Search results for: secure online algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6777

Search results for: secure online algorithm

6237 Accurate Algorithm for Selecting Ground Motions Satisfying Code Criteria

Authors: S. J. Ha, S. J. Baik, T. O. Kim, S. W. Han

Abstract:

For computing the seismic responses of structures, current seismic design provisions permit response history analyses (RHA) that can be used without limitations in height, seismic design category, and building irregularity. In order to obtain accurate seismic responses using RHA, it is important to use adequate input ground motions. Current seismic design provisions provide criteria for selecting ground motions. In this study, the accurate and computationally efficient algorithm is proposed for accurately selecting ground motions that satisfy the requirements specified in current seismic design provisions. The accuracy of the proposed algorithm is verified using single-degree-of-freedom systems with various natural periods and yield strengths. This study shows that the mean seismic responses obtained from RHA with seven and ten ground motions selected using the proposed algorithm produce errors within 20% and 13%, respectively.

Keywords: algorithm, ground motion, response history analysis, selection

Procedia PDF Downloads 285
6236 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 349
6235 A Literature Review Evaluating the Use of Online Problem-Based Learning and Case-Based Learning Within Dental Education

Authors: Thomas Turner

Abstract:

Due to the Covid-19 pandemic alternative ways of delivering dental education were required. As a result, many institutions moved teaching online. The impact of this is poorly understood. Is online problem-based learning (PBL) and case-based learning (CBL) effective and is it suitable in the post-pandemic era? PBL and CBL are both types of interactive, group-based learning which are growing in popularity within many dental schools. PBL was first introduced in the 1960’s and can be defined as learning which occurs from collaborative work to resolve a problem. Whereas CBL encourages learning from clinical cases, encourages application of knowledge and helps prepare learners for clinical practice. To evaluate the use of online PBL and CBL. A literature search was conducted using the CINAHL, Embase, PubMed and Web of Science databases. Literature was also identified from reference lists. Studies were only included from dental education. Seven suitable studies were identified. One of the studies found a high learner and facilitator satisfaction rate with online CBL. Interestingly one study found learners preferred CBL over PBL within an online format. A study also found, that within the context of distance learning, learners preferred a hybrid curriculum including PBL over a traditional approach. A further study pointed to the limitations of PBL within an online format, such as reduced interaction, potentially hindering the development of communication skills and the increased time and technology support required. An audience response system was also developed for use within CBL and had a high satisfaction rate. Interestingly one study found achievement of learning outcomes was correlated with the number of student and staff inputs within an online format. Whereas another study found the quantity of learner interactions were important to group performance, however the quantity of facilitator interactions was not. This review identified generally favourable evidence for the benefits of online PBL and CBL. However, there is limited high quality evidence evaluating these teaching methods within dental education and there appears to be limited evidence comparing online and faceto-face versions of these sessions. The importance of the quantity of learner interactions is evident, however the importance of the quantity of facilitator interactions appears to be questionable. An element to this may be down to the quality of interactions, rather than just quantity. Limitations of online learning regarding technological issues and time required for a session are also highlighted, however as learners and facilitators get familiar with online formats, these may become less of an issue. It is also important learners are encouraged to interact and communicate during these sessions, to allow for the development of communication skills. Interestingly CBL appeared to be preferred to PBL in an online format. This may reflect the simpler nature of CBL, however further research is required to explore this finding. Online CBL and PBL appear promising, however further research is required before online formats of these sessions are widely adopted in the post-pandemic era.

Keywords: case-based learning, online, problem-based learning, remote, virtual

Procedia PDF Downloads 76
6234 The Whale Optimization Algorithm and Its Implementation in MATLAB

Authors: S. Adhirai, R. P. Mahapatra, Paramjit Singh

Abstract:

Optimization is an important tool in making decisions and in analysing physical systems. In mathematical terms, an optimization problem is the problem of finding the best solution from among the set of all feasible solutions. The paper discusses the Whale Optimization Algorithm (WOA), and its applications in different fields. The algorithm is tested using MATLAB because of its unique and powerful features. The benchmark functions used in WOA algorithm are grouped as: unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23). Out of these benchmark functions, we show the experimental results for F7, F11, and F19 for different number of iterations. The search space and objective space for the selected function are drawn, and finally, the best solution as well as the best optimal value of the objective function found by WOA is presented. The algorithmic results demonstrate that the WOA performs better than the state-of-the-art meta-heuristic and conventional algorithms.

Keywords: optimization, optimal value, objective function, optimization problems, meta-heuristic optimization algorithms, Whale Optimization Algorithm, implementation, MATLAB

Procedia PDF Downloads 369
6233 Wireless Battery Charger with Adaptive Rapid-Charging Algorithm

Authors: Byoung-Hee Lee

Abstract:

Wireless battery charger with adaptive rapid charging algorithm is proposed. The proposed wireless charger adopts voltage regulation technique to reduce the number of power conversion steps. Moreover, based on battery models, an adaptive rapid charging algorithm for Li-ion batteries is obtained. Rapid-charging performance with the proposed wireless battery charger and the proposed rapid charging algorithm has been experimentally verified to show more than 70% charging time reduction compared to conventional constant-current constant-voltage (CC-CV) charging without the degradation of battery lifetime.

Keywords: wireless, battery charger, adaptive, rapid-charging

Procedia PDF Downloads 374
6232 The Relationship between Religiosity, Childhood Attachment, and Childhood Trauma in Adulthood

Authors: Ashley Sainvil

Abstract:

The present study explores the relationship and possible effects of religiosity on both adverse childhood experiences and childhood attachment. Furthermore, to explore the idea that adult religiousness may play as a protective role, specifically protecting adults with a past of adverse childhood experiences and an insecure childhood attachment from reporting depression. Analyses are based on 57 participants (N= 57, 32.1% of ages 18-22; 70.2% female, 28.1% male, 1.8% other). In the form of an online Qualtrics survey through questionnaires, childhood attachment, adverse childhood experiences, sense of religiosity, and depression were measured. While not significant at conventional levels, there was no direct relationship between adverse childhood experiences, insecure childhood attachment, and sense of religiosity, and when assessing age for the relationship in later adulthood, there was no significance. Positive childhood experiences of feeling protected, love, and special had a direct relationship with a positive image and sense of closeness to God. Results highlight the importance of positive childhood experiences, secure childhood attachment quality relationship, such as trust, communication for positive health outcomes, such as less depression.

Keywords: religiosity, childhood trauma, childhood attachment, depression

Procedia PDF Downloads 81
6231 An Experimental Study of Online Peer-to-Peer Language Learning

Authors: Abrar Al-Hasan

Abstract:

Web 2.0 has significantly increased the amount of information available to users not only about firms and their offerings, but also about the activities of other individuals in their networks and markets. It is widely acknowledged that this increased availability of ‘social’ information, particularly about other individuals, is likely to influence a user’s behavior and choices. However, there are very few systematic studies of how such increased information transparency on the behavior of other users in a focal users’ network influences a focal users’ behavior in the emerging marketplace of online language learning. This study seeks to examine the value and impact of ‘social activities’ – wherein, a user sees and interacts with the learning activities of her peers – on her language learning efficiency. An online experiment in a peer-to-peer language marketplace was conducted to compare the learning efficiency of users with ‘social’ information versus users with no ‘social’ information. The results of this study highlight the impact and importance of ‘social’ information within the language learning context. The study concludes by exploring how these insights may inspire new developments in online education.

Keywords: e-Learning, language learning marketplace, peer-to-peer, social network

Procedia PDF Downloads 384
6230 Secure Optical Communication System Using Quantum Cryptography

Authors: Ehab AbdulRazzaq Hussein

Abstract:

Quantum cryptography (QC) is an emerging technology for secure key distribution with single-photon transmissions. In contrast to classical cryptographic schemes, the security of QC schemes is guaranteed by the fundamental laws of nature. Their security stems from the impossibility to distinguish non-orthogonal quantum states with certainty. A potential eavesdropper introduces errors in the transmissions, which can later be discovered by the legitimate participants of the communication. In this paper, the modeling approach is proposed for QC protocol BB84 using polarization coding. The single-photon system is assumed to be used in the designed models. Thus, Eve cannot use beam-splitting strategy to eavesdrop on the quantum channel transmission. The only eavesdropping strategy possible to Eve is the intercept/resend strategy. After quantum transmission of the QC protocol, the quantum bit error rate (QBER) is estimated and compared with a threshold value. If it is above this value the procedure must be stopped and performed later again.

Keywords: security, key distribution, cryptography, quantum protocols, Quantum Cryptography (QC), Quantum Key Distribution (QKD).

Procedia PDF Downloads 401
6229 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm

Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa

Abstract:

The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.

Keywords: tag cloud, font distribution algorithm, frequency-based, content-based, power law

Procedia PDF Downloads 503
6228 User-Based Cannibalization Mitigation in an Online Marketplace

Authors: Vivian Guo, Yan Qu

Abstract:

Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.

Keywords: cannibalization, machine learning, online marketplace, revenue optimization, yield optimization

Procedia PDF Downloads 159
6227 The Third Level Digital Divide: Millennials and Post-Millennials Online Activities in South Africa

Authors: Ayanda Magida, Brian Armstrong

Abstract:

The study aimed to assess the third level of the digital divide among the millennials and post-millennials in South Africa. The millennials are people born from 1981-to 1996, that is, people between the ages of 25-40 years old and post-millennials are people born from 1997 to date. For the study, only post-millennials born between 1997-2003 were included as they were old enough to consent to participation in the study. Data was collected as part of the Ph.D. project that focuses on the relationship between income inequality, the digital divide, and social cohesion in South Africa. The digital divide has three main levels, namely the first, second and third. The first and second focus on access and usage, respectively. The third-level digital divide can be defined as the differences in the benefits associated with being online. The current paper focuses on the third level: the benefits derived by being online using four domains: economic, educational, social, and personal benefits. The economic benefits include income, employment and finance-related activities; the social benefits include socializing belonging, identity, and informal networks. The personal benefits include personal wellbeing and self-actualization. A total of 763 participants completed the survey, and 61.3% were post-millennials between the ages of 18-24 and s 38.6 % were millennials between 25 and 40. The majority of the respondents were female (62%), male (34%) and nonbinary (1%), respectively. Most of the respondents were black, followed by whites, Indians and colored, respectively. Thus, they represented the status of the demographics of the country. Most of the respondents had access to the internet and smartphone. Most expressed that they use laptops (68%) or mobile (71%) to access the internet and 54 % access the internet using wireless/Wi-Fi. There were no differences between the millennial and post-millennial economic and educational benefits of being online. However, the post-millennials were more inclined to use the internet for social and personal benefits than the millennials. This could be attributed to many factors, such as age. The post-millennials are still discovering themselves and therefore would derive social and personal benefits associated with being online. The findings confirm studies that argue that younger generations derive more benefits from being online than the older generation. Based on the findings, it is evident that the post-millennials are not using the internet or online activities for social networks and socializing but can derive economic benefits such as job looking and education benefits from being online. It can be inferred that there are no significant differences between the two groups, and it seems like the third-level digital divide is not evident among the two groups as they both have been able to derive meaningful benefits from being online. Further studies should focus on the third-level divide between the baby boomers and Generation X.

Keywords: third-level digital divide, millennials, post-millennials, online activities

Procedia PDF Downloads 102
6226 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization

Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman

Abstract:

A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.

Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization

Procedia PDF Downloads 134
6225 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 65
6224 The Influence of Experiential Marketing on Customer Purchase Intention of Online Fashion Products

Authors: Marike Venter de Villiers, Alicia Kruger

Abstract:

The rapid development of the Internet has facilitated the proliferation of online stores. It has, therefore, become a pertinent issue for online retailers to provide the ultimate experience to customers in an attempt to maintain market share in this competitive landscape. Experiential marketing refers to the sensory dimensions that consumers experience when being faced with a purchase decision, such as getting them to sense, feel, think, act, and relate. The goal of experiential marketing is to provide a holistic experience for customers that allow them to engage in an activity where they may be motivated to purchase the concept behind the product. Creating a unique online experience holds several benefits to brands such as increased customer satisfaction, increased revisit intention, and higher levels of customer loyalty. Although several studies have explored the topic of experiential marketing in an online context, a lack of research exists on South African consumers, an emerging economy that is often overlooked globally. More specifically, the present study focused on professional females and their perceptions of experiential marketing when shopping for fashion products online. The main purpose of this study was to investigate the experiential factors that influence the online purchase intention of fashion products among female professionals. Furthermore, this study aimed to achieve the following objectives: firstly, to gain insight into key website characteristics that consumers value when shopping online for fashion products; secondly, to apply Pine and Gilmore’s (1989) Four Realms of an Experience (entertainment, education, esthetics, and escapism) to ground the study; and thirdly, to gain in-depth insight into the importance of these dimensions and identifying sub-categories that fashion marketers can use to enhance consumers’ online experience. By means of a qualitative study, a focus group was conducted comprising six professional females by using semi-structured questions. Respondents were selected using convenience sampling, and the results were analyzed using thematic analysis. The present research suggests that three of the four realms of experience influence purchase intention of fashion products online, namely, escapism, esthetics, and education. The fourth dimension, pleasure, was present but to a lesser degree. In other words, ‘escapism’ provides online shoppers with a sense of emotional and intellectual pleasure, while ‘esthetics’ refers to the website design, functionality, and product range, and ‘education’ comprises the product information such as the quality, fabric, price and available sizes. The findings of this study provide fashion marketers with insight into how they can maximize on experiential marketing when selling fashion products online. It further provides strategies and techniques for creating an enhanced online experience that ultimately may lead to increased purchase intention.

Keywords: experiential marketing, fashion, online, retail

Procedia PDF Downloads 130
6223 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number

Authors: N. Dahraoui, M. Boulakroune, D. Benatia

Abstract:

In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov-Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.

Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage

Procedia PDF Downloads 416
6222 Description of the Non-Iterative Learning Algorithm of Artificial Neuron

Authors: B. S. Akhmetov, S. T. Akhmetova, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin

Abstract:

The problem of training of a network of artificial neurons in biometric appendices is that this process has to be completely automatic, i.e. the person operator should not participate in it. Therefore, this article discusses the issues of training the network of artificial neurons and the description of the non-iterative learning algorithm of artificial neuron.

Keywords: artificial neuron, biometrics, biometrical applications, learning of neuron, non-iterative algorithm

Procedia PDF Downloads 491
6221 Gariep Dam Basin Management for Satisfying Ecological Flow Requirements

Authors: Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia

Abstract:

Multi-reservoir optimization operation has been a critical issue for river basin management. Water, as a scarce resource, is in high demand and the problems associated with the reservoir as its storage facility are enormous. The complexity in balancing the supply and demand of this prime resource has created the need to examine the best way to solve the problem using optimization techniques. The objective of this study is to evaluate the performance of the multi-objective meta-heuristic algorithm for the operation of Gariep Dam for satisfying ecological flow requirements. This study uses an evolutionary algorithm called backtrack search algorithm (BSA) to determine the best way to optimise the dam operations of hydropower production, flood control, and water supply without affecting the environmental flow requirement for the survival of aquatic bodies and sustain life downstream of the dam. To achieve this objective, the operations of the dam that corresponds to different tradeoffs between the objectives are optimized. The results indicate the best model from the algorithm that satisfies all the objectives without any constraint violation. It is expected that hydropower generation will be improved and more water will be available for ecological flow requirements with the use of the algorithm. This algorithm also provides farmers with more irrigation water as well to improve their business.

Keywords: BSA evolutionary algorithm, metaheuristics, optimization, river basin management

Procedia PDF Downloads 244
6220 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 340
6219 Medical Neural Classifier Based on Improved Genetic Algorithm

Authors: Fadzil Ahmad, Noor Ashidi Mat Isa

Abstract:

This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.

Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy

Procedia PDF Downloads 472
6218 A Hybrid Algorithm for Collaborative Transportation Planning among Carriers

Authors: Elham Jelodari Mamaghani, Christian Prins, Haoxun Chen

Abstract:

In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver.

Keywords: centralized collaborative transportation, collaborative transportation with pickup and delivery, collaborative transportation with time windows, hybrid algorithm of GA and SA

Procedia PDF Downloads 390
6217 Emerging Methods as a Tool for Obtaining Subconscious Feedback in E-Commerce and Marketplace

Authors: J. Berčík, A. Mravcová, A. Rusková, P. Jurčišin, R. Virágh

Abstract:

The online world is changing every day. With this comes the emergence and development of new business models. One of them is the sale of several types of products in one place. This type of sales in the form of online marketplaces has undergone a positive development in recent years and represents a kind of alternative to brick-and-mortar shopping centres. The main philosophy is to buy several products under one roof. Examples of popular e-commerce marketplaces are Amazon, eBay, and Allegro. Their share of total e-commerce turnover is expected to even double in the coming years. The paper highlights possibilities for testing web applications and online marketplace using emerging methods like stationary eye cameras (eye tracking) and facial analysis (FaceReading).

Keywords: emerging methods, consumer neuroscience, e-commerce, marketplace, user experience, user interface

Procedia PDF Downloads 70
6216 Optimal Placement of Phasor Measurement Units Using Gravitational Search Method

Authors: Satyendra Pratap Singh, S. P. Singh

Abstract:

This paper presents a methodology using Gravitational Search Algorithm for optimal placement of Phasor Measurement Units (PMUs) in order to achieve complete observability of the power system. The objective of proposed algorithm is to minimize the total number of PMUs at the power system buses, which in turn minimize installation cost of the PMUs. In this algorithm, the searcher agents are collection of masses which interact with each other using Newton’s laws of gravity and motion. This new Gravitational Search Algorithm based method has been applied to the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus test systems. Case studies reveal optimal number of PMUs with better observability by proposed method.

Keywords: gravitational search algorithm (GSA), law of motion, law of gravity, observability, phasor measurement unit

Procedia PDF Downloads 502
6215 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 504
6214 Online Versus Offline Learning: A Comparative Analysis of Modes of Education Amidst Pandemic

Authors: Nida B. Syed

Abstract:

Following second wave of the current pandemic COVID-19, education transmission is occurring via both the modes of education, that is, online as well as offline in the college. The aim of the current study was, therefore, to bring forth the comparative analysis of both the modes of education and their impact on the levels of academic stress and states of the mental wellbeing of the students amidst the current pandemic. Measures of the constructs were obtained by the online Google forms, which consist of the Perceptions of Academic Stress Scale (PASS) by and Warwick-Edinburg Mental Well-being Scale, from a sample of 100 undergraduate students aged 19-25 years studying in different colleges of Bengaluru, India. Modes of education were treated as the predictor variables whilst academic stress, and mental wellbeing constituted the criterion variables. Two-way ANOVA was employed. Results show that the levels of academic stress are found to be a bit higher in students attending online classes as compared to those taking offline classes in college (MD = 1.10, df = 98, t = 0.590, p > 0.05), whereas mental wellbeing is found to be low in students attending offline classes in colleges than those taking online classes (MD = 5.180, df = 98, t =2.340, p > 0.05 level). The combined interactional effect of modes of education and academic stress on the states of the mental wellbeing of the students is found to be low (R2 = 0.053), whilst the combined impact of modes of education and mental wellbeing on the levels of academic stress was found to be quite low (R2 = 0.014). It was concluded that modes of education have an impact on levels of academic stress and states of the mental well-being of the students amidst the current pandemic, but it is low.

Keywords: modes of education, online learning, offline learning, pandemic

Procedia PDF Downloads 107
6213 Online Faculty Professional Development: An Approach to the Design Process

Authors: Marie Bountrogianni, Leonora Zefi, Krystle Phirangee, Naza Djafarova

Abstract:

Faculty development is critical for any institution as it impacts students’ learning experiences and faculty performance with regards to course delivery. With that in mind, The Chang School at Ryerson University embarked on an initiative to develop a comprehensive, relevant faculty development program for online faculty and instructors. Teaching Adult Learners Online (TALO) is a professional development program designed to build capacity among online teaching faculty to enhance communication/facilitation skills for online instruction and establish a Community of Practice to allow for opportunities for online faculty to network and exchange ideas and experiences. TALO is comprised of four online modules and each module provides three hours of learning materials. The topics focus on online teaching and learning experience, principles and practices, opportunities and challenges in online assessments as well as course design and development. TALO offers a unique experience for online instructors who are placed in the role of a student and an instructor through interactivities involving discussions, hands-on assignments, peer mentoring while experimenting with technological tools available for their online teaching. Through exchanges and informal peer mentoring, a small interdisciplinary community of practice has started to take shape. Successful participants have to meet four requirements for completion: i) participate actively in online discussions and activities, ii) develop a communication plan for the course they are teaching, iii) design one learning activity/or media component, iv) design one online learning module. This study adopted a mixed methods exploratory sequential design. For the qualitative phase of this study, a thorough literature review was conducted on what constitutes effective faculty development programs. Based on that review, the design team identified desired competencies for online teaching/facilitation and course design. Once the competencies were identified, a focus group interview with The Chang School teaching community was conducted as a needs assessment and to validate the competencies. In the quantitative phase, questionnaires were distributed to instructors and faculty after the program was launched to continue ongoing evaluation and revisions, in hopes of further improving the program to meet the teaching community’s needs. Four faculty members participated in a one-hour focus group interview. Major findings from the focus group interview revealed that for the training program, faculty wanted i) to better engage students online, ii) to enhance their online teaching with specific strategies, iii) to explore different ways to assess students online. 91 faculty members completed the questionnaire in which findings indicated that: i) the majority of faculty stated that they gained the necessary skills to demonstrate instructor presence through communication and use of technological tools provided, ii) increased faculty confidence with course management strategies, iii) learning from peers is most effective – the Community of Practice is strengthened and valued even more as program alumni become facilitators. Although this professional development program is not mandatory for online instructors, since its launch in Fall 2014, over 152 online instructors have successfully completed the program. A Community of Practice emerged as a result of the program and participants continue to exchange thoughts and ideas about online teaching and learning.

Keywords: community of practice, customized, faculty development, inclusive design

Procedia PDF Downloads 172
6212 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation

Authors: Ke He, Wumaier Parezhati, Haruka Yamashita

Abstract:

Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.

Keywords: Doc2Vec, online marketplace, marketing, recommendation systems

Procedia PDF Downloads 111
6211 Metadiscourse in EFL, ESP and Subject-Teaching Online Courses in Higher Education

Authors: Maria Antonietta Marongiu

Abstract:

Propositional information in discourse is made coherent, intelligible, and persuasive through metadiscourse. The linguistic and rhetorical choices that writers/speakers make to organize and negotiate content matter are intended to help relate a text to its context. Besides, they help the audience to connect to and interpret a text according to the values of a specific discourse community. Based on these assumptions, this work aims to analyse the use of metadiscourse in the spoken performance of teachers in online EFL, ESP, and subject-teacher courses taught in English to non-native learners in higher education. In point of fact, the global spread of Covid 19 has forced universities to transition their in-class courses to online delivery. This has inevitably placed on the instructor a heavier interactional responsibility compared to in-class courses. Accordingly, online delivery needs greater structuring as regards establishing the reader/listener’s resources for text understanding and negotiating. Indeed, in online as well as in in-class courses, lessons are social acts which take place in contexts where interlocutors, as members of a community, affect the ways ideas are presented and understood. Following Hyland’s Interactional Model of Metadiscourse (2005), this study intends to investigate Teacher Talk in online academic courses during the Covid 19 lock-down in Italy. The selected corpus includes the transcripts of online EFL and ESP courses and subject-teachers online courses taught in English. The objective of the investigation is, firstly, to ascertain the presence of metadiscourse in the form of interactive devices (to guide the listener through the text) and interactional features (to involve the listener in the subject). Previous research on metadiscourse in academic discourse, in college students' presentations in EAP (English for Academic Purposes) lessons, as well as in online teaching methodology courses and MOOC (Massive Open Online Courses) has shown that instructors use a vast array of metadiscoursal features intended to express the speakers’ intentions and standing with respect to discourse. Besides, they tend to use directions to orient their listeners and logical connectors referring to the structure of the text. Accordingly, the purpose of the investigation is also to find out whether metadiscourse is used as a rhetorical strategy by instructors to control, evaluate and negotiate the impact of the ongoing talk, and eventually to signal their attitudes towards the content and the audience. Thus, the use of metadiscourse can contribute to the informative and persuasive impact of discourse, and to the effectiveness of online communication, especially in learning contexts.

Keywords: discourse analysis, metadiscourse, online EFL and ESP teaching, rhetoric

Procedia PDF Downloads 128
6210 Online Course of Study and Job Crafting for University Students: Development Work and Feedback

Authors: Hannele Kuusisto, Paivi Makila, Ursula Hyrkkanen

Abstract:

Introduction: There have been arguments about the skills university students should have when graduated. Current trends argue that as well as the specific job-related skills the graduated students need problem-solving, interaction and networking skills as well as self-management skills. Skills required in working life are also considered in the Finnish national project called VALTE (short for 'prepared for working life'). The project involves 11 Finnish school organizations. As one result of this project, a five-credit independent online course in study and job engagement as well as in study and job crafting was developed at Turku University of Applied Sciences. The aim of the oral or e-poster presentation is to present the online course developed in the project. The purpose of this abstract is to present the development work of the online course and the feedback received from the pilots. Method: As the University of Turku is the leading partner of the VALTE project, the collaborative education platform ViLLE (https://ville.utu.fi, developed by the University of Turku) was chosen as the online platform for the course. Various exercise types with automatic assessment were used; for example, quizzes, multiple-choice questions, classification exercises, gap filling exercises, model answer questions, self-assessment tasks, case tasks, and collaboration in Padlet. In addition, the free material and free platforms on the Internet were used (Youtube, Padlet, Todaysmeet, and Prezi) as well as the net-based questionnaires about the study engagement and study crafting (made with Webropol). Three teachers with long teaching experience (also with job crafting and online pedagogy) and three students working as trainees in the project developed the content of the course. The online course was piloted twice in 2017 as an elective course for the students at Turku University of Applied Sciences, a higher education institution of about 10 000 students. After both pilots, feedback from the students was gathered and the online course was developed. Results: As the result, the functional five-credit independent online course suitable for students of different educational institutions was developed. The student feedback shows that students themselves think that the developed online course really enhanced their job and study crafting skills. After the course, 91% of the students considered their knowledge in job and study engagement as well as in job and study crafting to be at a good or excellent level. About two-thirds of the students were going to exploit their knowledge significantly in the future. Students appreciated the variability and the game-like feeling of the exercises as well as the opportunity to study online at the time and place they chose themselves. On a five-point scale (1 being poor and 5 being excellent), the students graded the clarity of the ViLLE platform as 4.2, the functionality of the platform as 4.0 and the easiness of operating as 3.9.

Keywords: job crafting, job engagement, online course, study crafting, study engagement

Procedia PDF Downloads 150
6209 Personality Based Tailored Learning Paths Using Cluster Analysis Methods: Increasing Students' Satisfaction in Online Courses

Authors: Orit Baruth, Anat Cohen

Abstract:

Online courses have become common in many learning programs and various learning environments, particularly in higher education. Social distancing forced in response to the COVID-19 pandemic has increased the demand for these courses. Yet, despite the frequency of use, online learning is not free of limitations and may not suit all learners. Hence, the growth of online learning alongside with learners' diversity raises the question: is online learning, as it currently offered, meets the needs of each learner? Fortunately, today's technology allows to produce tailored learning platforms, namely, personalization. Personality influences learner's satisfaction and therefore has a significant impact on learning effectiveness. A better understanding of personality can lead to a greater appreciation of learning needs, as well to assists educators ensure that an optimal learning environment is provided. In the context of online learning and personality, the research on learning design according to personality traits is lacking. This study explores the relations between personality traits (using the 'Big-five' model) and students' satisfaction with five techno-pedagogical learning solutions (TPLS): discussion groups, digital books, online assignments, surveys/polls, and media, in order to provide an online learning process to students' satisfaction. Satisfaction level and personality identification of 108 students who participated in a fully online learning course at a large, accredited university were measured. Cluster analysis methods (k-mean) were applied to identify learners’ clusters according to their personality traits. Correlation analysis was performed to examine the relations between the obtained clusters and satisfaction with the offered TPLS. Findings suggest that learners associated with the 'Neurotic' cluster showed low satisfaction with all TPLS compared to learners associated with the 'Non-neurotics' cluster. learners associated with the 'Consciences' cluster were satisfied with all TPLS except discussion groups, and those in the 'Open-Extroverts' cluster were satisfied with assignments and media. All clusters except 'Neurotic' were highly satisfied with the online course in general. According to the findings, dividing learners into four clusters based on personality traits may help define tailor learning paths for them, combining various TPLS to increase their satisfaction. As personality has a set of traits, several TPLS may be offered in each learning path. For the neurotics, however, an extended selection may suit more, or alternatively offering them the TPLS they less dislike. Study findings clearly indicate that personality plays a significant role in a learner's satisfaction level. Consequently, personality traits should be considered when designing personalized learning activities. The current research seeks to bridge the theoretical gap in this specific research area. Establishing the assumption that different personalities need different learning solutions may contribute towards a better design of online courses, leaving no learner behind, whether he\ she likes online learning or not, since different personalities need different learning solutions.

Keywords: online learning, personality traits, personalization, techno-pedagogical learning solutions

Procedia PDF Downloads 102
6208 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS

Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang

Abstract:

Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.

Keywords: air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF

Procedia PDF Downloads 165