthcare services has been dramatically increased. As the demand for healthcare services increases, so do the need for new healthcare buildings as well as the need for redesign and renovating existing ones. The importance of implementation of a standard set of engineering facilities planning and design techniques has been already proved in both manufacturing and service industry with many significant functional efficiencies. However, high complexity of care processes remains a major challenge to apply these methods in healthcare environments. Process mining techniques applied in this study to tackle the problem of complexity and to enhance care process analysis. Process related information such as clinical pathways extracted from the information system of an ED. A 0-1 goal programming approach is then proposed to find a single layout that simultaneously satisfies several goals. The proposed model solved by optimization software CPLEX 12. The solution reached using the proposed method has 42.2% improvement in terms of walking distance of normal patients and 47.6% improvement in walking distance of critical patients at minimum cost of relocation. It has been observed that lots of patients must unnecessarily walk long distances during their visit to the emergency department because of an inefficient design. A carefully designed layout can significantly decrease patient walking distance and related complications.

Keywords: healthcare operation management, goal programming, facility layout problem, process mining, clinical processes

Procedia PDF Downloads 301
13488 Estimation of Microbial-N Supply to Small Intestine in Angora Goats Fed by Different Roughage Sources

Authors: Nurcan Cetinkaya

Abstract:

The aim of the study was to estimate the microbial-N flow to small intestine based on daily urinary purine derivatives(PD) mainly xanthine, hypoxanthine, uric acid and allantoin excretion in Angora goats fed by grass hay and concentrate (Period I); barley straw and concentrate (Period II). Daily urine samples were collected during last 3 days of each period from 10 individually penned Angora bucks( LW 30-35 Kg, 2-3 years old) receiving ad libitum grass hay or barley straw and 300 g/d concentrate. Fresh water was always available. 4N H2SO4 was added to collected daily urine .samples to keep pH under 3 to avoid of uric acid precipitation. Diluted urine samples were stored at -20°C until analysis. Urine samples were analyzed for xanthine, hypoxanthine, uric acid, allantoin and creatinine by High-Performance Liquid Chromatographic Method (HPLC). Urine was diluted 1:15 in ratio with water and duplicate samples were prepared for HPLC analysis. Calculated mean levels (n=60) for urinary xanthine, hypoxanthine, uric acid, allantoin, total PD and creatinine excretion were 0.39±0.02 , 0.26±0.03, 0.59±0.06, 5.91±0.50, 7.15±0.57 and 3.75±0.40 mmol/L for Period I respectively; 0.35±0.03, 0.21±0.02, 0.55±0.05, 5.60±0.47, 6.71±0.46 and 3.73±0.41 mmol/L for Period II respectively.Mean values of Period I and II were significantly different (P< 0.05) except creatinine excretion. Estimated mean microbial-N supply to the small intestine for Period I and II in Angora goats were 5.72±0.46 and 5.41±0.61 g N/d respectively. The effects of grass hay and barley straw feeding on microbial-N supply to small intestine were found significantly different (P< 0.05). In conclusion, grass hay showed a better effect on the ruminal microbial protein synthesis compared to barley straw, therefore; grass hay is suggested as roughage source in Angora goat feeding.

Keywords: angora goat, HPLC method, microbial-N supply to small intestine, urinary purine derivatives

Procedia PDF Downloads 228
13487 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor

Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis

Procedia PDF Downloads 278
13486 Characterization of White Spot Lesion Using Focused Ion Beam - Scanning Electron Microscopy

Authors: Malihe Moeinin, Robert Hill, Ferranti Wong

Abstract:

Background: A white spot lesion (WSL) is defined as subsurface enamel porosity from carious demineralisation on the smooth surfaces of the tooth. It appears as a milky white opacity. Lesions shown an apparently intact surface layer, followed underneath by the more porous lesion body. The small pores within the body of the lesion act as diffusion pathway for both acids and minerals, so allowing the demineralisation of enamel to occur at the advancing front of the lesion. Objectives: The objective is to mapthe porosity and its size on WSL with Focused Ion Bean- Scanning Electron Microscopy (FIB-SEM) Method: The basic method used for FIB-SEM consisted of depositing a one micron thick layer of platinum over 25μmx 25μm of the interest region of enamel. Then, making a rough cut (25μmx 5μmx 20μm) with 3nA current and 30Kv was applied with the help of drift suppression (DS), using a standard “cross-sectional” cutting pattern, which ended at the front of the deposited platinum layer. Two adjacent areas (25μmx 5μmx 20μm) on the both sides of the platinum layer were milled under the same conditions. Subsequent, cleaning cross-sections were applied to polish the sub-surface edge of interest running perpendicular to the surface. The "slice and view" was carried out overnight for milling almost 700 slices with 2Kv and 4nA and taking backscattered (BS) images. Then, images were imported into imageJ and analysed. Results: The prism structure is clearly apparent on FIB-SEM slices of WSL with the dissolution of prism boundaries as well as internal porosity within the prism itself. Porosity scales roughly 100-400nm, which is comparable to the light wavelength (500nm). Conclusion: FIB-SEM is useful to characterize the porosity of WSL and it clearly shows the difference between WSL and normal enamel.

Keywords: white spot lesion, FIB-SEM, enamel porosity, porosity

Procedia PDF Downloads 98
13485 In vitro Antioxidant and Antisickling Effects of Aerva javanica, and Ficus palmata Extracts on Sickle Cell Anemia

Authors: E. A. Alaswad, H. M. Choudhry, F. Z. Filimban

Abstract:

Sickle Cell Anemia (SCA) is one type of blood diseases related to autosomal disorder. The sickle shaped red blood cells are the main cause of many problems in the blood vessels and capillaries. Aerva Javanica (J) and Ficus Palmata (P) are medicinal plants that have many popular uses and have been proved their efficacy. The aim of this study was to assess the antioxidants activity and the antisickling effect of J and P extractions. The period of this study, air-dried leaves of J, and P plants were ground and the active components were extracted by maceration in water (W) and methanol (M) as solvents. The antioxidants activity of JW, PW, JM, and PM were assessed by way of the radical scavenging method using 2,2-diphenyl-1-picrylhydrazyl (DPPH). To determine the antisickling effect of J and P extracts. 20 samples were collected from sickle cell anemia patients. Different concentrations of J and P extracts (200 and 110 μg/mL) were added on the sample and incubated. A drop of each sample was examined with light microscope. Normal and sickled RBCs were calculated and expressed as the percent of sickling. The stabilization effect of the extracts was measured by the osmotic fragility test for erythrocytes. The finding suggests as estimated by DPPH method, all the extracts showed an antioxidant activity with a significant inhibition of the DPPH radicals. PM has the least IC50% with 71.49 μg/ml while JM was the most with 408.49 μg/ml. Sickle cells treated with extracts at different concentrations significantly reduced the percentage of sickling compering to control samples. However, JM 200 μg/mL give the highest anti-sickling affect with 17.4% of sickling compared to control 67.5 of sickling while PM at 200 μg/mL showed the highest membrane cell stability. In a conclusion, the results showed that J and P extracts have antisickling effects. Therefore, the Aerva javanica and Ficus palmata may have a role in SCA management and a good impact on the patient's lives.

Keywords: Aerva javanica, antioxidant, antisickling, Ficus palmata, sickle cell anemia

Procedia PDF Downloads 177
13484 Comparative Analysis of Teachers’ Performance in Private and Public Primary Schools in Oyo State

Authors: Babajide Solomon Faloore

Abstract:

This study on the comparative analysis of the performance of teachers in private and public schools was carried out in Ibadan North West Local Government Area of Oyo State. This study examined the justification for the claim that there is a difference in the performance of teachers in private and public primary schools and at the same time identified factors responsible for the difference in the performance of these teachers. A descriptive survey research design was used for the study. Data generated were analyzed using t-test and regression analysis. The findings of the study revealed that there is significance difference in the performance of teachers in private and private primary schools in Ibadan North West Local Government Area of Oyo State( t=64.09; df=459; p,.05). The findings also revealed that the method of teaching in private primary schools is significantly different from the method of teaching in public primary schools in Ibadan North West Local Government Area of Oyo State (t=73.08; df=459; p,.05). Findings revealed that school leadership and management have a significant contribution on the performance of private and public primary school teachers in Ibadan North West Local Area of Oyo State. Based on the finding, the following recommendations were made: Primary school teachers need to be motivated and rewarded for excellent performance. Primary schools should be properly equipped with teaching–aid facilities, laboratories, and libraries. The government should use the findings of this study to improve on teaching materials provided to the primary school teachers in Nigeria. Public primary schools should be designed by education planners, administrators, and government. Headmasters, proprietors, and teachers of primary schools should look inward and give a performance appraisal and evaluation of themselves from time to time based on the subject they taught. Finally, school administrators should be conscious of the way they manage the teachers in schools not only in informal situations but also in formal settings.

Keywords: private education, public education, school leadership, school management, teachers performance

Procedia PDF Downloads 394
13483 Understanding the Damage Evolution and the Risk of Failure of Pyrrhotite Containing Concrete Foundations

Authors: Marisa Chrysochoou, James Mahoney, Kay Wille

Abstract:

Pyrrhotite is an iron-sulfide mineral which releases sulfuric acid when exposed to water and oxygen. The presence of this mineral in concrete foundations across Connecticut and Massachusetts in the US is causing in some cases premature failure. This has resulted in a devastating crisis for all parties affected by this type of failure which can take up to 15-25 years before internal damage becomes visible on the surface. This study shares laboratory results aimed to investigate the fundamental mechanisms of pyrrhotite reaction and to further the understanding of its deterioration kinetics within concrete. This includes the following analyses: total sulfur, wavelength dispersive X-ray fluorescence, expansion, reaction rate combined with ion-chromatography, as well as damage evolution using electro-chemical acceleration. This information is coupled to a statistical analysis of over 150 analyzed concrete foundations. Those samples were obtained and process using a developed and validated sampling method that is minimally invasive to the foundation in use, provides representative samples of the concrete matrix across the entire foundation, and is time and cost-efficient. The processed samples were then analyzed using a developed modular testing method based on total sulfur and wavelength dispersive X-ray fluorescence analysis to quantify the amount of pyrrhotite. As part of the statistical analysis the results were grouped into the following three categories: no damage observed and no pyrrhotite detected, no damage observed and pyrrhotite detected and damaged observed and pyrrhotite detected. As expected, a strong correlation between amount of pyrrhotite, age of the concrete and damage is observed. Information from the laboratory investigation and from the statistical analysis of field samples will aid in forming a scientific basis to support the decision process towards sustainable financial and administrative solutions by state and local stakeholders.

Keywords: concrete, pyrrhotite, risk of failure, statistical analysis

Procedia PDF Downloads 77
13482 Assessing the Disability-Free Life Expectancy and Decomposition of Its Difference: A Gender Perspective on India over the Decade 2001-2011

Authors: Kajori Banerjee, Laxmi Kant Dwivedi

Abstract:

“Health transition” is defined to be “a process through which high levels of mortality, morbidity and disability are reduced to low levels by influencing cultural, social and behavioural factors”. Life expectancy in India has been on the rise and parallel the burden of disease and disability has also risen noticeably. Borrowing data from Indian Census (2001, 2011), this study identifies the gender-wise burden of disability by calculating disability free life expectancy (DFLE) and life lived with disability (LWD). Sullivan’s method of calculating DFLE using proportion of disabled is used for this purpose. The change in person years lived with disability in the decade 2001-11 is further decomposed using Arriaga’s method into mortality and disability effects (ME and DE) to check the magnitude and direction of contribution of mortality and disability. Nationally, along with DFLE, LWD has amplified too. Despite having the highest life expectancy and DFLE, LWD in Kerala, was highest for both sexes in 2001. But in 2011, the LWD was highest among the males of Orissa and females of Rajasthan. For the overall population, DE is positive for the prime working age groups of 20-40years indicating that there has been an increase in the disability proportion holding mortality constant for 2001-2011. Females exhibit higher positive DE implying greater loss of healthy years due to disability than males. The findings call for an immediate attention to the causes of rising disability burden among the working population, especially females, as this might heavily effect the availability of quality labour force and its relative economic output in the Indian labour market. This also hints at the degrading quality of the elongated life and needs to be given the required attention to enhance the quality of life lead in the Nation.

Keywords: disability-free life expectancy, disability effect, life expectancy, mortality effect

Procedia PDF Downloads 400
13481 The Influence of Market Attractiveness and Core Competence on Value Creation Strategy and Competitive Advantage and Its Implication on Business Performance

Authors: Firsan Nova

Abstract:

The average Indonesian watches 5.5 hours of TV a day. With a population of 242 million people and a Free-to-Air (FTA) TV penetration rate of 56%, that equates to 745 million hours of television watched each day. With such potential, it is no wonder that many companies are now attempting to get into the Pay TV market. Research firm Media Partner Asia has forecast in its study that the number of Indonesian pay-television subscribers will climb from 2.4 million in 2012 to 8.7 million by 2020, with penetration scaling up from 7 percent to 21 percent. Key drivers of market growth, the study says, include macro trends built around higher disposable income and a rising middle class, with leading players continuing to invest significantly in sales, distribution and content. New entrants, in the meantime, will boost overall prospects. This study aims to examine and analyze the effect of Market Attractiveness and the Core Competence on Value Creation and Competitive Advantage and its impact to Business Performance in the pay TV industry in Indonesia. The study using strategic management science approach with the census method in which all members of the population are as sample. Verification method is used to examine the relationship between variables. The unit of analysis in this research is all Indonesian Pay TV business units totaling 19 business units. The unit of observation is the director and managers of each business unit. Hypothesis testing is performed by using statistical Partial Least Square (PLS). The conclusion of the study shows that the market attractiveness affects business performance through value creation and competitive advantage. The appropriate value creation comes from the company ability to optimize its core competence and exploit market attractiveness. Value creation affects competitive advantage. The competitive advantage can be determined based on the company's ability to create value for customers and the competitive advantage has an impact on business performance.

Keywords: market attractiveness, core competence, value creation, competitive advantage, business performance

Procedia PDF Downloads 352
13480 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors

Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić

Abstract:

Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).

Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism

Procedia PDF Downloads 107
13479 Integration of Gravity and Seismic Methods in the Geometric Characterization of a Dune Reservoir: Case of the Zouaraa Basin, NW Tunisia

Authors: Marwa Djebbi, Hakim Gabtni

Abstract:

Gravity is a continuously advancing method that has become a mature technology for geological studies. Increasingly, it has been used to complement and constrain traditional seismic data and even used as the only tool to get information of the sub-surface. In fact, in some regions the seismic data, if available, are of poor quality and hard to be interpreted. Such is the case for the current study area. The Nefza zone is part of the Tellian fold and thrust belt domain in the north west of Tunisia. It is essentially made of a pile of allochthonous units resulting from a major Neogene tectonic event. Its tectonic and stratigraphic developments have always been subject of controversies. Considering the geological and hydrogeological importance of this area, a detailed interdisciplinary study has been conducted integrating geology, seismic and gravity techniques. The interpretation of Gravity data allowed the delimitation of the dune reservoir and the identification of the regional lineaments contouring the area. It revealed the presence of three gravity lows that correspond to the dune of Zouara and Ouchtata separated along with a positive gravity axis espousing the Ain Allega_Aroub Er Roumane axe. The Bouguer gravity map illustrated the compartmentalization of the Zouara dune into two depressions separated by a NW-SE anomaly trend. This constitution was confirmed by the vertical derivative map which showed the individualization of two depressions with slightly different anomaly values. The horizontal gravity gradient magnitude was performed in order to determine the different geological features present in the studied area. The latest indicated the presence of NE-SW parallel folds according to the major Atlasic direction. Also, NW-SE and EW trends were identified. The maxima tracing confirmed this direction by the presence of NE-SW faults, mainly the Ghardimaou_Cap Serrat accident. The quality of the available seismic sections and the absence of borehole data in the region, except few hydraulic wells that been drilled and showing the heterogeneity of the substratum of the dune, required the process of gravity modeling of this challenging area that necessitates to be modeled for the geometrical characterization of the dune reservoir and determine the different stratigraphic series underneath these deposits. For more detailed and accurate results, the scale of study will be reduced in coming research. A more concise method will be elaborated; the 4D microgravity survey. This approach is considered as an expansion of gravity method and its fourth dimension is time. It will allow a continuous and repeated monitoring of fluid movement in the subsurface according to the micro gal (μgall) scale. The gravity effect is a result of a monthly variation of the dynamic groundwater level which correlates with rainfall during different periods.

Keywords: 3D gravity modeling, dune reservoir, heterogeneous substratum, seismic interpretation

Procedia PDF Downloads 305
13478 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing

Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang

Abstract:

Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.

Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment

Procedia PDF Downloads 175
13477 Effects of Extrusion Conditions on the Cooking Properties of Extruded Rice Vermicelli Using Twin-Screw Extrusion

Authors: Hasika Mith, Hassany Ly, Hengsim Phoung, Rathana Sovann, Pichmony Ek, Sokuntheary Theng

Abstract:

Rice is one of the most important crops used in the production of ready-to-cook (RTC) products such as rice vermicelli, noodles, rice paper, Banh Kanh, wine, snacks, and desserts. Meanwhile, extrusion is the most creative food processing method used for developing products with improved nutritional, functional, and sensory properties. This method authorizes process control such as mixing, cooking, and product shaping. Therefore, the objectives of this study were to produce rice vermicelli using a twin screw extruder, and the cooking properties of extruded rice vermicelli were investigated. Response Surface Methodology (RSM) with Box-Behnken design was applied to optimize extrusion conditions in order to achieve the most desirable product characteristics. The feed moisture rate (30–35%), the barrel temperature (90–110°C), and the screw speed (200–400 rpm) all play a big role and have a significant impact on the water absorption index (WAI), cooking yield (CY), and cooking loss (CL) of extrudate rice vermicelli. Results showed that the WAI of the final extruded rice vermicelli ranged between 216.97% and 571.90%. The CY ranged from 147.94 to 203.19%, while the CL ranged from 8.55 to 25.54%. The findings indicated that at a low screw speed or low temperature, there are likely to be more unbroken polymer chains and more hydrophilic groups, which can bind more water and make WAI values higher. The extruded rice vermicelli's cooking yield value had altered considerably after processing under various conditions, proving that the screw speed had little effect on each extruded rice vermicelli's CY. The increase in barrel temperature tended to increase cooking yield and reduce cooking loss. In conclusion, the extrusion processing by a twin-screw extruder had a significant effect on the cooking quality of the rice vermicelli extrudate.

Keywords: cooking loss, cooking quality, cooking yield, extruded rice vermicelli, twin-screw extruder, water absorption index

Procedia PDF Downloads 88