Search results for: mass spectrometry analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29586

Search results for: mass spectrometry analysis

29046 The Role of Public Education in Increasing Public Awareness through Mass Media with Emphasis on Newspapers and TV: Coping with Possible Earthquake in Tehran

Authors: Naser Charkhsaz, Ashraf Sadat Mousavi, Navvab Shamspour

Abstract:

This study aimed to evaluate the role of state education in increasing public awareness through mass media (with emphasis on newspapers and TV) coping with possible earthquake in Tehran. All residents aged 15 to 65 who live in the five regions of Tehran (North, South, East, West and Center) during the plan implementation were selected and studied. The required sample size in each region was calculated based on the Cochran formula (n=380). In order to collect and analyze the data, a questionnaire with reliability (82%) and a one-sample t-test has been used, respectively. The results showed that warnings related to the Tehran earthquake affected people in the pre-contemplation stage, while public education through mass media did not promote public awareness about prevention, preparedness and rehabilitation.

Keywords: media, disaster, knowledge, Iranian Red Crescent society

Procedia PDF Downloads 308
29045 Quasi-Static Analysis of End Plate Beam-to-Column Connections

Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones

Abstract:

This paper presents a method for modelling and analysing end plate beam-to-column connections to obtain the quasi-static behaviour using non-linear dynamic explicit integration. In addition to its importance to study the static behaviour of a structural member, quasi-static behaviour is largely needed to be compared with the dynamic behaviour of such members in order to investigate the dynamic effect by proposing dynamic increase factors (DIFs). The beam-to-column bolted connections contain various contact surfaces at which the implicit procedure may have difficulties converging, resulting in a large number of iterations. Contrary, explicit procedure could deal effectively with complex contacts without converging problems. Hence, finite element modelling using ABAQUS/explicit is used in this study to address the dynamic effect may be produced using explicit procedure. Also, the effect of loading rate and mass scaling are discussed to investigate their effect on the time of analysis. The results show that the explicit procedure is valuable to model the end plate beam-to-column connections in terms of failure mode, load-displacement relationships. Also, it is concluded that loading rate and mass scaling should be carefully selected to avoid the dynamic effect in the solution.

Keywords: quasi-static, end plate, finite elements, connections

Procedia PDF Downloads 301
29044 The Impact of Coffee Consumption to Body Mass Index and Body Composition

Authors: A.L. Tamm, N. Šott, J. Jürimäe, E. Lätt, A. Orav, Ü. Parm

Abstract:

Coffee is one of the most frequently consumed beverages in the world but still its effects on human organism are not completely understood. Coffee has also been used as a method for weight loss, but its effectiveness has not been proved. There is also not similar comprehension in classifying overweight in choosing between body mass index (BMI) and fat percentage (fat%). The aim of the study was to determine associations between coffee consumption and body composition. Secondly, to detect which measure (BMI or fat%) is more accurate to use describing overweight. Altogether 103 persons enrolled the study and divided into three groups: coffee non-consumers (n=39), average coffee drinkers, who consumed 1 to 4 cups (1 cup = ca 200ml) of coffee per day (n=40) and excessive coffee consumers, who drank at least five cups of coffee per day (n=24). Body mass (medical electronic scale, A&D Instruments, Abingdon, UK) and height (Martin metal anthropometer to the nearest 0.1 cm) were measured and BMI calculated (kg/m2). Participants´ body composition was detected with dual energy X-ray absorptiometry (DXA, Hologic) and general data (history of chronic diseases included) and information about coffee consumption, and physical activity level was collected with questionnaires. Results of the study showed that excessive coffee consumption was associated with increased fat-free mass. It could be foremost due to greater physical activity level in school time or greater (not significant) male proportion in excessive coffee consumers group. For estimating the overweight the fat% in comparison to BMI recommended, as it gives more accurate results evaluating chronical disease risks. In conclusion coffee consumption probably does not affect body composition and for estimating the body composition fat% seems to be more accurate compared with BMI.

Keywords: body composition, body fat percentage, body mass index, coffee consumption

Procedia PDF Downloads 406
29043 Design and Manufacture of Non-Contact Moving Load for Experimental Analysis of Beams

Authors: Firooz Bakhtiari-Nejad, Hamidreza Rostami, Meysam Mirzaee, Mona Zandbaf

Abstract:

Dynamic tests are an important step of the design of engineering structures, because the accuracy of predictions of theoretical–numerical procedures can be assessed. In experimental test of moving loads that is one of the major research topics, the load is modeled as a simple moving mass or a small vehicle. This paper deals with the applicability of Non-Contact Moving Load (NML) for vibration analysis. For this purpose, an experimental set-up is designed to generate the different types of NML including constant and harmonic. The proposed method relies on pressurized air which is useful, especially when dealing with fragile or sensitive structures. To demonstrate the performance of this system, the set-up is employed for a modal analysis of a beam and detecting crack of the beam. The obtained results indicate that the experimental set-up for NML can be an attractive alternative to the moving load problems.

Keywords: experimental analysis, moving load, non-contact excitation, materials engineering

Procedia PDF Downloads 454
29042 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: thermal energy storage, phase change material, melting, solidification

Procedia PDF Downloads 340
29041 Numerical Study of Laminar Natural Flow Transitions in Rectangular Cavity

Authors: Sabrina Nouri, Abderahmane Ghezal, Said Abboudi, Pierre Spiteri

Abstract:

This paper deals with the numerical study of heat and mass transfer of laminar flow transition at low Prandtl numbers. The model includes the two-directional momentum, the energy and mass transfer equations. These equations are discretized by the finite volume method and solved by a self-made simpler like Fortran code. The effect of governing parameters, namely the Lewis and Prandtl numbers, on the transition of the flow and solute distribution is studied for positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood numbers are derived for of Prandtl [10⁻²-10¹] and Lewis numbers [1-10⁴]. The results show unicell and multi-cell flow. Solute and flow boundary layers appear for low Prandtl number.

Keywords: natural convection, low Prandtl number, heat and mass transfer, finite volume method

Procedia PDF Downloads 193
29040 The Relation between Body Mass Index and Menstrual Cycle Disorders in Medical Students of University Pelita Harapan, Indonesia

Authors: Gabriella Tjondro, Julita Dortua Laurentina Nainggolan

Abstract:

Introduction: There are several things affecting menstrual cycle, namely, nutritional status, diet, financial status of one’s household and exercises. The most commonly used parameter to calculate the fat in a human body is body mass index. Therefore, it is necessary to do research to prevent complications caused by menstrual disorder in the future. Design Study: This research is an observational analytical study with the cross-sectional-case control approach. Participants (n = 124; median age = 19.5 years ± SD 3.5) were classified into 2 groups: normal, NM (n = 62; BMI = 18-23 kg/m2) and obese, OB (n = 62; BMI = > 25 kg/m2). BMI was calculated from the equation; BMI = weight, kg/height, m2. Results: There were 79.10% from obese group who experienced menstrual cycle disorders (n=53, 79.10%; p value 0.00; OR 5.25) and 20.90% from normal BMI group with menstrual cycle disorders. There were several factors in this research that also influence the menstrual cycle disorders such as stress (44.78%; p value 0.00; OR 1.85), sleep disorders (25.37%; p value 0.00; OR 1.01), physical activities (25.37%; p value 0.00; OR 1.24) and diet (10.45%; p value 0.00; OR 1.07). Conclusion: There is a significant relation between body mass index (obese) and menstrual cycle disorders. However, BMI is not the only factor that affects the menstrual cycle disorders. There are several factors that also can affect menstrual cycle disorders, in this study we use stress, sleep disorders, physical activities and diet, in which none of them are dominant.

Keywords: menstrual disorders, menstrual cycle, obesity, body mass index, stress, sleep disorders, physical activities, diet

Procedia PDF Downloads 136
29039 Induced Thermo-Osmotic Convection for Heat and Mass Transfer

Authors: Francisco J. Arias

Abstract:

Consideration is given to a mechanism of heat and mass transport in solutions similar than that of natural convection but with one important difference. Here the mechanism is not promoted by density differences in the fluid occurring due to temperature gradients (coefficient of thermal expansion) but rather by solubility differences due to the thermal dependence of the solubility (coefficient of thermal solubility). Utilizing a simplified physical model, it is shown that by the proper choice of the concentration of a given solution, convection might be induced by the alternating precipitation of the solute -when the solution becomes supersaturated, and its posterior recombination when changes in temperature occurs. The spontaneous change in the Gibbs free energy during the mixing is the driven force for the mechanism. The maximum extractable energy from this new type of thermal convection was derived. Experimental data from a closed-loop circuit was obtained demonstrating the feasibility for continuous separation and recombination of the solution. This type of heat and mass transport -which doesn’t depend on gravity, might potentially be interesting for heat and mass transport downwards (as in solar-roof collectors to inside homes), horizontal (e.g., microelectronic applications), and in microgravity (space technology). Also, because the coefficient of thermal solubility could be positive or negative, the investigated thermo-osmosis convection can be used either for heating or cooling.

Keywords: natural convection, thermal gradient, solubility, osmotic pressure

Procedia PDF Downloads 285
29038 [Keynote Talk]: Determination of Metal Content in the Surface Sediments of the Istanbul Bosphorus Strait

Authors: Durata Haciu, Elif Sena Tekin, Gokce Ozturk, Patricia Ramey Balcı

Abstract:

Coastal zones are under increasing threat due to anthropogenic activities that introduce considerable pollutants such as heavy metals into marine ecosystems. As part of a larger experimental study examining species responses to contaminated marine sediments, surface sediments (top 5cm) were analysed for major trace elements at three locations in Istanbul Straight. Samples were randomly collected by divers (May 2018) using hand-corers from Istinye (n=4), Garipce (n=10) and Poyrazköy (n=6), at water depths of 4-8m. Twelve metals were examined: As, arsenic; Pb, lead; Cd, cadmium; Cr, chromium; Cu, Copper; Fe, Iron; Ni, Nickel; Zn, Zinc; V, vanadium; Mn, Manganese; Ba, Barium; and Ag, silver by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) and Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). Preliminary results indicate that the average concentrations of metals (mg kg⁻¹) varied considerably among locations. In general, concentrations were relatively lower at Garipce compared to either Istinye or Poyrazköy. For most metals mean concentrations were highest at Poyrazköy and Ag and Cd were below detection limits (exception= Ag in a few samples). While Cd and As were undetected in all stations, the concentrations of Fe and Ni fall in the criteria of moderately polluted range and the rest of the metals in the range of low polluted range as compared to Effects Range Low (ERL) and Effects Range median (ERM) values determined by US Environmental Protection Agency (EPA).

Keywords: effect-range classification, ICP/MS, marine sediments, XRF

Procedia PDF Downloads 124
29037 Fire Characteristic of Commercial Retardant Flame Polycarbonate under Different Oxygen Concentration: Ignition Time and Heat Blockage

Authors: Xuelin Zhang, Shouxiang Lu, Changhai Li

Abstract:

The commercial retardant flame polycarbonate samples as the main high speed train interior carriage material with different thicknesses were investigated in Fire Propagation Apparatus with different external heat fluxes under different oxygen concentration from 12% to 40% to study the fire characteristics and quantitatively analyze the ignition time, mass loss rate and heat blockage. The additives of commercial retardant flame polycarbonate were intumescent and maintained a steady height before ignition when heated. The results showed the transformed ignition time (1/t_ig)ⁿ increased linearly with external flux under different oxygen concentration after deducting the heat blockage due to pyrolysis products, the mass loss rate was taken on linearly with external heat fluxes and the slop of the fitting line for mass loss rate and external heat fluxes decreased with the enhanced oxygen concentration and the heat blockage independent on external heat fluxes rose with oxygen concentration increasing. The inquired data as the input of the fire simulation model was the most important to be used to evaluate the fire risk of commercial retardant flame polycarbonate.

Keywords: ignition time, mass loss rate, heat blockage, fire characteristic

Procedia PDF Downloads 277
29036 A Study of Heavy Hydrocarbons Upgrading by Microwave Pyrolysis

Authors: Thanida Sritangthong, Suksun Amornraksa

Abstract:

By-product upgrading is crucial in hydrocarbon industries as it can increase overall profit margin of the business. Microwave-assisted pyrolysis is relatively new technique which induces heat directly to raw materials. This results in a more energy saving and more energy-efficient process. It is also a promising method to enhance and accelerate chemical reactions, thus reducing the pyrolysis reaction time and increasing the quality of value-added products from different kinds of feedstocks. In this study, upgrading opportunity of fuel oil by-product from an olefins plant is investigated by means of microwave pyrolysis. The experiment was conducted in a lab-scale quartz reactor placed inside a 1,100 watts household microwave oven. Operating temperature was varied from 500 to 900C to observe the consequence on the quality of pyrolysis products. Several microwave receptors i.e. activated carbon, silicon carbide (SiC) and copper oxide (CuO) were used as a material to enhance the heating and reaction in the reactor. The effect of residence time was determined by adjusting flow rate of N2 carrier gas. The chemical composition and product yield were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The results showed that hydrogen, methane, ethylene, and ethane were obtained as the main gaseous products from all operating temperatures while the main liquid products were alkane, cycloalkane and polycyclic aromatic groups. The results indicated that microwave pyrolysis has a potential to upgrade low value hydrocarbons to high value products.

Keywords: fuel oil, heavy hydrocarbons, microwave pyrolysis, pyrolysis

Procedia PDF Downloads 307
29035 Arsenic Speciation in Cicer arietinum: A Terrestrial Legume That Contains Organoarsenic Species

Authors: Anjana Sagar

Abstract:

Arsenic poisoned ground water is a major concern in South Asia. The arsenic enters the food chain not only through drinking but also by using arsenic polluted water for irrigation. Arsenic is highly toxic in its inorganic forms; however, organic forms of arsenic are comparatively less toxic. In terrestrial plants, inorganic form of arsenic is predominantly found; however, we found that significant proportion of organic arsenic was present in root and shoot of a staple legume, chickpea (Cicer arientinum L) plants. Chickpea plants were raised in pot culture on soils spiked with arsenic ranging from 0-70 mg arsenate per Kg soil. Total arsenic concentrations of chickpea shoots and roots were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) ranging from 0.76 to 20.26, and 2.09 to 16.43 µg g⁻¹ dry weight, respectively. Information on arsenic species was acquired by methanol/water extraction method, with arsenic species being analyzed by high-performance liquid chromatography (HPLC) coupled with ICP-MS. Dimethylarsinic acid (DMA) was the only organic arsenic species found in amount from 0.02 to 3.16 % of total arsenic shoot concentration and 0 to 6.93 % of total arsenic root concentration, respectively. To investigate the source of the organic arsenic in chickpea plants, arsenic species in the rhizosphere of soils of plants were also examined. The absence of organic arsenic in soils would suggest the possibility of formation of DMA in plants. The present investigation provides useful information for better understanding of distribution of arsenic species in terrestrial legume plants.

Keywords: arsenic, arsenic speciation, dimethylarsinic acid, organoarsenic

Procedia PDF Downloads 130
29034 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán

Abstract:

A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An in-compressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.

Keywords: computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping

Procedia PDF Downloads 547
29033 Optimization of Machining Parameters of Wire Electric Discharge Machining (WEDM) of Inconel 625 Super Alloy

Authors: Amitesh Goswami, Vishal Gulati, Annu Yadav

Abstract:

In this paper, WEDM has been used to investigate the machining characteristics of Inconel-625 alloy. The machining characteristics namely material removal rate (MRR) and surface roughness (SR) have been investigated along with surface microstructure analysis using SEM and EDS of the machined surface. Taguchi’s L27 Orthogonal array design has been used by considering six varying input parameters viz. Pulse-on time (Ton), Pulse-off time (Toff), Spark Gap Set Voltage (SV), Peak Current (IP), Wire Feed (WF) and Wire Tension (WT) for the responses of interest. It has been found out that Pulse-on time (Ton) and Spark Gap Set Voltage (SV) are the most significant parameters affecting material removal rate (MRR) and surface roughness (SR) are. Microstructure analysis of workpiece was also done using Scanning Electron Microscope (SEM). It was observed that, variations in pulse-on time and pulse-off time causes varying discharge energy and as a result of which deep craters / micro cracks and large/ small number of debris were formed. These results were helpful in studying the effects of pulse-on time and pulse-off time on MRR and SR. Energy Dispersive Spectrometry (EDS) was also done to check the compositional analysis of the material and it was observed that Copper and Zinc which were initially not present in the Inconel 625, later migrated on the material surface from the brass wire electrode during machining

Keywords: MRR, SEM, SR, taguchi, Wire Electric Discharge Machining

Procedia PDF Downloads 345
29032 Design and Developing the Infrared Sensor for Detection and Measuring Mass Flow Rate in Seed Drills

Authors: Bahram Besharti, Hossein Navid, Hadi Karimi, Hossein Behfar, Iraj Eskandari

Abstract:

Multiple or miss sowing by seed drills is a common problem on the farm. This problem causes overuse of seeds, wasting energy, rising crop treatment cost and reducing crop yield in harvesting. To be informed of mentioned faults and monitoring the performance of seed drills during sowing, developing a seed sensor for detecting seed mass flow rate and monitoring in a delivery tube is essential. In this research, an infrared seed sensor was developed to estimate seed mass flow rate in seed drills. The developed sensor comprised of a pair of spaced apart circuits one acting as an IR transmitter and the other acting as an IR receiver. Optical coverage in the sensing section was obtained by setting IR LEDs and photo-diodes directly on opposite sides. Passing seeds made interruption in radiation beams to the photo-diode which caused output voltages to change. The voltage difference of sensing units summed by a microcontroller and were converted to an analog value by DAC chip. The sensor was tested by using a roller seed metering device with three types of seeds consist of chickpea, wheat, and alfalfa (representing large, medium and fine seed, respectively). The results revealed a good fitting between voltage received from seed sensor and mass flow of seeds in the delivery tube. A linear trend line was set for three seeds collected data as a model of the mass flow of seeds. A final mass flow model was developed for various size seeds based on receiving voltages from the seed sensor, thousand seed weight and equivalent diameter of seeds. The developed infrared seed sensor, besides monitoring mass flow of seeds in field operations, can be used for the assessment of mechanical planter seed metering unit performance in the laboratory and provide an easy calibrating method for seed drills before planting in the field.

Keywords: seed flow, infrared, seed sensor, seed drills

Procedia PDF Downloads 349
29031 Critical Evaluation of Long Chain Hydrocarbons with Biofuel Potential from Marine Diatoms Isolated from the West Coast of India

Authors: Indira K., Valsamma Joseph, I. S. Bright

Abstract:

Introduction :Biofuels could replace fossil fuels and reduce our carbon footprint on the planet by technological advancements needed for sustainable and economic fuel production. Micro algae have proven to be a promising source to meet the current energy demand because of high lipid content and production of high biomass rapidly. Marine diatoms, which are key contributors in the biofuel sector and also play a significant role in primary productivity and ecology with high biodiversity and genetic and chemical diversity, are less well understood than other microalgae for producing hydrocarbons. Method :The marine diatom samples selected for hydrocarbon analysis were a total of eleven, out of which 9 samples were from the culture collection of NCAAH, and the remaining two of them were isolated by serial dilution method to get a pure culture from a mixed culture of microalgae obtained from the various cruise stations (350&357) FORV Sagar Sampada along the west coast of India. These diatoms were mass cultured in F/2 media, and the biomass harvested. The crude extract was obtained from the biomass by homogenising with n-hexane, and the hydrocarbons was further obtained by passing the crude extract through 500mg Bonna Agela SPE column and the quantitative analysis was done by GCHRMS analysis using HP-5 column and Helium gas was used as a carrier gas(1ml/min). The injector port temperature was 2400C, the detector temperature was 2500C, and the oven was initially kept at 600C for 1 minute and increased to 2200C at the rate of 60C per minute, and the analysis of a mixture of long chain hydrocarbons was done .Results:In the qualitative analysis done, the most potent hydrocarbon was found to be Psammodictyon Panduriforme (NCAAH-9) with a hydrocarbon mass of 37.27mg/g of the biomass and 2.1% of the total biomass 0f 1.395g and the other potent producer is Biddulphia(NCAAH 6) with hydrocarbon mass of 25.4mg/g of biomass and percentage of hydrocarbon is 1.03%. In the quantitative analysis by GCHRMS, the long chain hydrocarbons found in most of the marine diatoms were undecane, hexadecane, octadecane 3ethyl 5,2 ethyl butyl, Eicosane7hexyl, hexacosane, heptacosane, heneicosane, octadecane 3 methyl, triacontane. The exact mass of the long chain hydrocarbons in all the marine diatom samples was found to be Nonadecane 12C191H40, Tritriacontane,13-decyl-13-heptyl 12C501H102, Octadecane,3ethyl-5-(2-ethylbutyl 12C261H54, tetratetracontane 12C441H89, Eicosane, 7-hexyl 12C261H54. Conclusion:All the marine diatoms screened produced long chain hydrocarbons which can be used as diesel fuel with good cetane value example, hexadecane, undecane. All the long chain hydrocarbons can further undergo catalytic cracking to produce short chain alkanes which can give good octane values and can be used as gasoline. Optimisation of hydrocarbon production with the most potent marine diatom yielded long chain hydrocarbons of good fuel quality.

Keywords: biofuel, hydrocarbons, marine diatoms, screening

Procedia PDF Downloads 67
29030 Impact of Zeolite NaY Synthesized from Kaolin on the Properties of Pyrolytic Oil Derived from Used Tire

Authors: Julius Ilawe Osayi, Peter Osifo

Abstract:

Solid waste disposal, such as used tires is a global challenge as well as energy crisis due to rising energy demand amidst price uncertainty and depleting fossil fuel reserves. Therefore, the effectiveness of pyrolysis as a disposal method that can transform used tires into liquid fuel and other end-products has made the process attractive to researchers. Although used tires have been converted to liquid fuel using pyrolysis, there is the need to improve on the liquid fuel properties. Hence, this paper reports the investigation of zeolite NaY synthesized from kaolin, a locally abundant soil material in the Benin metropolis as a suitable catalyst and its effect on the properties of pyrolytic oil produced from used tires. The pyrolysis process was conducted for a range of 1 to 10 wt.% of catalyst concentration to used tire at a temperature of 600 oC, a heating rate of 15oC/min and particle size of 6mm. Although no significant increase in pyrolytic oil yield was observed compared to the previously investigated non-catalytic pyrolysis of a used tire. However, the Fourier transform infrared (FTIR), Nuclear Magnetic Resonance (NMR); and Gas chromatography-mass spectrometry (GC-MS) characterization results revealed the pyrolytic oil to possess an improved physicochemical and fuel properties alongside valuable industrial chemical species. This confirms the possibility of transforming kaolin into a catalyst suitable for improved fuel properties of the liquid fraction obtainable from thermal cracking of hydrocarbon materials.

Keywords: catalytic pyrolysis, fossil fuel, kaolin, pyrolytic oil, used tyres, Zeolite NaY

Procedia PDF Downloads 167
29029 Age, Body Composition, Body Mass Index and Chronic Venous Diseases in Postmenopausal Women

Authors: Grygorii Kostromin, Vladyslav Povoroznyuk

Abstract:

Chronic venous diseases (CVD) are one of the common, though controversial problems in medicine. It is generally accepted that this pathology predominantly occurs in women. The issue of excessive weight as a risk factor for CVD is still considered debatable. To the author's best knowledge, today in Ukraine, there are barely any studies that describe the relationship between CVD and obesity. Our study aims to determine the association between age, body composition, obesity and CVD in postmenopausal women. The study was conducted in D. F. Chebotarev Institute of Gerontology, National Academy of Medical Sciences of Ukraine. We have examined 96 postmenopausal women aged 46-85 years (mean age – 66.19 ± 0.96 years), who were divided into two groups depending on the presence of CVD. The women were examined by vascular surgeons. For the diagnosis of CVD, we used clinical, anatomic and pathophysiologic classifications. We also performed clinical, ultrasound and densitometry examinations. We found that the CVD frequency in postmenopausal women increased with age (from 72% in those aged 45-59 years to 84% in those aged 75-89 years). A significant correlation between the total fat mass and age was determined in postmenopausal women with CVD. We also observed a significant correlation between the lower extremities’ fat mass and age in both examined groups. A significant correlation between body mass index and age was determined only in postmenopausal women without CVD.

Keywords: chronic venous disease, risk factors, age, obesity, postmenopausal women

Procedia PDF Downloads 119
29028 Process Integration: Mathematical Model for Contaminant Removal in Refinery Process Stream

Authors: Wasif Mughees, Malik Al-Ahmad

Abstract:

This research presents the graphical design analysis and mathematical programming technique to dig out the possible water allocation distribution to minimize water usage in process units. The study involves the mass and property integration in its core methodology. Tehran Oil Refinery is studied to implement the focused water pinch technology for regeneration, reuse and recycling of water streams. Process data is manipulated in terms of sources and sinks, which are given in terms of properties. Sources are the streams to be allocated. Sinks are the units which can accept the sources. Suspended Solids (SS) is taken as a single contaminant. The model minimizes the mount of freshwater from 340 to 275m3/h (19.1%). Redesigning and allocation of water streams was built. The graphical technique and mathematical programming shows the consistency of results which confirms mass transfer dependency of water streams.

Keywords: minimization, water pinch, process integration, pollution prevention

Procedia PDF Downloads 313
29027 Numeric Modeling of Condensation of Water Vapor from Humid Air in a Room

Authors: Nguyen Van Que, Nguyen Huy The

Abstract:

This paper presents combined natural and forced convection of humid air flow. The film condensation of water vapour on a cold floor was investigated using ANSYS Fluent software. User-defined Functions(UDFs) were developed and added to address the issue of film condensation at the surface of the floor. Those UDFs were validated by analytical results on a flat plate. The film condensation model based on mass transfer was used to solve phase change. On the floor, condensation rate was obtained by mass fraction change near the floor. The study investigated effects of inlet velocity, inlet relative humidity and cold floor temperature on the condensation rate. The simulations were done in both 2D and 3D models to show the difference and need for 3D modeling of condensation.

Keywords: heat and mass transfer, convection, condensation, relative humidity, user-defined functions

Procedia PDF Downloads 317
29026 Rational Probabilistic Method for Calculating Thermal Cracking Risk of Mass Concrete Structures

Authors: Naoyuki Sugihashi, Toshiharu Kishi

Abstract:

The probability of occurrence of thermal cracks in mass concrete in Japan is evaluated by the cracking probability diagram that represents the relationship between the thermal cracking index and the probability of occurrence of cracks in the actual structure. In this paper, we propose a method to directly calculate the cracking probability, following a probabilistic theory by modeling the variance of tensile stress and tensile strength. In this method, the relationship between the variance of tensile stress and tensile strength, the thermal cracking index, and the cracking probability are formulated and presented. In addition, standard deviation of tensile stress and tensile strength was identified, and the method of calculating cracking probability in a general construction controlled environment was also demonstrated.

Keywords: thermal crack control, mass concrete, thermal cracking probability, durability of concrete, calculating method of cracking probability

Procedia PDF Downloads 329
29025 Contemporary Anti-Gypsyism in European Mass Media

Authors: Elisabetta Di Giovanni

Abstract:

This paper focuses on the contemporary phenomenon of Anti-Gypsyism which is widely diffused on social representations of the so called 'Gypsies'. In Europe and especially in Italy, media tend to reproduce racist stereotypes and prejudices through a xenophobic depiction of this ethnic group, often offering an ethnocentric point of view. From an anthropological perspective, Roma people are a minority group actually facing diasporic phenomena in all Europe, produced by the host society.

Keywords: Roma people, anti-gypsyism, ethnocentrism, mass media

Procedia PDF Downloads 400
29024 A Comprehensive Study on the Porosity Effect of Ti-20Zr Alloy Produced by Powder Metallurgy as a Biomaterial

Authors: Eyyup Murat Karakurt, Yan Huang, Mehmet Kaya, Huseyin Demirtas

Abstract:

In this study, the effect of the porosity effect of Ti-20Zr alloy produced by powder metallurgy as a biomaterial was investigated experimentally. The Ti based alloys (Ti-20%Zr (at.) were produced under 300 MPa, for 6 h at 1200 °C. Afterward, the microstructure of the Ti-based alloys was analyzed by optical analysis, scanning electron microscopy, energy dispersive spectrometry. Moreover, compression tests were applied to determine the mechanical behaviour of samples. As a result, highly porous Ti-20Zr alloys exhibited an elastic modulus close to human bone. The results later were compared theoretically and experimentally.

Keywords: porosity effect, Ti based alloys, elastic modulus, compression test

Procedia PDF Downloads 219
29023 Constraints on Source Rock Organic Matter Biodegradation in the Biogenic Gas Fields in the Sanhu Depression, Qaidam Basin, Northwestern China: A Study of Compound Concentration and Concentration Ratio Changes Using GC-MS Data

Authors: Mengsha Yin

Abstract:

Extractable organic matter (EOM) from thirty-six biogenic gas source rocks from the Sanhu Depression in Qaidam Basin in northwestern China were obtained via Soxhlet extraction. Twenty-nine of them were conducted SARA (Saturates, Aromatics, Resins and Asphaltenes) separation for bulk composition analysis. Saturated and aromatic fractions of all the extractions were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) to investigate the compound compositions. More abundant n-alkanes, naphthalene, phenanthrene, dibenzothiophene and their alkylated products occur in samples in shallower depths. From 2000m downward, concentrations of these compounds increase sharply, and concentration ratios of more-over-less biodegradation susceptible compounds coincidently decrease dramatically. ∑iC15-16, 18-20/∑nC15-16, 18-20 and hopanoids/∑n-alkanes concentration ratios and mono- and tri-aromatic sterane concentrations and concentration ratios frequently fluctuate with depth rather than trend with it, reflecting effects from organic input and paleoenvironments other than biodegradation. Saturated and aromatic compound distributions on the saturates and aromatics total ion chromatogram (TIC) traces of samples display different degrees of biodegradation. Dramatic and simultaneous variations in compound concentrations and their ratios at 2000m and their changes with depth underneath cooperatively justified the crucial control of burial depth on organic matter biodegradation scales in source rocks and prompted the proposition that 2000m is the bottom depth boundary for active microbial activities in this study. The study helps to better curb the conditions where effective source rocks occur in terms of depth in the Sanhu biogenic gas fields and calls for additional attention to source rock pore size estimation during biogenic gas source rock appraisals.

Keywords: pore space, Sanhu depression, saturated and aromatic hydrocarbon compound concentration, source rock organic matter biodegradation, total ion chromatogram

Procedia PDF Downloads 147
29022 A Rapid and Greener Analysis Approach Based on Carbonfiber Column System and MS Detection for Urine Metabolomic Study After Oral Administration of Food Supplements 

Authors: Zakia Fatima, Liu Lu, Donghao Li

Abstract:

The analysis of biological fluid metabolites holds significant importance in various areas, such as medical research, food science, and public health. Investigating the levels and distribution of nutrients and their metabolites in biological samples allows researchers and healthcare professionals to determine nutritional status, find hypovitaminosis or hypervitaminosis, and monitor the effectiveness of interventions such as dietary supplementation. Moreover, analysis of nutrient metabolites provides insight into their metabolism, bioavailability, and physiological processes, aiding in the clarification of their health roles. Hence, the exploration of a distinct, efficient, eco-friendly, and simpler methodology is of great importance to evaluate the metabolic content of complex biological samples. In this work, a green and rapid analytical method based on an automated online two-dimensional microscale carbon fiber/activated carbon fiber fractionation system and time-of-flight mass spectrometry (2DμCFs-TOF-MS) was used to evaluate metabolites of urine samples after oral administration of food supplements. The automated 2DμCFs instrument consisted of a microcolumn system with bare carbon fibers and modified carbon fiber coatings. Carbon fibers and modified carbon fibers exhibit different surface characteristics and retain different compounds accordingly. Three kinds of mobile-phase solvents were used to elute the compounds of varied chemical heterogeneities. The 2DμCFs separation system has the ability to effectively separate different compounds based on their polarity and solubility characteristics. No complicated sample preparation method was used prior to analysis, which makes the strategy more eco-friendly, practical, and faster than traditional analysis methods. For optimum analysis results, mobile phase composition, flow rate, and sample diluent were optimized. Water-soluble vitamins, fat-soluble vitamins, and amino acids, as well as 22 vitamin metabolites and 11 vitamin metabolic pathway-related metabolites, were found in urine samples. All water-soluble vitamins except vitamin B12 and vitamin B9 were detected in urine samples. However, no fat-soluble vitamin was detected, and only one metabolite of Vitamin A was found. The comparison with a blank urine sample showed a considerable difference in metabolite content. For example, vitamin metabolites and three related metabolites were not detected in blank urine. The complete single-run screening was carried out in 5.5 minutes with the minimum consumption of toxic organic solvent (0.5 ml). The analytical method was evaluated in terms of greenness, with an analytical greenness (AGREE) score of 0.72. The method’s practicality has been investigated using the Blue Applicability Grade Index (BAGI) tool, obtaining a score of 77. The findings in this work illustrated that the 2DµCFs-TOF-MS approach could emerge as a fast, sustainable, practical, high-throughput, and promising analytical tool for screening and accurate detection of various metabolites, pharmaceuticals, and ingredients in dietary supplements as well as biological fluids.

Keywords: metabolite analysis, sustainability, carbon fibers, urine.

Procedia PDF Downloads 13
29021 Microwave-Assisted Torrefaction of Teakwood Biomass Residues: The Effect of Power Level and Fluid Flows

Authors: Lukas Kano Mangalla, Raden Rinova Sisworo, Luther Pagiling

Abstract:

Torrefaction is an emerging thermo-chemical treatment process that aims to improve the quality of biomass fuels. This study focused on upgrading the waste teakwood through microwave torrefaction processes and investigating the key operating parameters to improve energy density for the quality of biochar production. The experiments were carried out in a 250 mL reactor placed in a microwave cavity on two different media, inert and non-inert. The microwave was operated at a frequency of 2.45GHz with power level variations of 540W, 720W, and 900W, respectively. During torrefaction processes, the nitrogen gas flows into the reactor at a rate of 0.125 mL/min, and the air flows naturally. The temperature inside the reactor was observed every 0.5 minutes for 20 minutes using a K-Type thermocouple. Changes in the mass and the properties of the torrefied products were analyzed to predict the correlation between calorific value, mass yield, and level power of the microwave. The results showed that with the increase in the operating power of microwave torrefaction, the calorific value and energy density of the product increased significantly, while mass and energy yield tended to decrease. Air can be a great potential media for substituting the expensive nitrogen to perform the microwave torrefaction for teakwood biomass.

Keywords: torrefaction, microwave heating, energy enhancement, mass and energy yield

Procedia PDF Downloads 82
29020 Assessment of Potentially Harmful Elements in Floodplain Soils and Stream Sediments in Ile-Ife Area, South-Western Nigeria: Using Geographic Information System and Multi-Variances Approaches

Authors: I. T. Asowata, A. S. Akinwumiju

Abstract:

The enrichment of potentially harmful elements (PHEs) in stream sediments (SS) and floodplain soils (FS) poses great environmental hazards to water bodies and other parts of the ecosystem. The aim of this research was to assess the distribution pattern of selected PHEs (Cu, Pb, Zn, Co, Mn, As, Cd, V, Cr, Ni, Th, Sr, and La) in SS of selected rivers that drain Ile-Ife area and their adjacent FS, to ascertain the pollution status of these elements in the study area. 60 samples (40 SS and 20 FS) were purposely collected for this study; the samples were air-dried at room temperature, disaggregated, sieved with > 63 µm and digested with modified aqua reqia (1:1:1 HCl:HNO₃:H₂O) and were analysed with ultra-trace inductively coupled plasma mass spectrometry method (ICP-ES). The geochemical results showed decreasing trend of average contents of PHEs studied Mn > Zn > V > Cr > Pb > La > Sr > Cu > Ni > Co > Th > As > Cd for both SS and FS. Floodplain topsoil in ppm, Cu range from 10.0-180.0; mean, 71.1, Pb, 17.1-255.0; 93.5 and Zn, 83.0-3122.2; 826.0. Also, floodplain sub-soils, Cu range from 30.0-203.1; mean of 76.6, Pb, 16.0-214.0; 77.9 and Zn, 59.1-2351.0; 622.3. Similarly, SS results for Cu, 22.1-257.0; 70.3, Pb, 15.0-172.0; 67.3 and Zn, 65.0-1285.0; 357.8, among other PHEs, suggesting significant level of PHEs enrichment in the studied geo media. Elemental association showed positive and/or negative correlation among the PHEs and also showed different sources of metal enrichment to be largely anthropogenic with some geogenic. Geoaccumulation and metal ratio indexes indicated that FS and SS studied have received significant PHEs of between moderately to strongly polluted, which implies significant environmental implications in the study area.

Keywords: aqua regia, enrichment, GIS, Ile-Ife, potentially harmful elements

Procedia PDF Downloads 151
29019 The Effect of Soil Fractal Dimension on the Performance of Cement Stabilized Soil

Authors: Nkiru I. Ibeakuzie, Paul D. J. Watson, John F. Pescatore

Abstract:

In roadway construction, the cost of soil-cement stabilization per unit area is significantly influenced by the binder content, hence the need to optimise cement usage. This research work will characterize the influence of soil fractal geometry on properties of cement-stabilized soil, and strive to determine a correlation between mechanical proprieties of cement-stabilized soil and the mass fractal dimension Dₘ indicated by particle size distribution (PSD) of aggregate mixtures. Since strength development in cemented soil relies not only on cement content but also on soil PSD, this study will investigate the possibility of reducing cement content by changing the PSD of soil, without compromising on strength, reduced permeability, and compressibility. A series of soil aggregate mixes will be prepared in the laboratory. The mass fractal dimension Dₘ of each mix will be determined from sieve analysis data prior to stabilization with cement. Stabilized soil samples will be tested for strength, permeability, and compressibility.

Keywords: fractal dimension, particle size distribution, cement stabilization, cement content

Procedia PDF Downloads 211
29018 Integrated Mass Rapid Transit (MRT) and Bus System in Singapore: MRT Ridership and the Provision of Feeder Bus Services

Authors: Devansh Jain, Shu Ting Goh

Abstract:

With the aim of improving the quality of life of people of Singapore with provision of better transport services, Land and Transport Authority Singapore recently published its Master Plan 2013. The major objectives mentioned in the plan were to make a comprehensive public transport network with better quality Mass Rapid Transit, bus services along with cycling and walking. MRT is the backbone of the transport system in Singapore, and to promote and increase the MRT ridership, good accessibility to access the MRT stations is a necessity. The aim of this paper is to investigate the relationship between MRT ridership and the provision of feeder bus services in Singapore planning areas and also to understand the hub and spoke model adopted by Singapore for provision of transport services. The findings of the study will lead to conclusions made from the Regression model developed by the various factors affecting MRT ridership, and hence will benefit to enhance the services provided by the system.

Keywords: quality of life, public transport, mass rapid transit, ridership

Procedia PDF Downloads 237
29017 Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach

Authors: Angga Pratama Herman, Muhammad Shahbaz, Suzana Yusup

Abstract:

Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study.

Keywords: bottom ash, biomass steam gasification, catalyst, lab scale

Procedia PDF Downloads 289