Search results for: signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4881

Search results for: signal processing

4341 Intelligent Grading System of Apple Using Neural Network Arbitration

Authors: Ebenezer Obaloluwa Olaniyi

Abstract:

In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.

Keywords: image processing, neural network, apple, intelligent system

Procedia PDF Downloads 375
4340 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust

Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin

Abstract:

The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.

Keywords: acoustic impedance, engine exhaust system, FEM model, test stand

Procedia PDF Downloads 31
4339 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 446
4338 Improving Capability of Detecting Impulsive Noise

Authors: Farbod Rohani, Elyar Ghafoori, Matin Saeedkondori

Abstract:

Impulse noise is electromagnetic emission which generated by many house hold appliances that are attached to the electrical network. The main difficulty of impulsive noise (IN) elimination process from communication channels is to distinguish it from the transmitted signal and more importantly choosing the proper threshold bandwidth in order to eliminate the signal. Because of wide band property of impulsive noise, we present a novel method for setting the detection threshold, by taking advantage of the fact that impulsive noise bandwidth is usually wider than that of typical communication channels and specifically OFDM channel. After IN detection procedure, we apply simple windowing mechanisms to eliminate them from the communication channel.

Keywords: impulsive noise, OFDM channel, threshold detecting, windowing mechanisms

Procedia PDF Downloads 317
4337 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit

Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira

Abstract:

Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.

Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing

Procedia PDF Downloads 122
4336 Nutritional Potential and Functionality of Whey Powder Influenced by Different Processing Temperature and Storage

Authors: Zarmina Gillani, Nuzhat Huma, Aysha Sameen, Mulazim Hussain Bukhari

Abstract:

Whey is an excellent food ingredient owing to its high nutritive value and its functional properties. However, composition of whey varies depending on composition of milk, processing conditions, processing method, and its whey protein content. The aim of this study was to prepare a whey powder from raw whey and to determine the influence of different processing temperatures (160 and 180 °C) on the physicochemical, functional properties during storage of 180 days and on whey protein denaturation. Results have shown that temperature significantly (P < 0.05) affects the pH, acidity, non-protein nitrogen (NPN), protein total soluble solids, fat and lactose contents. Significantly (p < 0.05) higher foaming capacity (FC), foam stability (FS), whey protein nitrogen index (WPNI), and a lower turbidity and solubility index (SI) were observed in whey powder processed at 160 °C compared to whey powder processed at 180 °C. During storage of 180 days, slow but progressive changes were noticed on the physicochemical and functional properties of whey powder. Reverse phase-HPLC analysis revealed a significant (P < 0.05) effect of temperature on whey protein contents. Denaturation of β-Lactoglobulin is followed by α-lacalbumin, casein glycomacropeptide (CMP/GMP), and bovine serum albumin (BSA).

Keywords: whey powder, temperature, denaturation, reverse phase, HPLC

Procedia PDF Downloads 274
4335 Screening of Congenital Heart Diseases with Fetal Phonocardiography

Authors: F. Kovács, K. Kádár, G. Hosszú, Á. T. Balogh, T. Zsedrovits, N. Kersner, A. Nagy, Gy. Jeney

Abstract:

The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases.

Keywords: cardiac murmurs, fetal phonocardiography, screening of CHDs, telemedicine system

Procedia PDF Downloads 314
4334 UWB Channel Estimation Using an Efficient Sub-Nyquist Sampling Scheme

Authors: Yaacoub Tina, Youssef Roua, Radoi Emanuel, Burel Gilles

Abstract:

Recently, low-complexity sub-Nyquist sampling schemes based on the Finite Rate of Innovation (FRI) theory have been introduced to sample parametric signals at minimum rates. The multichannel modulating waveforms (MCMW) is such an efficient scheme, where the received signal is mixed with an appropriate set of arbitrary waveforms, integrated and sampled at rates far below the Nyquist rate. In this paper, the MCMW scheme is adapted to the special case of ultra wideband (UWB) channel estimation, characterized by dense multipaths. First, an appropriate structure, which accounts for the bandpass spectrum feature of UWB signals, is defined. Then, a novel approach to decrease the number of processing channels and reduce the complexity of this sampling scheme is presented. Finally, the proposed concepts are validated by simulation results, obtained with real filters, in the framework of a coherent Rake receiver.

Keywords: coherent rake receiver, finite rate of innovation, sub-nyquist sampling, ultra wideband

Procedia PDF Downloads 233
4333 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors

Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder

Abstract:

In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.

Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic

Procedia PDF Downloads 176
4332 Predictive Modelling Approaches in Food Processing and Safety

Authors: Amandeep Sharma, Digvaijay Verma, Ruplal Choudhary

Abstract:

Food processing is an activity across the globe that help in better handling of agricultural produce, including dairy, meat, and fish. The operations carried out in the food industry includes raw material quality authenticity; sorting and grading; processing into various products using thermal treatments – heating, freezing, and chilling; packaging; and storage at the appropriate temperature to maximize the shelf life of the products. All this is done to safeguard the food products and to ensure the distribution up to the consumer. The approaches to develop predictive models based on mathematical or statistical tools or empirical models’ development has been reported for various milk processing activities, including plant maintenance and wastage. Recently AI is the key factor for the fourth industrial revolution. AI plays a vital role in the food industry, not only in quality and food security but also in different areas such as manufacturing, packaging, and cleaning. A new conceptual model was developed, which shows that smaller sample size as only spectra would be required to predict the other values hence leads to saving on raw materials and chemicals otherwise used for experimentation during the research and new product development activity. It would be a futuristic approach if these tools can be further clubbed with the mobile phones through some software development for their real time application in the field for quality check and traceability of the product.

Keywords: predictive modlleing, ann, ai, food

Procedia PDF Downloads 55
4331 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data

Authors: Elyta Widyaningrum

Abstract:

The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.

Keywords: automation, GIS environment, LiDAR processing, map quality

Procedia PDF Downloads 344
4330 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis

Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong

Abstract:

A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.

Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell

Procedia PDF Downloads 315
4329 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 114
4328 Visualization Tool for EEG Signal Segmentation

Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh

Abstract:

This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.

Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation

Procedia PDF Downloads 374
4327 Nonparametric Copula Approximations

Authors: Serge Provost, Yishan Zang

Abstract:

Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.

Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation

Procedia PDF Downloads 48
4326 Omni-Relay (OR) Scheme-Aided LTE-A Communication Systems

Authors: Hassan Mahasneh, Abu Sesay

Abstract:

We propose the use of relay terminals at the cell edge of an LTE-based cellar system. Each relay terminal is equipped with an omni-directional antenna. We refer to this scheme as the Omni-Relay (OR) scheme. The OR scheme coordinates the inter-cell interference (ICI) stemming from adjacent cells and increases the desired signal level at cell-edge regions. To validate the performance of the OR scheme, we derive the average signal-to-interference plus noise ratio (SINR) and the average capacity and compare it with the conventional universal frequency reuse factor (UFRF). The results show that the proposed OR scheme provides higher average SINR and average capacity compared to the UFRF due to the assistance of the distributed relay nodes.

Keywords: the UFRF scheme, the OR scheme, ICI, relay terminals, SINR, spectral efficiency

Procedia PDF Downloads 314
4325 Effect of Two Different Method for Juice Processing on the Anthocyanins and Polyphenolics of Blueberry (Vaccinium corymbosum)

Authors: Onur Ercan, Buket Askin, Erdogan Kucukoner

Abstract:

Blueberry (Vaccinium corymbosum, bluegold) has become popular beverage due to their nutritional values such as vitamins, minerals, and antioxidants. In the study, the effects of pressing, mashing, enzymatic treatment, and pasteurization on anthocyanins, colour, and polyphenolics of blueberry juice (BJ) were studied. The blueberry juice (BJ) was produced with two different methods that direct juice extraction (DJE) and mash treatment process (MTP) were applied. After crude blueberry juice (CBJ) production, the samples were first treated with commercial enzymes [Novoferm-61 (Novozymes A/S) (2–10 mL/L)], to break down the hydrocolloid polysaccharides, mainly pectin and starch. The enzymes were added at various concentrations. The highest transmittance (%) was obtained for Novoferm-61 at a concentration of 2 mL/L was 66.53%. After enzymatic treatment, clarification trials were applied to the enzymatically treated BJs with adding various amounts of bentonite (10%, w/v), gelatin (1%, w/v) and kiselsol (15%, v/v). The turbidities of the clarified samples were then determined. However, there was no significant differences between transmittances (%) for samples. For that, only enzymatic treatment was applied to the blueberry juice processing (DDBJ, depectinized direct blueberry juice). Based on initial pressing process made to evaluate press function, it was determined that pressing fresh blueberries with no other processing did not render adequate juice due to lack of liquefaction. Therefore, the blueberries were mash into small pieces (3 mm) and then enzymatic treatments and clarification trials were performed. Finally, both BJ samples were pasteurized. Compositional analyses, colour properties, polyphenols and antioxidant properties were compared. Enzymatic treatment caused significant reductions in ACN content (30%) in Direct Blueberry Juice Processing (DBJ), while there was a significant increasing in Mash Treatment Processing (MTP). Overall anthocyanin levels were higher intreated samples after each processing step in MTP samples, but polyphenolic levels were slightly higher for both processes (DBJ and MTP). There was a reduction for ACNs and polyphenolics only after pasteurization. It has a result that the methods for tried to blueberry juice is suitable into obtain fresh juice. In addition, we examined fruit juice during processing stages; anthocyanin, phenolic substance content and antioxidant activity are higher, and yield is higher in fruit juice compared to DBJ method in MTP method, the MTP method should be preferred in processing juice of blueberry into fruit juice.

Keywords: anthocyanins, blueberry, depectinization, polyphenols

Procedia PDF Downloads 70
4324 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: electromagnetic sensor, accurately, data acquisition, position measurement

Procedia PDF Downloads 266
4323 Signal On-Off Ratio and Output Frequency Analysis of Semiconductor Electron-Interference Device

Authors: Tomotaka Aoki, Isao Tomita

Abstract:

We examined the on-off ratio and frequency components of output signals from an electron-interference device made of GaAs/AlₓGa₁₋ₓAs by solving the time-dependent Schrödinger's equation on conducting electrons in the channel waveguide of the device. For electron-wave modulation, a periodic voltage of frequency f was applied to the channel. Furthermore, we examined the voltage-amplitude dependence of the signals in time and frequency domains and found that large applied voltage deformed the output-signal waveform and created additional side modes (frequencies) near the modulation frequency f and that there was a trade-off between on-off ratio and side-mode creation.

Keywords: electrical conduction, electron interference, frequency spectrum, on-off ratio

Procedia PDF Downloads 106
4322 Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-Time Quaternion Offset Linear Canonical Transform

Authors: Mohammad Younus Bhat

Abstract:

The quaternion offset linear canonical transform (QOLCT), which isa time-shifted and frequency-modulated version of the quaternion linear canonical transform (QLCT), provides a more general framework of most existing signal processing tools. For the generalized QOLCT, the classical Heisenberg’s and Lieb’s uncertainty principles have been studied recently. In this paper, we first define the short-time quaternion offset linear canonical transform (ST-QOLCT) and drive its relationship with the quaternion Fourier transform (QFT). The crux of the paper lies in the generalization of several well-known uncertainty principles for the ST-QOLCT, including Donoho-Stark’s uncertainty principle, Hardy’s uncertainty principle, Beurling’s uncertainty principle, and the logarithmic uncertainty principle.

Keywords: Quaternion Fourier transform, Quaternion offset linear canonical transform, short-time quaternion offset linear canonical transform, uncertainty principle

Procedia PDF Downloads 175
4321 Gestalt in Music and Brain: A Non-Linear Chaos Based Study with Detrended/Adaptive Fractal Analysis

Authors: Shankha Sanyal, Archi Banerjee, Sayan Biswas, Sourya Sengupta, Sayan Nag, Ranjan Sengupta, Dipak Ghosh

Abstract:

The term ‘gestalt’ has been widely used in the field of psychology which defined the perception of human mind to group any object not in part but as a 'unified' whole. Music, in general, is polyphonic - i.e. a combination of a number of pure tones (frequencies) mixed together in a manner that sounds harmonious. The study of human brain response due to different frequency groups of the acoustic signal can give us an excellent insight regarding the neural and functional architecture of brain functions. Hence, the study of music cognition using neuro-biosensors is becoming a rapidly emerging field of research. In this work, we have tried to analyze the effect of different frequency bands of music on the various frequency rhythms of human brain obtained from EEG data. Four widely popular Rabindrasangeet clips were subjected to Wavelet Transform method for extracting five resonant frequency bands from the original music signal. These frequency bands were initially analyzed with Detrended/Adaptive Fractal analysis (DFA/AFA) methods. A listening test was conducted on a pool of 100 respondents to assess the frequency band in which the music becomes non-recognizable. Next, these resonant frequency bands were presented to 20 subjects as auditory stimulus and EEG signals recorded simultaneously in 19 different locations of the brain. The recorded EEG signals were noise cleaned and subjected again to DFA/AFA technique on the alpha, theta and gamma frequency range. Thus, we obtained the scaling exponents from the two methods in alpha, theta and gamma EEG rhythms corresponding to different frequency bands of music. From the analysis of music signal, it is seen that loss of recognition is proportional to the loss of long range correlation in the signal. From the EEG signal analysis, we obtain frequency specific arousal based response in different lobes of brain as well as in specific EEG bands corresponding to musical stimuli. In this way, we look to identify a specific frequency band beyond which the music becomes non-recognizable and below which in spite of the absence of other bands the music is perceivable to the audience. This revelation can be of immense importance when it comes to the field of cognitive music therapy and researchers of creativity.

Keywords: AFA, DFA, EEG, gestalt in music, Hurst exponent

Procedia PDF Downloads 303
4320 A Fast GPS Satellites Signals Detection Algorithm Based on Simplified Fast Fourier Transform

Authors: Beldjilali Bilal, Benadda Belkacem, Kahlouche Salem

Abstract:

Due to the Doppler effect caused by the high velocity of satellite and in some case receivers, the frequency of the Global Positioning System (GPS) signals are transformed into a new ones. Several acquisition algorithms frequency of the Global Positioning System (GPS) signals are transformed can be used to estimate the new frequency and phase shifts values. Numerous algorithms are based on the frequencies domain calculation. Our developed algorithm is a new approach dedicated to the Global Positioning System signal acquisition based on the fast Fourier transform. Our proposed new algorithm is easier to implement and has fast execution time compared with elder ones.

Keywords: global positioning system, acquisition, FFT, GPS/L1, software receiver, weak signal

Procedia PDF Downloads 221
4319 Signal Integrity Performance Analysis in Capacitive and Inductively Coupled Very Large Scale Integration Interconnect Models

Authors: Mudavath Raju, Bhaskar Gugulothu, B. Rajendra Naik

Abstract:

The rapid advances in Very Large Scale Integration (VLSI) technology has resulted in the reduction of minimum feature size to sub-quarter microns and switching time in tens of picoseconds or even less. As a result, the degradation of high-speed digital circuits due to signal integrity issues such as coupling effects, clock feedthrough, crosstalk noise and delay uncertainty noise. Crosstalk noise in VLSI interconnects is a major concern and reduction in VLSI interconnect has become more important for high-speed digital circuits. It is the most effectively considered in Deep Sub Micron (DSM) and Ultra Deep Sub Micron (UDSM) technology. Increasing spacing in-between aggressor and victim line is one of the technique to reduce the crosstalk. Guard trace or shield insertion in-between aggressor and victim is also one of the prominent options for the minimization of crosstalk. In this paper, far end crosstalk noise is estimated with mutual inductance and capacitance RLC interconnect model. Also investigated the extent of crosstalk in capacitive and inductively coupled interconnects to minimizes the same through shield insertion technique.

Keywords: VLSI, interconnects, signal integrity, crosstalk, shield insertion, guard trace, deep sub micron

Procedia PDF Downloads 164
4318 Improving Cleanability by Changing Fish Processing Equipment Design

Authors: Lars A. L. Giske, Ola J. Mork, Emil Bjoerlykhaug

Abstract:

The design of fish processing equipment greatly impacts how easy the cleaning process for the equipment is. This is a critical issue in fish processing, as cleaning of fish processing equipment is a task that is both costly and time consuming, in addition to being very important with regards to product quality. Even more, poorly cleaned equipment could in the worst case lead to contaminated product from which consumers could get ill. This paper will elucidate how equipment design changes could improve the work for the cleaners and saving money for the fish processing facilities by looking at a case for product design improvements. The design of fish processing equipment largely determines how easy it is to clean. “Design for cleaning” is the new hype in the industry and equipment where the ease of cleaning is prioritized gets a competitive advantage over equipment in which design for cleaning has not been prioritized. Design for cleaning is an important research area for equipment manufacturers. SeaSide AS is doing continuously improvements in the design of their products in order to gain a competitive advantage. The focus in this paper will be conveyors for internal logistic and a product called the “electro stunner” will be studied with regards to “Design for cleaning”. Often together with SeaSide’s customers, ideas for new products or product improvements are sketched out, 3D-modelled, discussed, revised, built and delivered. Feedback from the customers is taken into consideration, and the product design is revised once again. This loop was repeated multiple times, and led to new product designs. The new designs sometimes also cause the manufacturing processes to change (as in going from bolted to welded connections). Customers report back that the concrete changes applied to products by SeaSide has resulted in overall more easily cleaned equipment. These changes include, but are not limited to; welded connections (opposed to bolted connections), gaps between contact faces, opening up structures to allow cleaning “inside” equipment, and generally avoiding areas in which humidity and water may gather and build up. This is important, as there will always be bacteria in the water which will grow if the area never dries up. The work of creating more cleanable design is still ongoing, and will “never” be finished as new designs and new equipment will have their own challenges.

Keywords: cleaning, design, equipment, fish processing, innovation

Procedia PDF Downloads 212
4317 Effect of Local Processing Techniques on the Nutrients and Anti-Nutrients Content of Bitter Cassava (Manihot Esculenta Crantz)

Authors: J. S. Alakali, A. R. Ismaila, T. G. Atume

Abstract:

The effects of local processing techniques on the nutrients and anti-nutrients content of bitter cassava were investigated. Raw bitter cassava tubers were boiled, sundried, roasted, fried to produce Kuese, partially fermented and sun dried to produce Alubo, fermented by submersion to produce Akpu and fermented by solid state to produce yellow and white gari. These locally processed cassava products were subjected to proximate, mineral analysis and anti-nutrient analysis using standard methods. The result of the proximate analysis showed that, raw bitter cassava is composed of 1.85% ash, 20.38% moisture, 4.11% crude fibre, 1.03% crude protein, 0.66% lipids and 71.88% total carbohydrate. For the mineral analysis, the raw bitter cassava tuber contained 32.00% Calcium, 12.55% Magnesium, 1.38% Iron and 80.17% Phosphorous. Even though all processing techniques significantly increased the mineral content, fermentation had higher mineral increment effect. The anti-nutrients analysis showed that the raw tuber contained 98.16mg/100g cyanide, 44.00mg/100g oxalate 304.20mg/100g phytate and 73.00mg/100g saponin. In general all the processing techniques showed a significant reduction of the phytate, oxalate and saponin content of the cassava. However, only fermentation, sun drying and gasification were able to reduce the cyanide content of bitter cassava below the safe level (10mg/100g) recommended by Standard Organization of Nigeria. Yellow gari(with the addition of palm oil) showed low cyanide content (1.10 mg/100g) than white gari (3.51 mg/100g). Processing methods involving fermentation reduce cyanide and other anti-nutrients in the cassava to levels that are safe for consumption and should be widely practiced.

Keywords: bitter cassava, local processing, fermentation, anti-nutrient.

Procedia PDF Downloads 277
4316 Design and Assessment of Traffic Management Strategies for Improved Mobility on Major Arterial Roads in Lahore City

Authors: N. Ali, S. Nakayama, H. Yamaguchi, M. Nadeem

Abstract:

Traffic congestion is a matter of prime concern in developing countries. This can be primarily attributed due to poor design practices and biased allocation of resources based on political will neglecting the technical feasibilities in infrastructure design. During the last decade, Lahore has expanded at an unprecedented rate as compared to surrounding cities due to more funding and resource allocation by the previous governments. As a result of this, people from surrounding cities and areas moved to the Lahore city for better opportunities and quality of life. This migration inflow inherited the city with an increased population yielding the inefficiency of the existing infrastructure to accommodate enhanced traffic demand. This leads to traffic congestion on major arterial roads of the city. In this simulation study, a major arterial road was selected to evaluate the performance of the five intersections by changing the geometry of the intersections or signal control type. Simulations were done in two software; Highway Capacity Software (HCS) and Synchro Studio and Sim Traffic Software. Some of the traffic management strategies that were employed include actuated-signal control, semi-actuated signal control, fixed-time signal control, and roundabout. The most feasible solution for each intersection in the above-mentioned traffic management techniques was selected with the least delay time (seconds) and improved Level of Service (LOS). The results showed that Jinnah Hospital Intersection and Akbar Chowk Intersection improved 92.97% and 92.67% in delay time reduction, respectively. These results can be used by traffic planners and policy makers for decision making for the expansion of these intersections keeping in mind the traffic demand in future years.

Keywords: traffic congestion, traffic simulation, traffic management, congestion problems

Procedia PDF Downloads 449
4315 LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc

Authors: Víctor D. Rodríguez, Edith P. Estupiñán, Juan C. Martínez

Abstract:

The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.

Keywords: BLER, LTE, network, qualipoc, SNR.

Procedia PDF Downloads 92
4314 Multicasting Characteristics of All-Optical Triode Based on Negative Feedback Semiconductor Optical Amplifiers

Authors: S. Aisyah Azizan, M. Syafiq Azmi, Yuki Harada, Yoshinobu Maeda, Takaomi Matsutani

Abstract:

We introduced an all-optical multi-casting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multi-casting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multi-casting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology.

Keywords: cross gain modulation, multicasting, negative feedback optical amplifier, semiconductor optical amplifier

Procedia PDF Downloads 663
4313 Analysis of Nonlinear and Non-Stationary Signal to Extract the Features Using Hilbert Huang Transform

Authors: A. N. Paithane, D. S. Bormane, S. D. Shirbahadurkar

Abstract:

It has been seen that emotion recognition is an important research topic in the field of Human and computer interface. A novel technique for Feature Extraction (FE) has been presented here, further a new method has been used for human emotion recognition which is based on HHT method. This method is feasible for analyzing the nonlinear and non-stationary signals. Each signal has been decomposed into the IMF using the EMD. These functions are used to extract the features using fission and fusion process. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques.We evaluated the algorithm on Augsburg University Database; the manually annotated database.

Keywords: intrinsic mode function (IMF), Hilbert-Huang transform (HHT), empirical mode decomposition (EMD), emotion detection, electrocardiogram (ECG)

Procedia PDF Downloads 549
4312 Increasing a Computer Performance by Overclocking Central Processing Unit (CPU)

Authors: Witthaya Mekhum, Wutthikorn Malikong

Abstract:

The objective of this study is to investigate the increasing desktop computer performance after overclocking central processing unit or CPU by running a computer component at a higher clock rate (more clock cycles per second) than it was designed at the rate of 0.1 GHz for each level or 100 MHz starting at 4000 GHz-4500 GHz. The computer performance is tested for each level with 4 programs, i.e. Hyper PI ver. 0.99b, Cinebench R15, LinX ver.0.6.4 and WinRAR . After the CPU overclock, the computer performance increased. When overclocking CPU at 29% the computer performance tested by Hyper PI ver. 0.99b increased by 10.03% and when tested by Cinebench R15 the performance increased by 20.05% and when tested by LinX Program the performance increased by 16.61%. However, the performance increased only 8.14% when tested with Winrar program. The computer performance did not increase according to the overclock rate because the computer consists of many components such as Random Access Memory or RAM, Hard disk Drive, Motherboard and Display Card, etc.

Keywords: overclock, performance, central processing unit, computer

Procedia PDF Downloads 264