Search results for: optimized model
17411 An Inquiry on 2-Mass and Wheeled Mobile Robot Dynamics
Authors: Boguslaw Schreyer
Abstract:
In this paper, a general dynamical model is derived using the Lagrange formalism. The two masses: sprang and unsprang are included in a six-degree of freedom model for a sprung mass. The unsprung mass is included and shown only in a simplified model, although its equations have also been derived by an author. The simplified equations, more suitable for the computer model of robot’s dynamics are also shown.Keywords: dynamics, mobile, robot, wheeled mobile robots
Procedia PDF Downloads 33617410 Yaw Angle Effect on the Aerodynamic Performance of Rear-Roof Spoiler of Hatchback Vehicle
Authors: See-Yuan Cheng, Kwang-Yhee Chin, Shuhaimi Mansor
Abstract:
Rear-roof spoiler is commonly used for improving the aerodynamic performance of road vehicles. This study aims to investigate the effect of yaw angle on the effectiveness of strip-type rear-roof spoiler in providing lower drag and lift coefficients of a hatchback model. A computational fluid dynamics (CFD) method was used. The numerically obtained results were compared to the experimental data for validation of the CFD method. At increasing yaw angle, both the drag and lift coefficients of the model were to increase. In addition, the effectiveness of spoiler was deteriorated. These unfavorable effects were due to the formation of longitudinal vortices around the side edges of the model that had caused the surface pressure of the model to drop. Furthermore, there were significant crossflow structures developed behind the model at larger yaw angle, which were associated with the drop in the surface pressure of the rear section of the model and cause the drag coefficient to rise.Keywords: Ahmed model, aerodynamics, spoiler, yaw angle
Procedia PDF Downloads 35817409 Bacterio-Algal Microbial Fuel Cells for Sustainable Power Production, Wastewater Treatment, and Desalination
Authors: Ann D. Christy, Beenish Saba
Abstract:
The Microbial fuel Cell (MFC) is a successful integrated technology for power production and wastewater treatment. MFCs are recognized for their dual function, but research in this field is still ongoing to increase efficiency and power output. One such effort is successful integration of phototrophic and autotrophic microorganisms to create bacterio-algal MFCs for sustainable electricity production along with wastewater treatment and algal biomass production. An MFC is typically configured with an anaerobic anodic chamber containing exoelectrogenic microorganisms separated by a cation exchange membrane from an adjacent aerobic cathodic chamber. The two electrodes are connected by an external circuit. This conventional MFC can be converted into a phototrophic MFC by introducing photosynthetic microorganisms into the cathode chamber. This study examines adding a third desalination chamber to a two-chamber bacterio-algal MFC. Successful results have been observed from these three-chamber MFCs demonstrating wastewater treatment in the anodic chamber, phototrophic algal growth in the cathodic chamber, and desalination in the middle chamber. The present article will summarize successful results of the bacterio-algal fuel cells and offer insights about the mechanisms involved. Tables summarizing the input substrate along with optimized operational conditions and output performance in terms of power production and efficiencies of water and wastewater treatment will be presented. The negative impacts and challenges will be discussed, along with possible future research directions. Results suggest that the three chamber bacterio-algal desalination cell has potential as a feasible technology for power production, wastewater treatment and desalination, but it needs further investigation under optimized conditions.Keywords: bacterio-algal MFC, three chamber, microbial fuel cell, wastewater treatment and desalination
Procedia PDF Downloads 36217408 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model
Authors: Wei Lu
Abstract:
With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model
Procedia PDF Downloads 15317407 Microvoid Growth in the Interfaces during Aging
Authors: Jae-Yong Park, Gwancheol Seo, Young-Ho Kim
Abstract:
Microvoids, sometimes called Kikendall voids, generally form in the interfaces between Sn-based solders and Cu and degrade the mechanical and electrical properties of the solder joints. The microvoid formation is known as the rapid interdiffusion between Sn and Cu and impurity content in the Cu. Cu electroplating from the acid solutions has been widely used by microelectronic packaging industry for both printed circuit board (PCB) and integrated circuit (IC) applications. The quality of electroplated Cu that can be optimized by the electroplating conditions is critical for the solder joint reliability. In this paper, the influence of electroplating conditions on the microvoid growth in the interfaces between Sn-3.0Ag-0.5Cu (SAC) solder and Cu layer was investigated during isothermal aging. The Cu layers were electroplated by controlling the additive of electroplating bath and current density to induce various microvoid densities. The electroplating bath consisted of sulfate, sulfuric acid, and additives and the current density of 5-15 mA/cm2 for each bath was used. After aging at 180 °C for up to 250 h, typical bi-layer of Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) was gradually growth at the SAC/Cu interface and microvoid density in the Cu3Sn showed disparities in the electroplating conditions. As the current density increased, the microvoid formation was accelerated in all electroplating baths. The higher current density induced, the higher impurity content in the electroplated Cu. When the polyethylene glycol (PEG) and Cl- ion were mixed in an electroplating bath, the microvoid formation was the highest compared to other electroplating baths. On the other hand, the overall IMC thickness was similar in all samples irrespective of the electroplating conditions. Impurity content in electroplated Cu influenced the microvoid growth, but the IMC growth was not affected by the impurity content. In conclusion, the electroplated conditions are properly optimized to avoid the excessive microvoid formation that results in brittle fracture of solder joint under high strain rate loading.Keywords: electroplating, additive, microvoid, intermetallic compound
Procedia PDF Downloads 25917406 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk
Authors: Masoud Nasiri Sarvi, Yunhua Luo
Abstract:
Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.Keywords: bone mineral density, hip fracture risk, impact force, sideways falls
Procedia PDF Downloads 53617405 Physical Education Teacher's Interpretation toward Teaching Games for Understanding Model
Authors: Soni Nopembri
Abstract:
The objective of this research is to evaluate the implementation of teaching games for Understanding model by conducting action to physical education teacher who have got long teaching experience. The research applied Participatory Action Research. The subjects of this research were 19 physical education teachers who had got training of Teaching Games for Understanding. Data collection was conducted intensively through a questionnaire, in-depth interview, Focus Group Discussion (FGD), observation, and documentation. The collected data was analysis zed qualitatively and quantitatively. The result showed that physical education teachers had got an appropriate interpretation on TGfU model. Some indicators that were the focus of this research indicated this points; they are: (1) physical education teachers had good understanding toward TGfU model, (2) PE teachers’ competence in applying TGfU model on Physical Education at school were adequate, though some improvement were needed, (3) the influence factors in the implementation of TGfU model, in sequence, were teacher, facilities, environment, and students factors, (4) PE teachers’ perspective toward TGfU model were positively good, although some teachers were less optimistic toward the development of TGfU model in the future.Keywords: TGfU, physical education teacher, teaching games, FGD
Procedia PDF Downloads 54717404 Hyper-Production of Lysine through Fermentation and Its Biological Evaluation on Broiler Chicks
Authors: Shagufta Gulraiz, Abu Saeed Hashmi, Muhammad Mohsin Javed
Abstract:
Lysine required for poultry feed is imported in Pakistan to fulfil the desired dietary needs. Present study was designed to produce maximum lysine by utilizing cheap sources to save the foreign exchange. To achieve the goal of lysine production through fermentation, large scale production of lysine was carried out in 7.5 L stirred glass vessel fermenter with wild and mutant Brevibacterium flavum (B. flavum) using all pre-optimized conditions. The identification of produced lysine was carried out by TLC and amino acid analyzer. Toxicity evaluation of produced lysine was performed before feeding to broiler chicks. During biological trial concentrated fermented broth having 8% lysine was used in poultry rations as a source of Lysine for test birds. Fermenter scale studies showed that the maximum lysine (20.8 g/L) was produced at 250 rpm, 1.5 vvm aeration, 6.0% inoculum under controlled pH conditions after 56 h of fermentation with wild culture but mutant (BFENU2) gave maximum yield of lysine 36.3 g/L under optimized condition after 48 h. Amino acid profiling showed 1.826% Lysine in fermented broth by wild B. flavum and 2.644% by mutant strain (BFENU2). Toxicity evaluation report showed that the produced lysine is safe for consumption by broilers. Biological evaluation results showed that produced lysine was equally good as commercial lysine in terms of weight gain, feed intake and feed conversion ratio. A cheap and practical bioprocess of Lysine production was concluded, that can be exploited commercially in Pakistan to save foreign exchange.Keywords: lysine, fermentation, broiler chicks, biological evaluation
Procedia PDF Downloads 54817403 Geomechanical Numerical Modeling of Well Wall in Drilling with Finite Difference Method
Authors: Marzieh Zarei
Abstract:
Well instability is one of the most fundamental challenges faced by the oil and gas industry. Well wall stability analysis is a gap to be filled in the oil industry. The collection of static data such as well logging leads to the construction of a geomechanical numerical model, which will help in assessing the probable risks in future drilling. In this paper, geomechanical model was designed, and mechanical properties of the rock was determined at all points of the model. It was found the safe mud window was determined and the minimum and maximum mud pressures were determined in the ranges of 70-60 MPa and 110-100 MPa, respectively.Keywords: geomechanics, numerical model, well stability, in-situ stress, underbalanced drilling
Procedia PDF Downloads 12917402 Optimization of the Administration of Intravenous Medication by Reduction of the Residual Volume, Taking User-Friendliness, Cost Efficiency, and Safety into Account
Authors: A. Poukens, I. Sluyts, A. Krings, J. Swartenbroekx, D. Geeroms, J. Poukens
Abstract:
Introduction and Objectives: It has been known for many years that with the administration of intravenous medication, a rather significant part of the planned to be administered infusion solution, the residual volume ( the volume that remains in the IV line and or infusion bag), does not reach the patient and is wasted. This could possibly result in under dosage and diminished therapeutic effect. Despite the important impact on the patient, the reduction of residual volume lacks attention. An optimized and clearly stated protocol concerning the reduction of residual volume in an IV line is necessary for each hospital. As described in my Master’s thesis, acquiring the degree of Master in Hospital Pharmacy, administration of intravenous medication can be optimized by reduction of the residual volume. Herewith effectiveness, user-friendliness, cost efficiency and safety were taken into account. Material and Methods: By usage of a literature study and an online questionnaire sent out to all Flemish hospitals and hospitals in the Netherlands (province Limburg), current flush methods could be mapped out. In laboratory research, possible flush methods aiming to reduce the residual volume were measured. Furthermore, a self-developed experimental method to reduce the residual volume was added to the study. The current flush methods and the self-developed experimental method were compared to each other based on cost efficiency, user-friendliness and safety. Results: There is a major difference between the Flemish and the hospitals in the Netherlands (Province Limburg) concerning the approach and method of flushing IV lines after administration of intravenous medication. The residual volumes were measured and laboratory research showed that if flushing was done minimally 1-time equivalent to the residual volume, 95 percent of glucose would be flushed through. Based on the comparison, it became clear that flushing by use of a pre-filled syringe would be the most cost-efficient, user-friendly and safest method. According to laboratory research, the self-developed experimental method is feasible and has the advantage that the remaining fraction of the medication can be administered to the patient in unchanged concentration without dilution. Furthermore, this technique can be applied regardless of the level of the residual volume. Conclusion and Recommendations: It is recommendable to revise the current infusion systems and flushing methods in most hospitals. Aside from education of the hospital staff and alignment on a uniform substantiated protocol, an optimized and clear policy on the reduction of residual volume is necessary for each hospital. It is recommended to flush all IV lines with rinsing fluid with at least the equivalent volume of the residual volume. Further laboratory and clinical research for the self-developed experimental method are needed before this method can be implemented clinically in a broader setting.Keywords: intravenous medication, infusion therapy, IV flushing, residual volume
Procedia PDF Downloads 13517401 Study of the Protection of Induction Motors
Authors: Bencheikh Abdellah
Abstract:
In this paper, we present a mathematical model dedicated to the simulation breaks bars in a three-phase cage induction motor. This model is based on a mesh circuit representing the rotor cage. The tested simulation allowed us to demonstrate the effectiveness of this model to describe the behavior of the machine in a healthy state, failure.Keywords: AC motors, squirrel cage, diagnostics, MATLAB, SIMULINK
Procedia PDF Downloads 43817400 Dynamic Model of Heterogeneous Markets with Imperfect Information for the Optimization of Company's Long-Time Strategy
Authors: Oleg Oborin
Abstract:
This paper is dedicated to the development of the model, which can be used to evaluate the effectiveness of long-term corporate strategies and identify the best strategies. The theoretical model of the relatively homogenous product market (such as iron and steel industry, mobile services or road transport) has been developed. In the model, the market consists of a large number of companies with different internal characteristics and objectives. The companies can perform mergers and acquisitions in order to increase their market share. The model allows the simulation of long-time dynamics of the market (for a period longer than 20 years). Therefore, a large number of simulations on random input data was conducted in the framework of the model. After that, the results of the model were compared with the dynamics of real markets, such as the US steel industry from the beginning of the XX century to the present day, and the market of mobile services in Germany for the period between 1990 and 2015.Keywords: Economic Modelling, Long-Time Strategy, Mergers and Acquisitions, Simulation
Procedia PDF Downloads 36717399 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 46117398 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 2017397 Modelling Export Dynamics in the CSEE Countries Using GVAR Model
Abstract:
The paper investigates the key factors of export dynamics for a set of Central and Southeast European (CSEE) countries in the context of current economic and financial crisis. In order to model the export dynamics a Global Vector Auto Regressive (GVAR) model is defined. As opposed to models which model each country separately, the GVAR combines all country models in a global model which enables obtaining important information on spill-over effects in the context of globalization and rising international linkages. The results of the study indicate that for most of the CSEE countries, exports are mainly driven by domestic shocks, both in the short run and in the long run. This study is the first application of the GVAR model to studying the export dynamics in the CSEE countries and therefore the results of the study present an important empirical contribution.Keywords: export, GFEVD, global VAR, international trade, weak exogeneity
Procedia PDF Downloads 30117396 Simplified 3R2C Building Thermal Network Model: A Case Study
Authors: S. M. Mahbobur Rahman
Abstract:
Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control. Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model
Procedia PDF Downloads 14617395 Maturity Model for Agro-Industrial Logistics
Authors: Erika Tatiana Ruiz, Wilson Adarme Jaimes
Abstract:
This abstract presents the methodology for improving the logistics processes of agricultural production units belonging to the coffee, cocoa, and fruit sectors, starting from the fundamental concepts and detailing each of the phases to carry out the diagnosis, which will be the basis for the formulation of its action plan and implementation of the maturity model. As a result of this work, the maturity model is formulated to improve logistics processes. This model seeks to: generate a progressive model that is useful for all productive units belonging to these sectors at the national level, regardless of their initial conditions, focus on the improvement of logistics processes as a strategy that contributes to improving the competitiveness of the agricultural sector in Colombia and spread the implementation of good logistics practices in postharvest in all departments of the country through autonomous tools. This model has been built through a series of steps that allow the evaluation and improvement of the logistics dimensions or indicators. The potential improvements for each dimension provide the foundation on which to advance to the next level. Within the maturity model, a methodology is indicated for the design and execution of strategies to improve its logistics processes, taking into account the current state of each production unit.Keywords: agroindustrial, characterization, logistics, maturity model, processes
Procedia PDF Downloads 13717394 Spectroscopic Study of Tb³⁺ Doped Calcium Aluminozincate Phosphor for Display and Solid-State Lighting Applications
Authors: Sumandeep Kaur, Allam Srinivasa Rao, Mula Jayasimhadri
Abstract:
In recent years, rare earth (RE) ions doped inorganic luminescent materials are seeking great attention due to their excellent physical and chemical properties. These materials offer high thermal and chemical stability and exhibit good luminescence properties due to the presence of RE ions. The luminescent properties of these materials are attributed to their intra-configurational f-f transitions in RE ions. A series of Tb³⁺ doped calcium aluminozincate has been synthesized via sol-gel method. The structural and morphological studies have been carried out by recording X-ray diffraction patterns and SEM image. The luminescent spectra have been recorded for a comprehensive study of their luminescence properties. The XRD profile reveals the single-phase orthorhombic crystal structure with an average crystallite size of 65 nm as calculated by using DebyeScherrer equation. The SEM image exhibits completely random, irregular morphology of micron size particles of the prepared samples. The optimization of luminescence has been carried out by varying the dopant Tb³⁺ concentration within the range from 0.5 to 2.0 mol%. The as-synthesized phosphors exhibit intense emission at 544 nm pumped at 478 nm excitation wavelength. The optimized Tb³⁺ concentration has been found to be 1.0 mol% in the present host lattice. The decay curves show bi-exponential fitting for the as-synthesized phosphor. The colorimetric studies show green emission with CIE coordinates (0.334, 0.647) lying in green region for the optimized Tb³⁺ concentration. This report reveals the potential utility of Tb³⁺ doped calcium aluminozincate phosphors for display and solid-state lighting devices.Keywords: concentration quenching, phosphor, photoluminescence, XRD
Procedia PDF Downloads 15417393 An A-Star Approach for the Quickest Path Problem with Time Windows
Authors: Christofas Stergianos, Jason Atkin, Herve Morvan
Abstract:
As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling
Procedia PDF Downloads 23117392 Starlink Satellite Collision Probability Simulation Based on Simplified Geometry Model
Authors: Toby Li, Julian Zhu
Abstract:
In this paper, a model based on a simplified geometry is introduced to give a very conservative collision probability prediction for the Starlink satellite in its most densely clustered region. Under the model in this paper, the probability of collision for Starlink satellite where it clustered most densely is found to be 8.484 ∗ 10^−4. It is found that the predicted collision probability increased nonlinearly with the increased safety distance set. This simple model provides evidence that the continuous development of maneuver avoidance systems is necessary for the future of the orbital safety of satellites under the harsher Lower Earth Orbit environment.Keywords: Starlink, collision probability, debris, geometry model
Procedia PDF Downloads 8317391 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device
Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang
Abstract:
This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.Keywords: CFD modeling, validation, microsphere generation, modified T-junction
Procedia PDF Downloads 70717390 Modeling User Context Using CEAR Diagram
Authors: Ravindra Dastikop, G. S. Thyagaraju, U. P. Kulkarni
Abstract:
Even though the number of context aware applications is increasing day by day along with the users, till today there is no generic programming paradigm for context aware applications. This situation could be remedied by design and developing the appropriate context modeling and programming paradigm for context aware applications. In this paper, we are proposing the static context model and metrics for validating the expressiveness and understandability of the model. The proposed context modeling is a way of describing a situation of user using context entities , attributes and relationships .The model which is an extended and hybrid version of ER model, ontology model and Graphical model is specifically meant for expressing and understanding the user situation in context aware environment. The model is useful for understanding context aware problems, preparing documentation and designing programs and databases. The model makes use of context entity attributes relationship (CEAR) diagram for representation of association between the context entities and attributes. We have identified a new set of graphical notations for improving the expressiveness and understandability of context from the end user perspective .Keywords: user context, context entity, context entity attributes, situation, sensors, devices, relationships, actors, expressiveness, understandability
Procedia PDF Downloads 34417389 Spatially Downscaling Land Surface Temperature with a Non-Linear Model
Authors: Kai Liu
Abstract:
Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature
Procedia PDF Downloads 32917388 Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features
Authors: Bo Wang
Abstract:
The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically.Keywords: multi-source image geometric process, high precision geometric positioning, quotient space of multi-geometric features, optimized weight selection
Procedia PDF Downloads 28417387 Attribute Selection for Preference Functions in Engineering Design
Authors: Ali E. Abbas
Abstract:
Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. When designing a product, it is important to determine the appropriate attributes of value and the preference function for which the product is optimized. This paper provides some guidelines on appropriate selection of attributes for preference and value functions for engineering design.Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management
Procedia PDF Downloads 30617386 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach
Authors: Sina Kazemi, Farshid Torabi, Todd Peterson
Abstract:
Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity
Procedia PDF Downloads 8617385 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent
Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar
Abstract:
Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics
Procedia PDF Downloads 38917384 A Strategic Partner Evaluation Model for the Project Based Enterprises
Authors: Woosik Jang, Seung H. Han
Abstract:
The optimal partner selection is one of the most important factors to pursue the project’s success. However, in practice, there is a gaps in perception of success depending on the role of the enterprises for the projects. This frequently makes a relations between the partner evaluation results and the project’s final performances, insufficiently. To meet this challenges, this study proposes a strategic partner evaluation model considering the perception gaps between enterprises. A total 3 times of survey was performed; factor selection, perception gap analysis, and case application. After then total 8 factors are extracted from independent sample t-test and Borich model to set-up the evaluation model. Finally, through the case applications, only 16 enterprises are re-evaluated to “Good” grade among the 22 “Good” grade from existing model. On the contrary, 12 enterprises are re-evaluated to “Good” grade among the 19 “Bad” grade from existing model. Consequently, the perception gaps based evaluation model is expected to improve the decision making quality and also enhance the probability of project’s success.Keywords: partner evaluation model, project based enterprise, decision making, perception gap, project performance
Procedia PDF Downloads 15717383 Analytical Tools for Multi-Residue Analysis of Some Oxygenated Metabolites of PAHs (Hydroxylated, Quinones) in Sediments
Authors: I. Berger, N. Machour, F. Portet-Koltalo
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are toxic and carcinogenic pollutants produced in majority by incomplete combustion processes in industrialized and urbanized areas. After being emitted in atmosphere, these persistent contaminants are deposited to soils or sediments. Even if persistent, some can be partially degraded (photodegradation, biodegradation, chemical oxidation) and they lead to oxygenated metabolites (oxy-PAHs) which can be more toxic than their parent PAH. Oxy-PAHs are less measured than PAHs in sediments and this study aims to compare different analytical tools in order to extract and quantify a mixture of four hydroxylated PAHs (OH-PAHs) and four carbonyl PAHs (quinones) in sediments. Methodologies: Two analytical systems – HPLC with on-line UV and fluorescence detectors (HPLC-UV-FLD) and GC coupled to a mass spectrometer (GC-MS) – were compared to separate and quantify oxy-PAHs. Microwave assisted extraction (MAE) was optimized to extract oxy-PAHs from sediments. Results: First OH-PAHs and quinones were analyzed in HPLC with on-line UV and fluorimetric detectors. OH-PAHs were detected with the sensitive FLD, but the non-fluorescent quinones were detected with UV. The limits of detection (LOD)s obtained were in the range (2-3)×10-4 mg/L for OH-PAHs and (2-3)×10-3 mg/L for quinones. Second, even if GC-MS is not well adapted to the analysis of the thermodegradable OH-PAHs and quinones without any derivatization step, it was used because of the advantages of the detector in terms of identification and of GC in terms of efficiency. Without derivatization, only two of the four quinones were detected in the range 1-10 mg/L (LODs=0.3-1.2 mg/L) and LODs were neither very satisfying for the four OH-PAHs (0.18-0.6 mg/L). So two derivatization processes were optimized, comparing to literature: one for silylation of OH-PAHs, one for acetylation of quinones. Silylation using BSTFA/TCMS 99/1 was enhanced using a mixture of catalyst solvents (pyridine/ethyle acetate) and finding the appropriate reaction duration (5-60 minutes). Acetylation was optimized at different steps of the process, including the initial volume of compounds to derivatize, the added amounts of Zn (0.1-0.25 g), the nature of the derivatization product (acetic anhydride, heptafluorobutyric acid…) and the liquid/liquid extraction at the end of the process. After derivatization, LODs were decreased by a factor 3 for OH-PAHs and by a factor 4 for quinones, all the quinones being now detected. Thereafter, quinones and OH-PAHs were extracted from spiked sediments using microwave assisted extraction (MAE) followed by GC-MS analysis. Several mixtures of solvents of different volumes (10-25 mL) and using different extraction temperatures (80-120°C) were tested to obtain the best recovery yields. Satisfactory recoveries could be obtained for quinones (70-96%) and for OH-PAHs (70-104%). Temperature was a critical factor which had to be controlled to avoid oxy-PAHs degradation during the MAE extraction process. Conclusion: Even if MAE-GC-MS was satisfactory to analyze these oxy-PAHs, MAE optimization has to be carried on to obtain a most appropriate extraction solvent mixture, allowing a direct injection in the HPLC-UV-FLD system, which is more sensitive than GC-MS and does not necessitate a previous long derivatization step.Keywords: derivatizations for GC-MS, microwave assisted extraction, on-line HPLC-UV-FLD, oxygenated PAHs, polluted sediments
Procedia PDF Downloads 28717382 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.Keywords: DEA, super-efficiency, time lag, multi-periods input
Procedia PDF Downloads 474