Search results for: miRNA:mRNA target prediction
4547 Development of Visual Working Memory Precision: A Cross-Sectional Study of Simultaneously Delayed Responses Paradigm
Authors: Yao Fu, Xingli Zhang, Jiannong Shi
Abstract:
Visual working memory (VWM) capacity is the ability to maintain and manipulate short-term information which is not currently available. It is well known for its significance to form the basis of numerous cognitive abilities and its limitation in holding information. VWM span, the most popular measurable indicator, is found to reach the adult level (3-4 items) around 12-13 years’ old, while less is known about the precision development of the VWM capacity. By using simultaneously delayed responses paradigm, the present study investigates the development of VWM precision among 6-18-year-old children and young adults, besides its possible relationships with fluid intelligence and span. Results showed that precision and span both increased with age, and precision reached the maximum in 16-17 age-range. Moreover, when remembering 3 simultaneously presented items, the probability of remembering target item correlated with fluid intelligence and the probability of wrap errors (misbinding target and non-target items) correlated with age. When remembering more items, children had worse performance than adults due to their wrap errors. Compared to span, VWM precision was effective predictor of intelligence even after controlling for age. These results suggest that unlike VWM span, precision developed in a slow, yet longer fashion. Moreover, decreasing probability of wrap errors might be the main reason for the development of precision. Last, precision correlated more closely with intelligence than span in childhood and adolescence, which might be caused by the probability of remembering target item.Keywords: fluid intelligence, precision, visual working memory, wrap errors
Procedia PDF Downloads 2774546 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness
Authors: Marzieh Karimihaghighi, Carlos Castillo
Abstract:
This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism
Procedia PDF Downloads 1524545 Down Regulation of Smad-2 Transcription and TGF-B1 Signaling in Nano Sized Titanium Dioxide-Induced Liver Injury in Mice by Potent Antioxidants
Authors: Maha Z. Rizk, Sami A. Fattah, Heba M. Darwish, Sanaa A. Ali, Mai O. Kadry
Abstract:
Although it is known that nano-TiO2 and other nanoparticles can induce liver toxicity, the mechanisms and the molecular pathogenesis are still unclear. The present study investigated some biochemical indices of nano-sized Titanium dioxide (TiO2 NPS) toxicity in mice liver and the ameliorative efficacy of individual and combined doses of idebenone, carnosine and vitamin E. Nano-anatase TiO2 (21 nm) was administered as a total oral dose of 2.2 gm/Kg daily for 2 weeks followed by the afore-mentioned antioxidants daily either individually or in combination for 1month. TiO2-NPS induced a significant elevation in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hepatic oxidative stress biomarkers [lipid peroxides (LP), and nitric oxide levels (NOX), while it significantly reduced glutathione reductase (GR), reduced glutathione (GSH) and glutathione peroxidase(GPX) levels. Moreover the quantitative RT-PCR analysis showed that nano-anatase TiO2 can significantly alter the mRNA and protein expressions of the fibrotic factors TGF-B1, VEGFand Smad-2. Histopathological examination of hepatic tissue reinforced the previous biochemical results. Our results also implied that inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity Tumor necrosis factor-α (TNF-α) and Interleukin -6 (IL-6) and increased the percent of DNA damage which was assessed by COMET assay in addition to the apoptotic marker Caspase-3. Moreover mRNA gene expression observed by RT-PCR showed a significant overexpression in nuclear factor relation -2 (Nrf2), nuclear factor kappa beta (NF-Kβ) and the apoptotic factor (bax), and a significant down regulation in the antiapoptotic factor (bcl2) level. In conclusion idebenone, carnosine and vitamin E ameliorated the deviated previously mentioned parameters with variable degrees with the most pronounced role in alleviating the hazardous effect of TiO2 NPS toxicity following the combination regimen.Keywords: Nano-anatase TiO2, TGF-B1, SMAD-2
Procedia PDF Downloads 4254544 Classification of Echo Signals Based on Deep Learning
Authors: Aisulu Tileukulova, Zhexebay Dauren
Abstract:
Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.Keywords: radar, neural network, convolutional neural network, echo signals
Procedia PDF Downloads 3544543 Contactless and Multiple Space Debris Removal by Micro to Nanno Satellites
Authors: Junichiro Kawaguchi
Abstract:
Space debris problems have emerged and threatened the use of low earth orbit around the Earth owing to a large number of spacecraft. In debris removal, a number of research and patents have been proposed and published so far. They assume servicing spacecraft, robots to be built for accessing the target debris objects. The robots should be sophisticated enough automatically to access the debris articulating the attitude and the translation motion with respect to the debris. This paper presents the idea of using the torpedo-like third unsophisticated and disposable body, in addition to the first body of the servicing robot and the second body of the target debris. The third body is launched from the first body from a distance farer than the size of the second body. This paper presents the method and the system, so that the third body is launched from the first body. The third body carries both a net and an inflatable or extendible drag deceleration device and is built small and light. This method enables even a micro to nano satellite to perform contactless and multiple debris removal even via a single flight.Keywords: ballute, debris removal, echo satellite, gossamer, gun-net, inflatable space structure, small satellite, un-cooperated target
Procedia PDF Downloads 1234542 Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed
Authors: Mohamed Elhakeem, A. N. Thanos Papanicolaou, Christopher Wilson, Yi-Jia Chang
Abstract:
In this study, a physically-based, modelling framework was developed to predict saturated hydraulic conductivity (KSAT) dynamics in the Clear Creek Watershed (CCW), Iowa. The modelling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the KSAT field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured KSAT values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of KSAT variability in CCW due to the seasonal changes in climate and land use activities.Keywords: saturated hydraulic conductivity, pedotransfer functions, watershed models, geospatial tools
Procedia PDF Downloads 2614541 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 694540 Top-K Shortest Distance as a Similarity Measure
Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard
Abstract:
Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.Keywords: graph matching, link prediction, shortest path, similarity
Procedia PDF Downloads 3594539 Amplitude and Latency of P300 Component from Auditory Stimulus in Different Types of Personality: An Event Related Potential Study
Authors: Nasir Yusoff, Ahmad Adamu Adamu, Tahamina Begum, Faruque Reza
Abstract:
The P300 from Event related potential (ERP) explains the psycho-physiological phenomenon in human body. The present study aims to identify the differences of amplitude and latency of P300 component from auditory stimuli, between ambiversion and extraversion types of personality. Ambivert (N=20) and extravert (N=20) undergoing ERP recording at the Hospital Universiti Sains Malaysia (HUSM) laboratory. Electroencephalogram data was recorded with oddball paradigm, counting auditory standard and target tones, from nine electrode sites (Fz, Cz, Pz, T3, T4, T5, T6, P3 and P4) by using the 128 HydroCel Geodesic Sensor Net. The P300 latency of the target tones at all electrodes were insignificant. Similarly, the P300 latency of the standard tones were also insignificant except at Fz and T3 electrode. Likewise, the P300 amplitude of the target and standard tone in all electrode sites were insignificant. Extravert and ambivert indicate similar characteristic in cognition processing from auditory task.Keywords: amplitude, event related potential, p300 component, latency
Procedia PDF Downloads 3784538 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism
Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman
Abstract:
Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model
Procedia PDF Downloads 774537 Churn Prediction for Savings Bank Customers: A Machine Learning Approach
Authors: Prashant Verma
Abstract:
Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling
Procedia PDF Downloads 1444536 Municipal Solid Waste Management and Analysis of Waste Generation: A Case Study of Bangkok, Thailand
Authors: Pitchayanin Sukholthaman
Abstract:
Gradually accumulated, the enormous amount of waste has caused tremendous adverse impacts to the world. Bangkok, Thailand, is chosen as an urban city of a developing country having coped with serious MSW problems due to the vast amount of waste generated, ineffective and improper waste management problems. Waste generation is the most important factor for successful planning of MSW management system. Thus, the prediction of MSW is a very important role to understand MSW distribution and characteristic; to be used for strategic planning issues. This study aims to find influencing variables that affect the amount of Bangkok MSW generation quantity.Keywords: MSW generation, MSW quantity prediction, MSW management, multiple regression, Bangkok
Procedia PDF Downloads 4224535 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction
Authors: Kudzanayi Chiteka, Wellington Makondo
Abstract:
The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models
Procedia PDF Downloads 2744534 Prediction of B-Cell Epitope for 24 Mite Allergens: An in Silico Approach towards Epitope-Based Immune Therapeutics
Authors: Narjes Ebrahimi, Soheila Alyasin, Navid Nezafat, Hossein Esmailzadeh, Younes Ghasemi, Seyed Hesamodin Nabavizadeh
Abstract:
Immunotherapy with allergy vaccines is of great importance in allergen-specific immunotherapy. In recent years, B-cell epitope-based vaccines have attracted considerable attention and the prediction of epitopes is crucial to design these types of allergy vaccines. B-cell epitopes might be linear or conformational. The prerequisite for the identification of conformational epitopes is the information about allergens' tertiary structures. Bioinformatics approaches have paved the way towards the design of epitope-based allergy vaccines through the prediction of tertiary structures and epitopes. Mite allergens are one of the major allergy contributors. Several mite allergens can elicit allergic reactions; however, their structures and epitopes are not well established. So, B-cell epitopes of various groups of mite allergens (24 allergens in 6 allergen groups) were predicted in the present work. Tertiary structures of 17 allergens with unknown structure were predicted and refined with RaptorX and GalaxyRefine servers, respectively. The predicted structures were further evaluated by Rampage, ProSA-web, ERRAT and Verify 3D servers. Linear and conformational B-cell epitopes were identified with Ellipro, Bcepred, and DiscoTope 2 servers. To improve the accuracy level, consensus epitopes were selected. Fifty-four conformational and 133 linear consensus epitopes were predicted. Furthermore, overlapping epitopes in each allergen group were defined, following the sequence alignment of the allergens in each group. The predicted epitopes were also compared with the experimentally identified epitopes. The presented results provide valuable information for further studies about allergy vaccine design.Keywords: B-cell epitope, Immunotherapy, In silico prediction, Mite allergens, Tertiary structure
Procedia PDF Downloads 1604533 Correlation and Prediction of Biodiesel Density
Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos
Abstract:
The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg.m^-3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg•m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.Keywords: biodiesel density, correlation, equation of state, prediction
Procedia PDF Downloads 6184532 On the Creep of Concrete Structures
Authors: A. Brahma
Abstract:
Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures.Keywords: concrete structure, creep, modelling, prediction
Procedia PDF Downloads 2914531 Personalized Social Resource Recommender Systems on Interest-Based Social Networks
Authors: C. L. Huang, J. J. Sia
Abstract:
The interest-based social networks, also known as social bookmark sharing systems, are useful platforms for people to conveniently read and collect internet resources. These platforms also providing function of social networks, and users can share and explore internet resources from the social networks. Providing personalized internet resources to users is an important issue on these platforms. This study uses two types of relationship on the social networks—following and follower and proposes a collaborative recommender system, consisting of two main steps. First, this study calculates the relationship strength between the target user and the target user's followings and followers to find top-N similar neighbors. Second, from the top-N similar neighbors, the articles (internet resources) that may interest the target user are recommended to the target user. In this system, users can efficiently obtain recent, related and diverse internet resources (knowledge) from the interest-based social network. This study collected the experimental dataset from Diigo, which is a famous bookmark sharing system. The experimental results show that the proposed recommendation model is more accurate than two traditional baseline recommendation models but slightly lower than the cosine model in accuracy. However, in the metrics of the diversity and executing time, our proposed model outperforms the cosine model.Keywords: recommender systems, social networks, tagging, bookmark sharing systems, collaborative recommender systems, knowledge management
Procedia PDF Downloads 1754530 Improved 3D Structure Prediction of Beta-Barrel Membrane Proteins by Using Evolutionary Coupling Constraints, Reduced State Space and an Empirical Potential Function
Authors: Wei Tian, Jie Liang, Hammad Naveed
Abstract:
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They carry out diverse biological functions, including pore formation, membrane anchoring, enzyme activity, and bacterial virulence. In addition, beta-barrel membrane proteins increasingly serve as scaffolds for bacterial surface display and nanopore-based DNA sequencing. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank and computational methods can help to understand their biophysical principles. We have developed a novel computational method to predict the 3D structure of beta-barrel membrane proteins using evolutionary coupling (EC) constraints and a reduced state space. Combined with an empirical potential function, we can successfully predict strand register at > 80% accuracy for a set of 49 non-homologous proteins with known structures. This is a significant improvement from previous results using EC alone (44%) and using empirical potential function alone (73%). Our method is general and can be applied to genome-wide structural prediction.Keywords: beta-barrel membrane proteins, structure prediction, evolutionary constraints, reduced state space
Procedia PDF Downloads 6184529 Project Time Prediction Model: A Case Study of Construction Projects in Sindh, Pakistan
Authors: Tauha Hussain Ali, Shabir Hussain Khahro, Nafees Ahmed Memon
Abstract:
Accurate prediction of project time for planning and bid preparation stage should contain realistic dates. Constructors use their experience to estimate the project duration for the new projects, which is based on intuitions. It has been a constant concern to both researchers and constructors to analyze the accurate prediction of project duration for bid preparation stage. In Pakistan, such study for time cost relationship has been lacked to predict duration performance for the construction projects. This study is an attempt to explore the time cost relationship that would conclude with a mathematical model to predict the time for the drainage rehabilitation projects in the province of Sindh, Pakistan. The data has been collected from National Engineering Services (NESPAK), Pakistan and regression analysis has been carried out for the analysis of results. Significant relationship has been found between time and cost of the construction projects in Sindh and the generated mathematical model can be used by the constructors to predict the project duration for the upcoming projects of same nature. This study also provides the professionals with a requisite knowledge to make decisions regarding project duration, which is significantly important to win the projects at the bid stage.Keywords: BTC Model, project time, relationship of time cost, regression
Procedia PDF Downloads 3824528 A Review of Current Knowledge on Assessment of Precast Structures Using Fragility Curves
Authors: E. Akpinar, A. Erol, M.F. Cakir
Abstract:
Precast reinforced concrete (RC) structures are excellent alternatives for construction world all over the globe, thanks to their rapid erection phase, ease mounting process, better quality and reasonable prices. Such structures are rather popular for industrial buildings. For the sake of economic importance of such industrial buildings as well as significance of safety, like every other type of structures, performance assessment and structural risk analysis are important. Fragility curves are powerful tools for damage projection and assessment for any sort of building as well as precast structures. In this study, a comparative review of current knowledge on fragility analysis of industrial precast RC structures were presented and findings in previous studies were compiled. Effects of different structural variables, parameters and building geometries as well as soil conditions on fragility analysis of precast structures are reviewed. It was aimed to briefly present the information in the literature about the procedure of damage probability prediction including fragility curves for such industrial facilities. It is found that determination of the aforementioned structural parameters as well as selecting analysis procedure are critically important for damage prediction of industrial precast RC structures using fragility curves.Keywords: damage prediction, fragility curve, industrial buildings, precast reinforced concrete structures
Procedia PDF Downloads 1904527 The Comparison of Chromium Ions Release for Stainless Steel between Artificial Saliva and Breadfruit Leaf Extracts
Authors: Mirna Febriani
Abstract:
The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is the leaves of breadfruit. The method used for this research using Atomic Absorption Spectrophotometric test. The results showed that the difference of chromium ion releases on soaking in saliva and breadfruit leaf extracts on days 1, 3, 7 and 14. Statically calculation with independent T-test with p < 0,05 showed the significant difference. The conclusion of this study shows that breadfruit leaf extract can inhibit the corrosion rate of stainless steel wires.Keywords: chromium ion, stainless steel, artificial saliva, breadfruit leaf
Procedia PDF Downloads 1714526 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4504525 An Analysis of L1 Effects on the Learning of EFL: A Case Study of Undergraduate EFL Learners at Universities in Pakistan
Authors: Nadir Ali Mugheri, Shaukat Ali Lohar
Abstract:
In a multilingual society like Pakistan, code switching is commonly observed in different contexts. Mostly people use L1 (Native Languages) and L2 for common communications and L3 (i.e. English, Urdu, Sindhi) in formal contexts and for academic writings. Such a frequent code switching does affect EFL learners' acquisition of grammar and lexis of the target language which in the long run result in different types of errors in their writings. The current study is to investigate and identify common elements of L1 and L2 (spoken by students of the Universities in Pakistan) which create hindrances for EFL learners. Case study method was used for this research. Formal writings of 400 EFL learners (as participants from various Universities of the country) were observed. Among 400 participants, 200 were female and 200 were male EFL learners having different academic backgrounds. Errors found were categorized into different types according to grammatical items, the difference in meanings, structure of sentences and identifiers of tenses of L1 or L2 in comparison with those of the target language. The findings showed that EFL learners in Pakistani varsities have serious problems in their writings and they committed serious errors related to the grammar and meanings of the target language. After analysis of the committed errors, the results were found in the affirmation of the hypothesis that L1 or L2 does affect EFL learners. The research suggests in the end to adopt natural ways in pedagogy like task-based learning or communicative methods using contextualized material so as to avoid impediments of L1 or L2 in acquisition the target language.Keywords: multilingualism, L2 acquisition, code switching, language acquisition, communicative language teaching
Procedia PDF Downloads 2914524 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems
Authors: Ekrem Canli, Thomas Glade
Abstract:
The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping
Procedia PDF Downloads 2804523 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 1754522 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction
Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin
Abstract:
Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria
Procedia PDF Downloads 954521 Improved Acoustic Source Sensing and Localization Based On Robot Locomotion
Authors: V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
This paper presents different methodology for an acoustic source sensing and localization in an unknown environment. The developed methodology includes an acoustic based sensing and localization system, a converging target localization based on the recursive direction of arrival (DOA) error minimization, and a regressive obstacle avoidance function. Our method is able to augment the existing proven localization techniques and improve results incrementally by utilizing robot locomotion and is capable of converging to a position estimate with greater accuracy using fewer measurements. The results also evinced the DOA error minimization at each iteration, improvement in time for reaching the destination and the efficiency of this target localization method as gradually converging to the real target position. Initially, the system is tested using Kinect mounted on turntable with DOA markings which serve as a ground truth and then our approach is validated using a FireBird VI (FBVI) mobile robot on which Kinect is used to obtain bearing information.Keywords: acoustic source localization, acoustic sensing, recursive direction of arrival, robot locomotion
Procedia PDF Downloads 4934520 Molecular Characterization of Chicken B Cell Marker (ChB6) in Native Chicken of Poonch Region from International Borders of India and Pakistan
Authors: Mandeep Singh Azad.Dibyendu Chakraborty, Vikas Vohra
Abstract:
Introduction: Poonch is one of the remotest districts of the Jammu and Kashmir (UT) and situated on international borders. This native poultry population in these areas is quite hardy and thrives well in adverse climatic conditions. Till date, no local breed from this area (Jammu Province) has been characterized thus present study was undertaken with the main objectives of molecular characterization of ChB6 gene in local native chicken of Poonch region located at international borders between India and Pakistan. The chicken B-cell marker (ChB6) gene has been proposed as a candidate gene in regulating B-cell development. Material and Method: RNA was isolated by Blood RNA Purification Kit (HiPura) and Trizol method from whole blood samples. Positive PCR products with size 1110 bp were selected for further purification, sequencing and analysis. The amplified PCR product was sequenced by Sangers dideoxy chain termination method. The obtained sequence of ChB6 gene of Poonchi chicken were compared by MEGAX software. BioEdit software was used to construct phylogenic tree, and Neighbor Joining method was used to infer evolutionary history. In order to compute evolutionary distance Maximum Composite Likelihood method was used. Results: The positively amplified samples of ChB6 genes were then subjected to Sanger sequencing with “Primer Walking. The sequences were then analyzed using MEGA X and BioEdit software. The sequence results were compared with other reported sequence from different breed of chicken and with other species obtained from the NCBI (National Center for Biotechnology Information). ClustalW method using MEGA X software was used for multiple sequence alignment. The sequence results of ChB6 gene of Poonchi chicken was compared with Centrocercus urophasianus, G. gallus mRNA for B6.1 protein, G. gallus mRNA for B6.2, G. gallus mRNA for B6.3, Gallus gallus B6.1, Halichoeres bivittatus, Miniopterus fuliginosus Ferringtonia patagonica, Tympanuchus phasianellus. The genetic distances were 0.2720, 0.0000, 0.0245, 0.0212, 0.0147, 1.6461, 2.2394, 2.0070 and 0.2363 for ChB6 gene of Poonchi chicken sequence with other sequences in the present study respectively. Sequencing results showed variations between different species. It was observed that AT content were higher then GC content for ChB6 gene. The lower AT content suggests less thermostable. It was observed that there was no sequence difference within the Poonchi population for ChB6 gene. The high homology within chicken population indicates the conservation of ChB6 gene. The maximum difference was observed with Miniopterus fuliginosus (Eastern bent-wing bat) followed by Ferringtonia patagonica and Halichoeres bivittatus. Conclusion: Genetic variation is the essential component for genetic improvement. The results of immune related gene Chb6 shows between population genetic variability. Therefore, further association studies of this gene with some prevalent diseases in large population would be helpful to identify disease resistant/ susceptible genotypes in the indigenous chicken population.Keywords: ChB6, sequencing, ClustalW, genetic distance, poonchi chicken, SNP
Procedia PDF Downloads 704519 A New Learning Automata-Based Algorithm to the Priority-Based Target Coverage Problem in Directional Sensor Networks
Authors: Shaharuddin Salleh, Sara Marouf, Hosein Mohammadi
Abstract:
Directional sensor networks (DSNs) have recently attracted a great deal of attention due to their extensive applications in a wide range of situations. One of the most important problems associated with DSNs is covering a set of targets in a given area and, at the same time, maximizing the network lifetime. This is due to limitation in sensing angle and battery power of the directional sensors. This problem gets more complicated by the possibility that targets may have different coverage requirements. In the present study, this problem is referred to as priority-based target coverage (PTC). As sensors are often densely deployed, organizing the sensors into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set could satisfy coverage requirements of all the targets. Several experiments are conducted to evaluate the performance of the proposed algorithm. The results demonstrated that the algorithms were able to contribute to solving the problem.Keywords: directional sensor networks, target coverage problem, cover set formation, learning automata
Procedia PDF Downloads 4154518 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 108