Search results for: low cost rehabilitation robot
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7114

Search results for: low cost rehabilitation robot

6574 Medical Social Work: Connotation, Prospects, and Challenges in Pakistan

Authors: Syeda Mahnaz Hassan

Abstract:

Social work as a specialized field, grounded in scientific knowledge and skills, is more inclined towards problem-solving process rather than charity focused approach. Medical social work, as a primary method, deals with the bio-psychosocial-spiritual elements of an individual with a problem and assesses the pliability and strength of the patients, social support systems, and their families, to assist the patients to resolve their problems independently. The medical social worker, also known as case-worker or care-worker, has to play a substantial role in the rehabilitation and retrieval of an affected person. This paper examines the roles played and responsibilities discharged by the Medical Social Workers internationally and specifically concerning Pakistan. The capacity constraints and challenges confronted by Medical Social Workers in hospitals have also been highlighted, and some policy implications have been suggested to enhance the capabilities of Medical Social Workers for serving the patients in a befitting manner.

Keywords: medical social work, Pakistan, patients, rehabilitation

Procedia PDF Downloads 359
6573 Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model

Authors: Yuan-Jye Tseng, Shin-Han Lin

Abstract:

In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes.

Keywords: supply chain management, green supply chain, green design, green manufacturing, mathematical model

Procedia PDF Downloads 802
6572 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System

Authors: A. S. Walkey, N. P. Patidar

Abstract:

It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.

Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices

Procedia PDF Downloads 497
6571 Improving Cost and Time Control of Construction Projects Management Practices in Nigeria

Authors: Mustapha Yakubu, Ahmed Usman, Hashim Ambursa

Abstract:

This paper presents the findings of a research which sought to investigate techniques used to improve cost and time control of construction projects management practice in Nigeria. However, there is limited research on issues surrounding the practical usage of these techniques. Data were collected through a questionnaire distributed to construction experts through a survey conducted on the 100 construction organisations and 50 construction consultancy firms in the Nigeria aimed at identifying common project cost and time control practices and factors inhibiting effective project control in practice. The study reveals that despite the vast application of control techniques a high proportion of respondents still experienced cost and time overruns on a significant proportion of their projects. Analysis of the survey results concluded that more effort should be geared at the management of the identified top project control inhibiting factors. This paper has outlined some measures for mitigating these inhibiting factors so that the outcome of project time and cost control can be improved in practice.

Keywords: construction project, cost control, Nigeria, time control

Procedia PDF Downloads 303
6570 The Effects of Aging on the Cost of Operating and Support: An Empirical Study Applied to Weapon Systems

Authors: Byungchae Kim, Jiwoo Nam

Abstract:

Aging of weapon systems can cause the failure and degeneration of components which results in increase of operating and support costs. However, whether this aging effect is significantly strong and it influences a lot on national defense spending due to the rapid increase in operating and support (O&S) costs is questionable. To figure out this, we conduct a literature review analyzing the aging effect of US weapon systems. We also conduct an empirical research using a maintenance database of Korean weapon systems, Defense Logistics Integrated Information System (DAIIS). We run regression of various types of O&S cost on weapon system age to investigate the statistical significance of aging effect and use generalized linear model to find relations between the failure of different priced components and the age. Our major finding is although aging effect exists, its impacts on weapon system cost seem to be not too large considering several characteristics of O&S cost elements not relying on the age.

Keywords: O&S cost, aging effect, weapon system, GLM

Procedia PDF Downloads 132
6569 Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures

Authors: Manish Kumar

Abstract:

Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair.

Keywords: deterioration, functional condition, reinforced cement concrete, resources

Procedia PDF Downloads 249
6568 The Outcome of Early Balance Exercises and Agility Training in Sports Rehabilitation for Patients Post Anterior Cruciate Ligament (ACL) Reconstruction

Authors: S. M. A. Ismail, M. I. Ibrahim, H. Masdar, F. M. Effendi, M. F. Suhaimi, A. Suun

Abstract:

Introduction: It is generally known that the rehabilitation process is as important as the reconstruction surgery. Several literature has focused on how early the rehabilitation modalities can be initiated after the surgery to ensure a safe return of patients to sports or at least regaining the pre-injury level of function following an ACL reconstruction. Objectives: The main objective is to study and evaluate the outcome of early balance exercises and agility training in sports rehabilitation for patients post ACL reconstruction. To compare between early balance exercises and agility training as intervention and control. (material or non-material). All of them were recruited for material exercise (balance exercises and agility training with strengthening) and strengthening only rehabilitation protocol (non-material). Followed the prospective intervention trial. Materials and Methods: Post-operative ACL reconstruction patients performed in Selayang and Sg Buloh Hospitals from 2012 to 2014 were selected for this study. They were taken from Malaysian Knee Ligament Registry (MKLR) and all patients had single bundle reconstruction with autograft hamstring tendon (semitendinosus and gracilis). ACL injury from any type of sports were included. Subjects performed various type of physical activity for rehabilitation in every 18 week for a different type of rehab activity. All subject attended all 18 sessions of rehabilitation exercises and evaluation was done during the first, 9th and 18th session. Evaluation format were based on clinical assessment (anterior drawer, Lachmann, pivot shift, laxity with rolimeter, the end point and thigh circumference) and scoring (Lysholm Knee scoring and Tegner Activity Level scale). Rehabilitation protocol initiated from 24 week after the surgery. Evaluation format were based on clinical assessment (anterior drawer, Lachmann, pivot shift, laxity with rolimeter, the end point and thigh circumference) and scoring (Lysholm Knee scoring and Tegner Activity Level scale). Results and Discussion: 100 patients were selected of which 94 patients are male and 6 female. Age range is 18 to 54 year with the average of 28 years old for included 100 patients. All patients are evaluated after 24 week after the surgery. 50 of them were recruited for material exercise (balance exercises and agility training with strengthening) and 50 for strengthening only rehabilitation protocol (non-material). Demographically showed 85% suffering sports injury mainly from futsal and football. 39 % of them have abnormal BMI (26 – 38) and involving of the left knee. 100% of patient had the basic radiographic x-ray of knee and 98% had MRI. All patients had negative anterior drawer’s, Lachman test and Pivot shift test during the post ACL reconstruction after the complete rehabilitation. There was 95 subject sustained grade I injury, 5 of grade II and 0 of grade III with 90% of them had soft end-point. Overall they scored badly on presentation with 53% of Lysholm score (poor) and Tegner activity score level 3/10. After completing 9 weeks of exercises, of material group 90% had grade I laxity, 75% with firm end-point, Lysholm score 71% (fair) and Tegner activity level 5/10 comparing non-material group who had 62% of grade I laxity , 54% of firm end-point, Lyhslom score 62 % (poor) and Tegner activity level 4/10. After completed 18 weeks of exercises, of material group maintained 90% grade I laxity with 100 % with firm end-point, Lysholm score increase 91% (excellent) and Tegner activity level 7/10 comparing non-material group who had 69% of grade I laxity but maintained 54% of firm end-point, Lysholm score 76% (fair) and Tegner activity level 5/10. These showed the improvement were achieved fast on material group who have achieved satisfactory level after 9th cycle of exercises 75% (15/20) comparing non-material group who only achieved 54% (7/13) after completed 18th session. Most of them were grade I. These concepts are consolidated into our approach to prepare patients for return to play including field testing and maintenance training. Conclusions: The basic approach in ACL rehabilitation is to ensure return to sports at post-operative 6 month. Grade I and II laxity has favourable and early satisfactory outcome base on clinical assessment and Lysholm and Tegner scoring point. Reduction of laxity grading indicates satisfactory outcome. Firm end-point showed the adequacy of rehabilitation before starting previous sports game. Material exercise (balance exercises and agility training with strengthening) were beneficial and reliable in order to achieve favourable and early satisfactory outcome comparing strengthening only (non-material).We have identified that rehabilitation protocol varies between different patients. Therefore future post ACL reconstruction rehabilitation guidelines should look into focusing on rehabilitation techniques instead of time.

Keywords: post anterior cruciate ligament (ACL) reconstruction, single bundle, hamstring tendon, sports rehabilitation, balance exercises, agility balance

Procedia PDF Downloads 250
6567 Cost Benefit Analysis of Adoption of Climate Change Adaptation Options among Rural Rice Farmers in Nepal

Authors: Niranjan Devkota , Ram Kumar Phuya, Durga Lal Shreshta

Abstract:

This paper estimates cost and benefit of adoption of climate change adaptation options available to the rural rice farmers of Nepal. Adoption of adaptation strategies, intensity of use of adaptation options, identification of labor and non-labor cost and finally per unit cost and benefit analysis of climate change adaptation were made. Multi-stage sampling technique was used to source respondents for the study and used structured questionnaire techniques to collect data from 773 households from seven districts; 3 from Terai and 4 from Hilly region of Nepal. The result revealed that there are 13 major adaptation options rice farmers practice in order to protect themselves from climatic risk. Among the given adaptation options, the first three popular adaptation options practiced by rice farmers are (i) increasing use of chemical fertilizer (60.93%) (ii) use of climate smart verities (49.29%) and (iii) change in nursery date (32.08%). Adaptation cost is obvious, based on that, the first three costly adaptation options are the alternative irrigation practice which incurred average cost of US $69.95 (US$ 1 = 102.84 Nepalese Rupees) followed by a denser plantation of local seeds ($ 20.69) and using climate smart varieties ($ 18.06). 88% farmers practiced more than one adaptation strategies on the same farm with the aim of reducing the effect of extreme climatic conditions. Total cost and revenue revealed that per unit total cost ranges from $28.34 to $32.79 whereas per unit total revenue ranges $33.4 to $49.02. Surprisingly, it is observed that farmers who do not adopt any adaptation options are able to receive highest income from per unit production. As Net Present Value (NPV) is positive and Benefit Cost Ration (BCR) is greater than one for every adaptation options that indicates the available adaptation options are profitable to the rice farmers.

Keywords: climate change, adaptation options, cost benefit analysis, rural rice farmers, Nepal

Procedia PDF Downloads 252
6566 Techno-Economic Analysis of the Production of Aniline

Authors: Dharshini M., Hema N. S.

Abstract:

The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity.

Keywords: aniline, nitrobenzene, economic analysis, unit production cost

Procedia PDF Downloads 102
6565 Apps Reduce the Cost of Construction

Authors: Ali Mohammadi

Abstract:

Every construction that is done, the most important part of attention for employers and contractors is its cost, and they always try to reduce costs so that they can compete in the market, so they estimate the cost of construction before starting their activities. The costs can be generally divided into four parts: the materials used, the equipment used, the manpower required, and the time required. In this article, we are trying to talk about the three items of equipment, manpower, and time, and examine how the use of apps can reduce the cost of construction, while due to various reasons, it has received less attention in the field of app design. Also, because we intend to use these apps in construction and they are used by engineers and experts, we define these apps as engineering apps because the idea of ​​their design must be by an engineer who works in that field. Also, considering that most engineers are familiar with programming during their studies, they can design the apps they need using simple programming software.

Keywords: layout, as-bilt, monitoring, maps

Procedia PDF Downloads 59
6564 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System

Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple

Abstract:

This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.

Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation

Procedia PDF Downloads 99
6563 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 287
6562 A Solution for Production Facility Assignment: An Automotive Subcontract Case

Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal

Abstract:

This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.

Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models

Procedia PDF Downloads 363
6561 An Architecture Framework for Design of Assembly Expert System

Authors: Chee Fai Tan, L. S. Wahidin, S. N. Khalil

Abstract:

Nowadays, manufacturing cost is one of the important factors that will affect the product cost as well as company profit. There are many methods that have been used to reduce the manufacturing cost in order for a company to stay competitive. One of the factors that effect manufacturing cost is the time. Expert system can be used as a method to reduce the manufacturing time. The purpose of the expert system is to diagnose and solve the problem of design of assembly. The paper describes an architecture framework for design of assembly expert system that focuses on commercial vehicle seat manufacturing industry.

Keywords: design of assembly, expert system, vehicle seat, mechanical engineering

Procedia PDF Downloads 430
6560 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function

Authors: Y. Long, L. Liu, K. V. Branin

Abstract:

One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.

Keywords: discontinuous cost function, mixed integer programming, optimization, procurement, rebate

Procedia PDF Downloads 254
6559 Cost Analysis of Neglected Tropical Disease in Nigeria: Implication for Programme Control and Elimination

Authors: Lawong Damian Bernsah

Abstract:

Neglected Tropical Diseases (NTDs) are most predominant among the poor and rural populations and are endemic in 149 countries. These diseases are the most prevalent and responsible for infecting 1.4 billion people worldwide. There are 17 neglected tropical diseases recognized by WHO that constitute the fourth largest disease health and economic burden of all communicable diseases. Five of these 17 diseases are considered for the cost analysis of this paper: lymphatic filariasis, onchocerciasis, trachoma, schistosomiasis, and soil transmitted helminth infections. WHO has proposed a roadmap for eradication and elimination by 2020 and treatments have been donated through the London Declaration by pharmaceutical manufacturers. The paper estimates the cost of NTD control programme and elimination for each NTD disease and total in Nigeria. This is necessary as it forms the bases upon which programme budget and expenditure could be based. Again, given the opportunity cost the resources for NTD face it is necessary to estimate the cost so as to provide bases for comparison. Cost of NTDs control and elimination programme is estimated using the population at risk for each NTD diseases and for the total. The population at risk is gotten from the national master plan for the 2015 - 2020, while the cost per person was gotten for similar studies conducted in similar settings and ranges from US$0.1 to US$0.5 for Mass Administration of Medicine (MAM) and between US$1 to US$1.5 for each NTD disease. The combined cost for all the NTDs was estimated to be US$634.88 million for the period 2015-2020 and US$1.9 billion for each NTD disease for the same period. For the purpose of sensitivity analysis and for robustness of the analysis the cost per person was varied and all were still high. Given that health expenditure for Nigeria (% of GDP) averages 3.5% for the period 1995-2014, it is very clear that efforts have to be made to improve allocation to the health sector in general which is hoped could trickle to NTDs control and elimination. Thus, the government and the donor partners would need to step-up budgetary allocation and also to be aware of the costs of NTD control and elimination programme since they have alternative uses. Key Words: Neglected Tropical Disease, Cost Analysis, NTD Programme Control and Elimination, Cost per Person

Keywords: Neglected Tropical Disease, Cost Analysis, Neglected Tropical Disease Programme Control and Elimination, Cost per Person

Procedia PDF Downloads 265
6558 Developing a Mathematical Model for Trade-Off Analysis of New Green Products

Authors: M. R. Gholizadeh, N. Bhuiyan, M. Salari

Abstract:

In the near future, companies will be increasingly forced to shift their activities along a new road in order to decrease the harmful effects of their design, production and after-life on our environment. Products must meet environmental standards to not only prevent penalties but to consider the sustainability for future generations. However, the most important factor that companies will face is selecting a reasonable strategy to maximize their profit. Thus, companies need to have precise forecast from their profit after design stage through Trade-off analysis. This paper is an attempt to introduce a mathematical model that considers effective factors that impact the total profit when products are designed for resource and energy efficiency or recyclability. The modification is according to different strategies based on a Cost-Volume-Profit model. Here, the cost structure consists of Recycling cost, Development cost, Ramp-up cost, Production cost, and Pollution cost. Also, the model shows the effect of implementation of design for recyclable on revenue structure through revenue of used parts and revenue of recycled materials. A numerical example is used to evaluate the proposed model. Results show that fulfillment of Green Product Development not only can reduce the environmental impact of products but also it will increase profit of company in long term.

Keywords: green product, design for environment, C-V-P model, trade-off analysis

Procedia PDF Downloads 310
6557 A Path for Assistance for People With Stroke in Angola

Authors: Lourenço José, Elsa Melo, Sandra Viera, Ana Pinheiro

Abstract:

Introduction: People with stroke in Angola face challenges in accessing appropriate healthcare and rehabilitation services. There is a lack of information on the quality of care provided and the development of early intervention plans Methods: Two different methods will be chosen. The exploratory, descriptive, and longitudinal study (E1) to characterize health care for people with stroke, housed in 2 hospitals in Luanda; the quality and transverse study (E2) concerning the development and evaluation of a strategic early intervention plan for a stroke patient. Ethical and deontological principles for an investigation will be proposed. Results: Contributor to the knowledge of the reality of providing care to the person after a stroke, in Angola; Propose and develop an early action plan. Contribute to integration to influence policy makers on the need for assistance with stroke, aiming at their functional, family and social rehabilitation, particularly in the labor market.

Keywords: stroke, functional recovery, quality of life, health

Procedia PDF Downloads 20
6556 Using Electrical Impedance Tomography to Control a Robot

Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi

Abstract:

Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.

Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography

Procedia PDF Downloads 269
6555 Relevance Of Cognitive Rehabilitation Amongst Children Having Chronic Illnesses – A Theoretical Analysis

Authors: Pulari C. Milu Maria Anto

Abstract:

Background: Cognitive Rehabilitation/Retraining has been variously used in the research literature to represent non-pharmacological interventions that target the cognitive impairments with the goal of ameliorating cognitive function and functional behaviors to optimize the quality of life. Along with adult’s cognitive impairments, the need to address acquired cognitive impairments (due to any chronic illnesses like CHD - congenital heart diseases or ALL - Acute Lymphoblastic Leukemia) among child populations is inevitable. Also, it has to be emphasized as same we consider the cognitive impairments seen in the children having neurodevelopmental disorders. Methods: All published brain image studies (Hermann, B. et al,2002, Khalil, A. et al., 2004, Follin, C. et al, 2016, etc.) and studies emphasizing cognitive impairments in attention, memory, and/or executive function and behavioral aspects (Henkin, Y. et al,2007, Bellinger, D. C., & Newburger, J. W. (2010), Cheung, Y. T., et al,2016, that could be identified were reviewed. Based on a systematic review of the literature from (2000 -2021) different brain imaging studies, increased risk of neuropsychological and psychosocial impairments are briefly described. Clinical and research gap in the area is discussed. Results:30 papers, both Indian studies and foreign publications (Sage journals, Delhi psychiatry journal, Wiley Online Library, APA PsyNet, Springer, Elsevier, Developmental medicine, and child neurology), were identified. Conclusions: In India, a very limited number of brain imaging studies and neuropsychological studies have done by indicating the cognitive deficits of a child having or undergone chronic illness. None of the studies have emphasized the relevance nor the need of implementingCR among such children, even though its high time to address but still not established yet. The review of the current evidence is to bring out an insight among rehabilitation professionals in establishing a child specific CR and to publish new findings regarding the implementation of CR among such children. Also, this study will be an awareness on considering cognitive aspects of a child having acquired cognitive deficit (due to chronic illness), especially during their critical developmental period.

Keywords: cognitive rehabilitation, neuropsychological impairments, congenital heart diseases, acute lymphoblastic leukemia, epilepsy, and neuroplasticity

Procedia PDF Downloads 172
6554 Exploring the Application of IoT Technology in Lower Limb Assistive Devices for Rehabilitation during the Golden Period of Stroke Patients with Hemiplegia

Authors: Ching-Yu Liao, Ju-Joan Wong

Abstract:

Recent years have shown a trend of younger stroke patients and an increase in ischemic strokes with the rise in stroke incidence. This has led to a growing demand for telemedicine, particularly during the COVID-19 pandemic, which has made the need for telemedicine even more urgent. This shift in healthcare is also closely related to advancements in Internet of Things (IoT) technology. Stroke-induced hemiparesis is a significant issue for patients. The medical community believes that if intervention occurs within three to six months of stroke onset, 80% of the residual effects can be restored to normal, a period known as the stroke golden period. During this time, patients undergo treatment and rehabilitation, and neural plasticity is at its best. Lower limb rehabilitation for stroke generally includes exercises such as support standing and walking posture, typically involving the healthy limb to guide the affected limb to achieve rehabilitation goals. Existing gait training aids in hospitals usually involve balance gait, sitting posture training, and precise muscle control, effectively addressing issues of poor gait, insufficient muscle activity, and inability to train independently during recovery. However, home training aids, such as braced and wheeled devices, often rely on the healthy limb to pull the affected limb, leading to lower usage of the affected limb, worsening circular walking, and compensatory movement issues. IoT technology connects devices via the internet to record, receive data, provide feedback, and adjust equipment for intelligent effects. Therefore, this study aims to explore how IoT can be integrated into existing gait training aids to monitor and sensor home rehabilitation movements, improve gait training compensatory issues through real-time feedback, and enable healthcare professionals to quickly understand patient conditions and enhance medical communication. To understand the needs of hemiparetic patients, a review of relevant literature from the past decade will be conducted. From the perspective of user experience, participant observation will be used to explore the use of home training aids by stroke patients and therapists, and interviews with physical therapists will be conducted to obtain professional opinions and practical experiences. Design specifications for home training aids for hemiparetic patients will be summarized. Applying IoT technology to lower limb training aids for stroke hemiparesis can help promote walking function recovery in hemiparetic patients, reduce muscle atrophy, and allow healthcare professionals to immediately grasp patient conditions and adjust gait training plans based on collected and analyzed information. Exploring these potential development directions provides a valuable reference for the further application of IoT technology in the field of medical rehabilitation.

Keywords: stroke, hemiplegia, rehabilitation, gait training, internet of things technology

Procedia PDF Downloads 16
6553 Using a Robot Companion to Detect and Visualize the Indicators of Dementia Progression and Quality of Life of People Aged 65 and Older

Authors: Jeoffrey Oostrom, Robbert James Schlingmann, Hani Alers

Abstract:

This document depicts the research into the indicators of dementia progression, the automation of quality of life assignments, and the visualization of it. To do this, the Smart Teddy project was initiated to make a smart companion that both monitors the senior citizen as well as processing the captured data into an insightful dashboard. With around 50 million diagnoses worldwide, dementia proves again and again to be a bothersome strain on the lives of many individuals, their relatives, and society as a whole. In 2015 it was estimated that dementia care cost 818 billion U.S Dollars globally. The Smart Teddy project aims to take away a portion of the burden from caregivers by automating the collection of certain data, like movement, geolocation, and sound-levels. This paper proves that the Smart Teddy has the potential to become a useful tool for caregivers but won’t pose as a solution. The Smart Teddy still faces some problems in terms of emotional privacy, but its non-intrusive nature, as well as diversity in usability, can make up for it.

Keywords: dementia care, medical data visualization, quality of life, smart companion

Procedia PDF Downloads 133
6552 A Minimally Invasive Approach Using Bio-Miniatures Implant System for Full Arch Rehabilitation

Authors: Omid Allan

Abstract:

The advent of ultra-narrow diameter implants initially offered an alternative to wider conventional implants. However, their design limitations have restricted their applicability primarily to overdentures and cement-retained fixed prostheses, often with unpredictable long-term outcomes. The introduction of the new Miniature Implants has revolutionized the field of implant dentistry, leading to a more streamlined approach. The utilization of Miniature Implants has emerged as a promising alternative to the traditional approach that entails the traumatic sequential bone drilling procedures and the use of conventional implants for full and partial arch restorations. The innovative "BioMiniatures Implant System serves as a groundbreaking bridge connecting mini implants with standard implant systems. This system allows practitioners to harness the advantages of ultra-small implants, enabling minimally invasive insertion and facilitating the application of fixed screw-retained prostheses, which were only available to conventional wider implant systems. This approach streamlines full and partial arch rehabilitation with minimal or even no bone drilling, significantly reducing surgical risks and complications for clinicians while minimizing patient morbidity. The ultra-narrow diameter and self-advancing features of these implants eliminate the need for invasive and technically complex procedures such as bone augmentation and guided bone regeneration (GBR), particularly in cases involving thin alveolar ridges. Furthermore, the absence of a microcap between the implant and abutment eliminates the potential for micro-leakage and micro-pumping effects, effectively mitigating the risk of marginal bone loss and future peri-implantitis. The cumulative experience of restoring over 50 full and partial arch edentulous cases with this system has yielded an outstanding success rate exceeding 97%. The long-term success with a stable marginal bone level in the study firmly establishes these implants as a dependable alternative to conventional implants, especially for full arch rehabilitation cases. Full arch rehabilitation with these implants holds the promise of providing a simplified solution for edentulous patients who typically present with atrophic narrow alveolar ridges, eliminating the need for extensive GBR and bone augmentation to restore their dentition with fixed prostheses.

Keywords: mini-implant, biominiatures, miniature implants, minimally invasive dentistry, full arch rehabilitation

Procedia PDF Downloads 67
6551 Effective Virtual Tunnel Shape for Motion Modification in Upper-Limb Perception-Assist with a Power-Assist Robot

Authors: Kazuo Kiguchi, Kouta Ikegami

Abstract:

In the case of physically weak persons, not only motor abilities, but also sensory abilities are sometimes deteriorated. The concept of perception-assist has been proposed to assist the sensory ability of the physically weak persons with a power-assist robot. Since upper-limb motion is very important in daily living, perception-assist for upper-limb motion has been proposed to assist upper-limb motion in daily living. A virtual tunnel was applied to modify the user’s upper-limb motion if it was necessary. In this paper, effective shape of the virtual tunnel which is applied in the perception-assist for upper-limb motion is proposed. Not only the position of the grasped tool but also the angle of the grasped tool are modified if it is necessary. Therefore, the upper-limb motion in daily living can be effectively modified to realize certain proper daily motion. The effectiveness of the proposed virtual tunnel was evaluated by performing the experiments.

Keywords: motion modification, power-assist robots, perception-assist, upper-limb motion

Procedia PDF Downloads 237
6550 Conception of a Reliable Low Cost, Autonomous Explorative Hovercraft 1

Authors: A. Brand, S. Burgalat, E. Chastel, M. Jumeline, L. Teilhac

Abstract:

The paper presents actual benefits and drawbacks of a multidirectional Hovercraft conceived with limited resources and designed for indoor exploration. Recent developments in the field have led to apparition of very powerful automotive systems capable of very high calculation and exploration in complex unknown environments. They usually propose very complex algorithms, high precision/cost sensors and sometimes have heavy calculation consumption with complex data fusion. Those systems are usually powerful but have a certain price and the benefits may not be worth the cost, especially considering their hardware limitations and their power consumption. Present approach is to build a compromise between cost, power consumption and results preciseness.

Keywords: Hovercraft, indoor exploration, autonomous, multidirectional, wireless control

Procedia PDF Downloads 413
6549 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 91
6548 Aerobic Capacity Outcomes after an Aerobic Exercise Program with an Upper Body Ergometer in Diabetic Amputees

Authors: Cecilia Estela Jiménez Pérez Campos

Abstract:

Introduction: Amputation comes from a series of complications in diabetic persons; at that point, of the illness evolution they have a deplored aerobic capacity. Adding to that, cardiac rehabs programs are almost base in several activities in a standing position. The cardiac rehabilitation programs have to improve for them, based on scientific advice. Objective: Evaluation of aerobic capacity of diabetic amputee after an aerobic exercise program, with upper limb ergometer. Methodology: The design is longitudinal, prospective, comparative and no randomized. We include all diabetic pelvic limb amputees, who assist to the cardiac rehabilitation. We made 2 groups: an experimental and a control group. The patients did the exercise testing, with the author’s design protocol. The experimental group completed 24 exercise sessions (3 sessions/week), with an intensity determined with the training heart rate. At the end of 8 weeks period, the subjects did a second exercise test. Results: Both groups were a homogeneous sample in age (experimental n=15) 57.6+12.5 years old and (control n=8) 52.5+8.0 years old, sex, occupation, education and economic features. (square chi) (p=0.28). The initial aerobic capacity was similar in both groups. And the aerobic capacity accomplishes after the program was statistically greater in the experimental group than in the control one. The final media VO2peak (mlO2/kg/min) was experimental (17.1+3.8), control (10.5+3.8), p=0.001. (t student). Conclusions: The aerobic capacity improved after an arm ergometer exercise program and the quality of life improve too, in diabetic amputees. So this program is fundamental in diabetic amputee’s rehabilitation management.

Keywords: aerobic fitness, metabolic equivalent (MET), oxygen output, upper limb ergometer

Procedia PDF Downloads 231
6547 The Use of Bituminaria bituminosa (L.) Stirton and Microbial Biotechnologies for Restoration of Degraded Pastoral Lands: The Case of the Middle Atlas of Morocco

Authors: O. Zennouhi, M. El Mderssa, J. Ibijbijen, E. Bouiamrine, L. Nassiri

Abstract:

Rangelands and silvopastoral systems of the middle Atlas are under a heavy pressure, which led to pasture degradation, invasion by non-palatable and toxic species and edaphic aridification due to the regression of the global vegetation cover. In this situation, the introduction of multipurpose leguminous shrubs, such as Bituminaria bituminosa (L.) Stirton, commonly known as bituminous clover, could be a promising socio-ecological alternative for the rehabilitation of these degraded areas. The application of biofertilizers like plant growth promoting rhizobacteria especially phosphate solubilizing bacteria (PSB) can ensure a successful installation of this plant in the selected degraded areas. The main objective of the present work is to produce well-inoculated seedlings using the best efficient PSB strains in the greenhouse to increase their ability to resist to environmental constraints once transplanted to the field in the central Middle Atlas.

Keywords: biofertilizers, bituminaria bituminosa, phosphate solubilizing bacteria, rehabilitation

Procedia PDF Downloads 143
6546 Autonomic Management for Mobile Robot Battery Degradation

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

The majority of today’s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks.

Keywords: autonomic, self-adaptive, self-optimising, degradation

Procedia PDF Downloads 373
6545 Virtual 3D Environments for Image-Based Navigation Algorithms

Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka

Abstract:

This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.

Keywords: simulation, visual navigation, mobile robot, data visualization

Procedia PDF Downloads 250