Search results for: tree identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3772

Search results for: tree identification

3232 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case

Authors: Besma Khalfoun

Abstract:

In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.

Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition

Procedia PDF Downloads 11
3231 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station

Authors: H. Gholami, M. Jalali Azizpour

Abstract:

Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.

Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station

Procedia PDF Downloads 386
3230 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses

Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi

Abstract:

The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.

Keywords: DNA barcoding, species complex, thrips, species delimitation

Procedia PDF Downloads 128
3229 The Impact of a Model's Skin Tone and Ethnic Identification on Consumer Decision Making

Authors: Shanika Y. Koreshi

Abstract:

Sri Lanka housed the lingerie product development and manufacturing subsidiary to renowned brands such as La Senza, Marks & Spencer, H&M, Etam, Lane Bryant, and George. Over the last few years, they have produced local brands such as Amante to cater to the local and regional customers. Past research has identified factors such as quality, price, and design to be vital when marketing lingerie to consumers. However, there has been minimum research that looks into the ethnically targeted market and skin colour within the Asian population. Therefore, the main aim of the research was to identify whether consumer preference for lingerie is influenced by the skin tone of the model wearing it. Moreover, the secondary aim was to investigate if the consumer preference for lingerie is influenced by the consumer’s ethnic identification with the skin tone of the model. An experimental design was used to explore the above aims. The participants constituted of 66 females residing in the western province of Sri Lanka and were gathered via convenience sampling. Six computerized images of a real model were used in the study, and her skin tone was digitally manipulated to express three different skin tones (light, tan and dark). Consumer preferences were measured through a ranking order scale that was constructed via a focus group discussion and ethnic identity was measured by the Multigroup Ethnic Identity Measure-Revised. Wilcoxon signed-rank test, Friedman test, and chi square test of independence were carried out using SPSS version 20. The results indicated that majority of the consumers ethnically identified and preferred the tan skin over the light and dark skin tones. The findings support the existing literature that states there is a preference among consumers when models have a medium skin tone over a lighter skin tone. The preference for a tan skin tone in a model is consistent with the ethnic identification of the Sri Lankan sample. The study implies that lingerie brands should consider the model's skin tones when marketing the brand to different ethnic backgrounds.

Keywords: consumer preference, ethnic identification, lingerie, skin tone

Procedia PDF Downloads 259
3228 Analytical and Statistical Study of the Parameters of Expansive Soil

Authors: A. Medjnoun, R. Bahar

Abstract:

The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.

Keywords: analysis, estimated model, parameter identification, swelling of clay

Procedia PDF Downloads 417
3227 Modern State of the Universal Modeling for Centrifugal Compressors

Authors: Y. Galerkin, K. Soldatova, A. Drozdov

Abstract:

The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.

Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient

Procedia PDF Downloads 412
3226 A Three-Dimensional (3D) Numerical Study of Roofs Shape Impact on Air Quality in Urban Street Canyons with Tree Planting

Authors: Bouabdellah Abed, Mohamed Bouzit, Lakhdar Bouarbi

Abstract:

The objective of this study is to investigate numerically the effect of roof shaped on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, Pvol = 96%. A three-dimensional computational fluid dynamics (CFD) model for evaluating air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier–Stokes (RANS) equations and the k-Epsilon EARSM turbulence model as close of the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against the wind tunnel experiment. Having established this, the wind flow and pollutant dispersion in urban street canyons of six roof shapes are simulated. The numerical simulation agrees reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated, this complexity is increased with presence of tree and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped. The results also indicated that the corners eddies provide additional ventilation and lead to lower traffic pollutant concentrations at the street canyon ends.

Keywords: street canyon, pollutant dispersion, trees, building configuration, numerical simulation, k-Epsilon EARSM

Procedia PDF Downloads 366
3225 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 370
3224 Disaster Victim Identification: A Social Science Perspective

Authors: Victor Toom

Abstract:

Albeit it is never possible to anticipate the full range of difficulties after a catastrophe, efforts to identify victims of mass casualty events have become institutionalized and standardized with the aim of effectively and efficiently addressing the many challenges and contingencies. Such ‘disaster victim identification’ (DVI) practices are dependent on the forensic sciences, are subject of national legislation, and are reliant on technical and organizational protocols to mitigate the many complexities in the wake of catastrophe. Apart from such technological, legal and bureaucratic elements constituting a DVI operation, victims’ families and their emotions are also part and parcel of any effort to identify casualties of mass human fatality incidents. Take for example the fact that forensic experts require (antemortem) information from the group of relatives to make identification possible. An identified body or body part is also repatriated to kin. Relatives are thus main stakeholders in DVI operations. Much has been achieved in years past regarding facilitating victims’ families’ issues and their emotions. Yet, how families are dealt with by experts and authorities is still considered a difficult topic. Due to sensitivities and required emphatic interaction with families on the one hand, and the rationalized DVI efforts, on the other hand, there is still scope for improving communication, providing information and meaningful inclusion of relatives in the DVI effort. This paper aims to bridge the standardized world of DVI efforts and families’ experienced realities and makes suggestions to further improve DVI efforts through inclusion of victims’ families. Based on qualitative interviews, the paper narrates involvement and experiences of inter alia DVI practitioners, victims’ families, advocates and clergy in the wake of the 1995 Srebrenica genocide which killed approximately 8,000 men, and the 9/11 in New York City with 2,750 victims. The paper shows that there are several models of including victims’ families into a DVI operation, and it argues for a model of where victims’ families become a partner in DVI operations.

Keywords: disaster victim identification (DVI), victims’ families, social science (qualitative), 9/11 attacks, Srebrenica genocide

Procedia PDF Downloads 232
3223 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition

Procedia PDF Downloads 177
3222 Oat βeta Glucan Attenuates the Development of Atherosclerosis and Improves the Intestinal Barrier Function by Reducing Bacterial Endotoxin Translocation in APOE-/- MICE

Authors: Dalal Alghawas, Jetty Lee, Kaisa Poutanen, Hani El-Nezami

Abstract:

Oat β-glucan a water soluble non starch linear polysaccharide has been approved as a cholesterol lowering agent by various food safety administrations and is commonly used to reduce the risk of heart disease. The molecular weight of oat β-glucan can vary depending on the extraction and fractionation methods. It is not clear whether the molecular weight has a significant impact at reducing the acceleration of atherosclerosis. The aim of this study was to investigate three different oat β-glucan fractionations on the development of atherosclerosis in vivo. With special focus on plaque stability and the intestinal barrier function. To test this, ApoE-/- female mice were fed a high fat diet supplemented with oat bran, high molecular weight (HMW) oat β-glucan fractionate and low molecular weight (LMW) oat β-glucan fractionate for 16 weeks. Atherosclerosis risk markers were measured in the plasma, heart and aortic tree. Plaque size was measured in the aortic root and aortic tree. ICAM-1, VCAM-1, E-Selectin, P-Selectin, protein levels were assessed from the aortic tree to determine plaque stability at 16 weeks. The expression of p22phox at the aortic root was evaluated to study the NADPH oxidase complex involved in nitric oxide bioavailability and vascular elasticity. The tight junction proteins E-cadherin and beta-catenin from western blot analyses were analysed as an intestinal barrier function test. Plasma LPS, intestinal D-lactate levels and hepatic FMO gene expression were carried out to confirm whether the compromised intestinal barrier lead to endotoxemia. The oat bran and HMW oat β-glucan diet groups were more effective than the LMW β-glucan diet group at reducing the plaque size and showed marked improvements in plaque stability. The intestinal barrier was compromised for all the experimental groups however the endotoxemia levels were higher in the LMW β-glucan diet group. The oat bran and HMW oat β-glucan diet groups were more effective at attenuating the development of atherosclerosis. Reasons for this could be due to the LMW oat β-glucan diet group’s low viscosity in the gut and the inability to block the reabsorption of cholesterol. Furthermore the low viscosity may allow more bacterial endotoxin translocation through the impaired intestinal barrier. In future food technologists should carefully consider how to incorporate LMW oat β-glucan as a health promoting food.

Keywords: Atherosclerosis, beta glucan, endotoxemia, intestinal barrier function

Procedia PDF Downloads 420
3221 Selection the Most Suitable Method for DNA Extraction from Muscle of Iran's Canned Tuna by Comparison of Different DNA Extraction Methods

Authors: Marjan Heidarzadeh

Abstract:

High quality and purity of DNA isolated from canned tuna is essential for species identification. In this study, the efficiency of five different methods for DNA extraction was compared. Method of national standard in Iran, the CTAB precipitation method, Wizard DNA Clean Up system, Nucleospin and GenomicPrep were employed. DNA was extracted from two different canned tuna in brine and oil of the same tuna species. Three samples of each type of product were analyzed with the different methods. The quantity and quality of DNA extracted was evaluated using the 260 nm absorbance and ratio A260/A280 by spectrophotometer picodrop. Results showed that the DNA extraction from canned tuna preserved in different liquid media could be optimized by employing a specific DNA extraction method in each case. Best results were obtained with CTAB method for canned tuna in oil and with Wizard method for canned tuna in brine.

Keywords: canned tuna PCR, DNA, DNA extraction methods, species identification

Procedia PDF Downloads 657
3220 Molecular Identification and Genotyping of Human Brucella Strains Isolated in Kuwait

Authors: Abu Salim Mustafa

Abstract:

Brucellosis is a zoonotic disease endemic in Kuwait. Human brucellosis can be caused by several Brucella species with Brucella melitensis causing the most severe and Brucella abortus the least severe disease. Furthermore, relapses are common after successful chemotherapy of patients. The classical biochemical methods of culture and serology for identification of Brucellae provide information about the species and serotypes only. However, to differentiate between relapse and reinfection/epidemiological investigations, the identification of genotypes using molecular methods is essential. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-16] were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. The 16S rRNA gene sequencing suggested that all the strains were B. melitensis and real-time PCR confirmed their species identity as B. melitensis. The ERIC-PCR band profiles produced a dendrogram of 75 branches suggesting each strain to be of a unique type. The cluster classification, based on ~ 80% similarity, divided all the ERIC genotypes into two clusters, A and B. Cluster A consisted of 9 ERIC genotypes (A1-A9) corresponding to 9 individual strains. Cluster B comprised of 13 ERIC genotypes (B1-B13) with B5 forming the largest cluster of 51 strains. MLVA-16 identified all isolates as B. melitensis and divided them into 71 MLVA-types. The cluster analysis of MLVA-16-types suggested that most of the strains in Kuwait originated from the East Mediterranean Region, a few from the African group and one new genotype closely matched with the West Mediterranean region. In conclusion, this work demonstrates that B. melitensis, the most pathogenic species of Brucella, is prevalent in Kuwait. Furthermore, MLVA-16 is the best molecular method, which can identify the Brucella species and genotypes as well as determine their origin in the global context. Supported by Kuwait University Research Sector grants MI04/15 and SRUL02/13.

Keywords: Brucella, ERIC-PCR, MLVA-16, RT-PCR, 16S rRNA gene sequencing

Procedia PDF Downloads 391
3219 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio

Authors: O. S. Omorogiuwa, E. J. Omozusi

Abstract:

The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.

Keywords: spectrum, interference, telecommunication, cognitive radio, frequency

Procedia PDF Downloads 224
3218 Object-Oriented Program Comprehension by Identification of Software Components and Their Connexions

Authors: Abdelhak-Djamel Seriai, Selim Kebir, Allaoua Chaoui

Abstract:

During the last decades, object oriented program- ming has been massively used to build large-scale systems. However, evolution and maintenance of such systems become a laborious task because of the lack of object oriented programming to offer a precise view of the functional building blocks of the system. This lack is caused by the fine granularity of classes and objects. In this paper, we use a post object-oriented technology namely software components, to propose an approach based on the identification of the functional building blocks of an object oriented system by analyzing its source code. These functional blocks are specified as software components and the result is a multi-layer component based software architecture.

Keywords: software comprehension, software component, object oriented, software architecture, reverse engineering

Procedia PDF Downloads 412
3217 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks

Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang

Abstract:

For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.

Keywords: high-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network

Procedia PDF Downloads 434
3216 Comparison of Several Peat Qualities as Amendment to Improve Afforestation of Mine Wastes

Authors: Marie Guittonny-LarchevêQue

Abstract:

In boreal Canada, industrial activities such as forestry, peat extraction and metal mines often occur nearby. At closure, mine waste storage facilities have to be reclaimed. On tailings storage facilities, tree plantations can achieve rapid restoration of forested landscapes. However, trees poorly grow in mine tailings and organic amendments like peat are required to improve tailings’ structure and nutrients. Canada is a well-known producer of horticultural quality peat, but some lower quality peats coming from areas adjacent to the reclaimed mines could allow successful revegetation. In particular, hemic peat coming from the bottom of peat-bogs is more decomposed than fibric peat and is less valued for horticulture. Moreover, forest peat is sometimes excavated and piled by the forest industry after cuttings to stimulate tree regeneration on the exposed mineral soil. The objective of this project was to compare the ability of peats of differing quality and origin to improve tailings structure, nutrients and tree development. A greenhouse experiment was conducted along one growing season in 2016 with a complete randomized block design combining 8 repetitions (blocks) x 2 tree species (Populus tremuloides and Pinus banksiana) x 6 substrates (tailings, commercial horticultural peat, and mixtures of tailings with commercial peat, forest peat, local fibric peat, or local hemic peat) x 2 fertilization levels (with or without mineral fertilization). The used tailings came from a gold mine and were low in sulfur and trace metals. The commercial peat had a slightly acidic pH (around 6) while other peats had a clearly acidic pH (around 3). However, mixing peat with slightly alkaline tailings resulted in a pH close to 7 whatever the tested peats. The macroporosity of mixtures was intermediate between the low values of tailings (4%) and the high values of commercial peat alone (34%). Seedling survival was lower on tailings for poplar compared to all other treatments, with or without fertilization. Survival and growth were similar among all treatments for pine. Fertilization had no impact on the maximal height and diameter of poplar seedlings but changed the relative performance of the substrates. When not fertilized, poplar seedlings grown in commercial peat were the highest and largest, and the smallest and slenderest in tailings, with intermediate values in mixtures. When fertilized, poplar seedlings grown in commercial peat were smaller and slender compared to all other substrates. However for this species, foliar, shoot, and root biomass production was the greatest in commercial peat and the lowest in tailings compared to all mixtures, whether fertilized or not. The mixture with local fibric peat provided the seedlings with the lowest foliar N concentrations compared to all other substrates whatever the species or the fertilization treatment. At the short-term, the performance of all the tested peats were close when mixed to tailings, showing that peats of lower quality could be valorized instead of using horticultural peat. These results demonstrate that intersectorial synergies in accordance with the principles of circular economy may be developed in boreal Canada between local industries around the reclamation of mine waste dumps.

Keywords: boreal trees, mine spoil, mine revegetation, intersectorial synergies

Procedia PDF Downloads 250
3215 System Identification of Building Structures with Continuous Modeling

Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab

Abstract:

This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.

Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction

Procedia PDF Downloads 233
3214 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification

Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.

Keywords: antibiotic resistance, Streptococci, respiratory infections, diagnostic test

Procedia PDF Downloads 129
3213 Hand Gestures Based Emotion Identification Using Flex Sensors

Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan

Abstract:

In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.

Keywords: emotion identification, emotion models, gesture recognition, user perception

Procedia PDF Downloads 285
3212 Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform

Authors: Saad M. Darwish, Adel A. El-Zoghabi, Moustafa F. Ashry

Abstract:

The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.

Keywords: Grid computing, load balancing, fault tolerance, R-tree, heterogeneous systems

Procedia PDF Downloads 490
3211 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters

Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev

Abstract:

Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.

Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters

Procedia PDF Downloads 197
3210 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame

Authors: Ardalan Sabamehr, Ashutosh Bagchi

Abstract:

Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.

Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform

Procedia PDF Downloads 296
3209 Impact of VARK Learning Model at Tertiary Level Education

Authors: Munazza A. Mirza, Khawar Khurshid

Abstract:

Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.

Keywords: learning style, VARK, sensory preferences, identification model, didactic practices

Procedia PDF Downloads 277
3208 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System

Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek

Abstract:

Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.

Keywords: mesh network, RFID, wireless sensor network, zigbee

Procedia PDF Downloads 461
3207 The Role of Self-Compassion for the Diagnosis of Social Anxiety Disorder in Adolescents

Authors: Diana Vieira Figueiredo, Rita Ramos Miguel, Maria do Céu Salvador, Luiza Nobre-Lima, Daniel RIjo, Paula Vagos

Abstract:

Social Anxiety Disorder (SAD) is characterized by a marked and persistent fear of social and/or performance situations in which one may be exposed to the scrutiny of others.  SAD has its usual onset and is highly prevalent during adolescence; if left untreated, it often has a chronic and unremitting course. So, it seems important to understand the psychological processes that might predict the development of SAD. One of these processes may be self-compassion, which has been found to be associated with social anxiety in both adults and adolescents. Self-compassion involves three main components, each with a positive (compassionate behavior) and negative (uncompassionate behavior) pole – self-kindness versus self-judgment, common humanity versus isolation, and mindfulness versus over-identification. The negative indicators of self-compassion (self-judgement, isolation, and over-identification) were found to be more strongly linked to mental health problems than the positive indicators (self-kindness, common humanity, and mindfulness). Additionally, negative associations were found between the positive indicators of self-compassion (self-kindness, common humanity, mindfulness) and psychopathology. The current study aimed to investigate the role of self-kindness, self-judgment, common humanity, isolation, mindfulness, and over-identification in the likelihood of an adolescent presenting SAD by comparing groups of normative and socially anxious adolescents. The sample consisted of 32 adolescents (Mage = 15.88, SD = .833) of which 23 were girls. Adolescents were assessed through a clinical structured interview that led 17 to be assigned to the clinical group (presenting a primary diagnosis of SAD) and 15 to be assigned to the non-clinical group (presenting no clinical diagnosis). Variables under study were measured through the Self-Compassion Scale for adolescents (SCS-A), which assesses the six indicators of self-compassion presented above. Six separate models were tested, each with one of the subscales of the SCS-A as the independent variable and with the group (clinical versus non-clinical) as the dependent variable. The models considering isolation, over-identification, self-judgement, and self-kindness fitted the data and accurately predicted group belonging for between 75% to 84.4% of cases. Results indicated that the log of the odds of an adolescent presenting SAD was positively related to isolation, over-identification, and self-judgement and negatively associated with self-kindness. Findings provide support for the idea that decreased self-compassion may place adolescents at increased risk for experiencing clinical levels of social anxiety: on the one hand, adolescents with higher levels of isolation, over-identification, and self-judgement seem to be more prone to the development of psychopathological levels of social anxiety; on the other hand, self-kindness may play a protective role in the development of SAD in this developmental phase. So, if focusing on social feared consequences and perceiving to be different from others may be distinctive features of SAD, developing self-kindness may be the antidote to promote diminished levels of social anxiety and more.

Keywords: adolescents, social anxiety disorder, self-compassion, diagnosis odds-ration

Procedia PDF Downloads 159
3206 Sustainable Wood Harvesting from Juniperus procera Trees Managed under a Participatory Forest Management Scheme in Ethiopia

Authors: Mindaye Teshome, Evaldo Muñoz Braz, Carlos M. M. Eleto Torres, Patricia Mattos

Abstract:

Sustainable forest management planning requires up-to-date information on the structure, standing volume, biomass, and growth rate of trees from a given forest. This kind of information is lacking in many forests in Ethiopia. The objective of this study was to quantify the population structure, diameter growth rate, and standing volume of wood from Juniperus procera trees in the Chilimo forest. A total of 163 sample plots were set up in the forest to collect the relevant vegetation data. Growth ring measurements were conducted on stem disc samples collected from 12 J. procera trees. Diameter and height measurements were recorded from a total of 1399 individual trees with dbh ≥ 2 cm. The growth rate, maximum current and mean annual increments, minimum logging diameter, and cutting cycle were estimated, and alternative cutting cycles were established. Using these data, the harvestable volume of wood was projected by alternating four minimum logging diameters and five cutting cycles following the stand table projection method. The results show that J. procera trees have an average density of 183 stems ha⁻¹, a total basal area of 12.1 m² ha⁻¹, and a standing volume of 98.9 m³ ha⁻¹. The mean annual diameter growth ranges between 0.50 and 0.65 cm year⁻¹ with an overall mean of 0.59 cm year⁻¹. The population of J. procera tree followed a reverse J-shape diameter distribution pattern. The maximum current annual increment in volume (CAI) occurred at around 49 years when trees reached 30 cm in diameter. Trees showed the maximum mean annual increment in volume (MAI) around 91 years, with a diameter size of 50 cm. The simulation analysis revealed that 40 cm MLD and a 15-year cutting cycle are the best minimum logging diameter and cutting cycle. This combination showed the largest harvestable volume of wood potential, volume increments, and a 35% recovery of the initially harvested volume. It is concluded that the forest is well stocked and has a large amount of harvestable volume of wood from J. procera trees. This will enable the country to partly meet the national wood demand through domestic wood production. The use of the current population structure and diameter growth data from tree ring analysis enables the exact prediction of the harvestable volume of wood. The developed model supplied an idea about the productivity of the J. procera tree population and enables policymakers to develop specific management criteria for wood harvesting.

Keywords: logging, growth model, cutting cycle, minimum logging diameter

Procedia PDF Downloads 88
3205 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar

Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati

Abstract:

Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.

Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse

Procedia PDF Downloads 392
3204 Land Use, Land Cover Changes and Woody Vegetation Status of Tsimur Saint Gebriel Monastery, in Tigray Region, Northern Ethiopia

Authors: Abraha Hatsey, Nesibu Yahya, Abeje Eshete

Abstract:

Ethiopian Orthodox Tewahido Church has a long tradition of conserving the Church vegetation and is an area treated as a refugee camp for many endangered indigenous tree species in Northern Ethiopia. Though around 36,000 churches exist in Ethiopia, only a few churches have been studied so far. Thus, this study assessed the land use land cover change of 3km buffer (1986-2018) and the woody species diversity and regeneration status of Tsimur St. Gebriel monastery in Tigray region, Northern Ethiopia. For vegetation study, systematic sampling was used with 100m spacing between plots and between transects. Plot size was 20m*20m for the main plot and 2 subplots (5m*5m each) for the regeneration study. Tree height, diameter at breast height(DBH) and crown area were measured in the main plot for all trees with DBH ≥ 5cm. In the subplots, all seedlings and saplings were counted with DBH < 5cm. The data was analyzed on excel and Pass biodiversity software for diversity and evenness analysis. The major land cover classes identified include bare land, farmland, forest, shrubland and wetland. The extents of forest and shrubland were declined considerably due to bare land and agricultural land expansions within the 3km buffer, indicating an increasing pressure on the church forest. Regarding the vegetation status, A total of 19 species belonging to 13 families were recorded in the monastery. The diversity (H’) and evenness recorded were 2.4 and 0.5, respectively. The tree density (DBH ≥ 5cm) was 336/ha and a crown cover of 65%. Olea europaea was the dominant (6.4m2/ha out of 10.5m2 total basal area) and a frequent species (100%) with good regeneration in the monastery. The rest of the species are less frequent and are mostly confined to water sources with good site conditions. Juniperus procera (overharvested) and the other indigenous species were with few trees left and with no/very poor regeneration status. The species having poor density, frequency and regeneration (Junperus procera, Nuxia congesta Fersen and Jasminium abyssinica) need prior conservation and enrichment planting. The indigenous species could also serve as a potential seed source for the reproduction and restoration of nearby degraded landscapes. The buffer study also demonstrated expansion of agriculture and bare land, which could be a threat to the forest of the isolated monastery. Hence, restoring the buffer zone is the only guarantee for the healthy existence of the church forest.

Keywords: church forests, regeneration, land use change, vegetation status

Procedia PDF Downloads 205
3203 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP

Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang

Abstract:

Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.

Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species

Procedia PDF Downloads 68