Search results for: high-throughput sequencing
76 Plant Microbiota of Coastal Halophyte Salicornia Ramossisima
Authors: Isabel N. Sierra-Garcia, Maria J. Ferreira, Sandro Figuereido, Newton Gomes, Helena Silva, Angela Cunha
Abstract:
Plant-associated microbial communities are considered crucial in the adaptation of halophytes to coastal environments. The plant microbiota can be horizontally acquired from the environment or vertically transmitted from generation to generation via seeds. Recruiting of the microbial communities by the plant is affected by geographical location, soil source, host genotype, and cultivation practice. There is limited knowledge reported on the microbial communities in halophytes the influence of biotic and abiotic factors. In this work, the microbiota associated with the halophyte Salicornia ramosissima was investigated to determine whether the structure of bacterial communities is influenced by host genotype or soil source. For this purpose, two contrasting sites where S. ramosissima is established in the estuarine system of the Ria de Aveiro were investigated. One site corresponds to a natural salt marsh where S. ramosissima plants are present (wild plants), and the other site is a former salt pan that nowadays are subjected to intensive crop production of S. ramosissima (crop plants). Bacterial communities from the rhizosphere, seeds and root endosphere of S. ramossisima from both sites were investigated by sequencing bacterial 16S rRNA gene using the Illumina MiSeq platform. The analysis of the sequences showed that the three plant-associated compartments, rhizosphere, root endosphere, and seed endosphere, harbor distinct microbiomes. However, bacterial richness and diversity were higher in seeds of wild plants, followed by rhizosphere in both sites, while seeds in the crop site had the lowest diversity. Beta diversity measures indicated that bacterial communities in root endosphere and seeds were more similar in both wild and crop plants in contrast to rhizospheres that differed by local, indicating that the recruitment of the similar bacterial communities by the plant genotype is active in regard to the site. Moreover, bacterial communities from the root endosphere and rhizosphere were phylogenetically more similar in both sites, but the phylogenetic composition of seeds in wild and crop sites was distinct. These results indicate that cultivation practices affect the seed microbiome. However, minimal vertical transmission of bacteria from seeds to adult plants is expected. Seeds from the crop site showed higher abundances of Kushneria and Zunongwangia genera. Bacterial members of the classes Alphaprotebacteria and Bacteroidia were the most ubiquitous across sites and compartments and might encompass members of the core microbiome. These findings indicate that bacterial communities associated with S. ramosissima are more influenced by host genotype rather than local abiotic factors or cultivation practices. This study provides a better understanding of the composition of the plant microbiota in S. ramosissima , which is essential to predict the interactions between plant and associated microbial communities and their effects on plant health. This knowledge is useful to the manipulations of these microbial communities to enhance the health and productivity of this commercially important plant.Keywords: halophytes, plant microbiome, Salicornia ramosissima, agriculture
Procedia PDF Downloads 17075 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 2874 Fabrication of Electrospun Green Fluorescent Protein Nano-Fibers for Biomedical Applications
Authors: Yakup Ulusu, Faruk Ozel, Numan Eczacioglu, Abdurrahman Ozen, Sabriye Acikgoz
Abstract:
GFP discovered in the mid-1970s, has been used as a marker after replicated genetic study by scientists. In biotechnology, cell, molecular biology, the GFP gene is frequently used as a reporter of expression. In modified forms, it has been used to make biosensors. Many animals have been created that express GFP as an evidence that a gene can be expressed throughout a given organism. Proteins labeled with GFP identified locations are determined. And so, cell connections can be monitored, gene expression can be reported, protein-protein interactions can be observed and signals that create events can be detected. Additionally, monitoring GFP is noninvasive; it can be detected by under UV-light because of simply generating fluorescence. Moreover, GFP is a relatively small and inert molecule, that does not seem to treat any biological processes of interest. The synthesis of GFP has some steps like, to construct the plasmid system, transformation in E. coli, production and purification of protein. GFP carrying plasmid vector pBAD–GFPuv was digested using two different restriction endonuclease enzymes (NheI and Eco RI) and DNA fragment of GFP was gel purified before cloning. The GFP-encoding DNA fragment was ligated into pET28a plasmid using NheI and Eco RI restriction sites. The final plasmid was named pETGFP and DNA sequencing of this plasmid indicated that the hexa histidine-tagged GFP was correctly inserted. Histidine-tagged GFP was expressed in an Escherichia coli BL21 DE3 (pLysE) strain. The strain was transformed with pETGFP plasmid and grown on LuiraBertoni (LB) plates with kanamycin and chloramphenicol selection. E. coli cells were grown up to an optical density (OD 600) of 0.8 and induced by the addition of a final concentration of 1mM isopropyl-thiogalactopyranoside (IPTG) and then grown for additional 4 h. The amino-terminal hexa-histidine-tag facilitated purification of the GFP by using a His Bind affinity chromatography resin (Novagen). Purity of GFP protein was analyzed by a 12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The concentration of protein was determined by UV absorption at 280 nm (Varian Cary 50 Scan UV/VIS spectrophotometer). Synthesis of GFP-Polymer composite nanofibers was produced by using GFP solution (10mg/mL) and polymer precursor Polyvinylpyrrolidone, (PVP, Mw=1300000) as starting materials and template, respectively. For the fabrication of nanofibers with the different fiber diameter; a sol–gel solution comprising of 0.40, 0.60 and 0.80 g PVP (depending upon the desired fiber diameter) and 100 mg GFP in 10 mL water: ethanol (3:2) mixtures were prepared and then the solution was covered on collecting plate via electro spinning at 10 kV with a feed-rate of 0.25 mL h-1 using Spellman electro spinning system. Results show that GFP-based nano-fiber can be used plenty of biomedical applications such as bio-imaging, bio-mechanic, bio-material and tissue engineering.Keywords: biomaterial, GFP, nano-fibers, protein expression
Procedia PDF Downloads 32073 Developing Granular Sludge and Maintaining High Nitrite Accumulation for Anammox to Treat Municipal Wastewater High-efficiently in a Flexible Two-stage Process
Authors: Zhihao Peng, Qiong Zhang, Xiyao Li, Yongzhen Peng
Abstract:
Nowadays, conventional nitrogen removal process (nitrification and denitrification) was adopted in most wastewater treatment plants, but many problems have occurred, such as: high aeration energy consumption, extra carbon sources dosage and high sludge treatment costs. The emergence of anammox has bring about the great revolution to the nitrogen removal technology, and only the ammonia and nitrite were required to remove nitrogen autotrophically, no demand for aeration and sludge treatment. However, there existed many challenges in anammox applications: difficulty of biomass retention, insufficiency of nitrite substrate, damage from complex organic etc. Much effort was put into the research in overcoming the above challenges, and the payment was rewarded. It was also imperative to establish an innovative process that can settle the above problems synchronously, after all any obstacle above mentioned can cause the collapse of anammox system. Therefore, in this study, a two-stage process was established that the sequencing batch reactor (SBR) and upflow anaerobic sludge blanket (UASB) were used in the pre-stage and post-stage, respectively. The domestic wastewater entered into the SBR first and went through anaerobic/aerobic/anoxic (An/O/A) mode, and the draining at the aerobic end of SBR was mixed with domestic wastewater, the mixture then entering to the UASB. In the long term, organic and nitrogen removal performance was evaluated. All along the operation, most COD was removed in pre-stage (COD removal efficiency > 64.1%), including some macromolecular organic matter, like: tryptophan, tyrosinase and fulvic acid, which could weaken the damage of organic matter to anammox. And the An/O/A operating mode of SBR was beneficial to the achievement and maintenance of partial nitrification (PN). Hence, sufficient and steady nitrite supply was another favorable condition to anammox enhancement. Besides, the flexible mixing ratio helped to gain a substrate ratio appropriate to anammox (1.32-1.46), which further enhance the anammox. Further, the UASB was used and gas recirculation strategy was adopted in the post-stage, aiming to achieve granulation by the selection pressure. As expected, the granules formed rapidly during 38 days, which increased from 153.3 to 354.3 μm. Based on bioactivity and gene measurement, the anammox metabolism and abundance level rose evidently, by 2.35 mgN/gVss·h and 5.3 x109. The anammox bacteria mainly distributed in the large granules (>1000 μm), while the biomass in the flocs (<200 μm) and microgranules (200-500 μm) barely displayed anammox bioactivity. Enhanced anammox promoted the advanced autotrophic nitrogen removal, which increased from 71.9% to 93.4%, even when the temperature was only 12.9 ℃. Therefore, it was feasible to enhance anammox in the multiple favorable conditions created, and the strategy extended the application of anammox to the full-scale mainstream, enhanced the understanding of anammox in the aspects of culturing conditions.Keywords: anammox, granules, nitrite accumulation, nitrogen removal efficiency
Procedia PDF Downloads 4972 Time Travel Testing: A Mechanism for Improving Renewal Experience
Authors: Aritra Majumdar
Abstract:
While organizations strive to expand their new customer base, retaining existing relationships is a key aspect of improving overall profitability and also showcasing how successful an organization is in holding on to its customers. It is an experimentally proven fact that the lion’s share of profit always comes from existing customers. Hence seamless management of renewal journeys across different channels goes a long way in improving trust in the brand. From a quality assurance standpoint, time travel testing provides an approach to both business and technology teams to enhance the customer experience when they look to extend their partnership with the organization for a defined phase of time. This whitepaper will focus on key pillars of time travel testing: time travel planning, time travel data preparation, and enterprise automation. Along with that, it will call out some of the best practices and common accelerator implementation ideas which are generic across verticals like healthcare, insurance, etc. In this abstract document, a high-level snapshot of these pillars will be provided. Time Travel Planning: The first step of setting up a time travel testing roadmap is appropriate planning. Planning will include identifying the impacted systems that need to be time traveled backward or forward depending on the business requirement, aligning time travel with other releases, frequency of time travel testing, preparedness for handling renewal issues in production after time travel testing is done and most importantly planning for test automation testing during time travel testing. Time Travel Data Preparation: One of the most complex areas in time travel testing is test data coverage. Aligning test data to cover required customer segments and narrowing it down to multiple offer sequencing based on defined parameters are keys for successful time travel testing. Another aspect is the availability of sufficient data for similar combinations to support activities like defect retesting, regression testing, post-production testing (if required), etc. This section will talk about the necessary steps for suitable data coverage and sufficient data availability from a time travel testing perspective. Enterprise Automation: Time travel testing is never restricted to a single application. The workflow needs to be validated in the downstream applications to ensure consistency across the board. Along with that, the correctness of offers across different digital channels needs to be checked in order to ensure a smooth customer experience. This section will talk about the focus areas of enterprise automation and how automation testing can be leveraged to improve the overall quality without compromising on the project schedule. Along with the above-mentioned items, the white paper will elaborate on the best practices that need to be followed during time travel testing and some ideas pertaining to accelerator implementation. To sum it up, this paper will be written based on the real-time experience author had on time travel testing. While actual customer names and program-related details will not be disclosed, the paper will highlight the key learnings which will help other teams to implement time travel testing successfully.Keywords: time travel planning, time travel data preparation, enterprise automation, best practices, accelerator implementation ideas
Procedia PDF Downloads 16071 Genetic Screening of Sahiwal Bulls for Higher Fertility
Authors: Atul C. Mahajan, A. K. Chakravarty, V. Jamuna, C. S. Patil, Neeraj Kashyap, Bharti Deshmukh, Vijay Kumar
Abstract:
The selection of Sahiwal bulls on the basis of dams best lactation milk yield under breeding programme in herd of the country neglecting fertility traits leads to deterioration in their performances and economy. The goal of this study was to explore polymorphism of CRISP2 gene and their association with semen traits (Post Thaw Motility, Hypo-osmotic Swelling Test, Acrosome Integrity, DNA Fragmentation and capacitation status), scrotal circumference, expected predicted difference (EPD) for milk yield and fertility. Sahiwal bulls included in present study were 60 bulls used in breeding programme as well as 50 young bulls yet to be included in breeding programme. All the Sahiwal bulls were found to be polymorphic for CRISP2 gene (AA, AG and GG) present within exon 7 to the position 589 of CRISP2 mRNA by using PCR-SSCP and Sequencing. Semen analysis were done on 60 breeding bulls frozen semen doses pertaining to four season (winter, summer, rainy and autumn). The scrotal circumference was measured from existing Sahiwal breeding bulls in the herd (n=47). The effect of non-genetic factors on reproduction traits were studied by least-squares technique and the significant difference of means between subclasses of season, period, parity and age group were tested. The data were adjusted for the significant non-genetic factors to remove the differential environmental effects. The adjusted data were used to generate traits like Waiting Period (WP), Pregnancy Rate (PR), Expected Predicted Difference (EPD) of fertility, respectively. Genetic and phenotypic parameters of reproduction traits were estimated. The overall least-squares means of Age at First Calving (AFC), Service Period (SP) and WP were estimated as 36.69 ± 0.18 months, 120.47 ± 8.98 days and 79.78 ± 3.09 days respectively. Season and period of birth had significant effect (p < 0.01) on AFC. AFC was highest during autumn season of birth followed by summer, winter and rainy. Season and period of calving had significant effect (p < 0.01) on SP and WP of sahiwal cows. The WP for Sahiwal cows was standardized based on four developed predicted model for pregnancy rate 42, 63, 84 and 105 days using all lactation records. The WP for Sahiwal cows were standardized as 42 days. A selection criterion was developed for Sahiwal breeding bulls and young Sahiwal bulls on the basis of EPD of fertility. The genotype has significant effect on expected predicted difference of fertility and some semen parameters like post thaw motility and HOST. AA Genotype of CRISP2 gene revealed better EPD for fertility than EPD of milk yield. AA genotype of CRISP2 gene has higher scrotal circumference than other genotype. For young Sahiwal bulls only AA genotypes were present with similar patterns. So on the basis of association of genotype with seminal traits, EPD of milk yield and EPD for fertility status, AA and AG genotype of CRISP2 gene was better for higher fertility in Sahiwal bulls.Keywords: expected predicted difference, fertility, sahiwal, waiting period
Procedia PDF Downloads 58570 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses
Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts
Abstract:
Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV
Procedia PDF Downloads 41469 Telomerase, a Biomarker in Oral Cancer Cell Proliferation and Tool for Its Prevention at Initial Stage
Authors: Shaista Suhail
Abstract:
As cancer populations is increasing sharply, the incidence of oral squamous cell carcinoma (OSCC) has also been expected to increase. Oral carcinogenesis is a highly complex, multistep process which involves accumulation of genetic alterations that lead to the induction of proteins promoting cell growth (encoded by oncogenes), increased enzymatic (telomerase) activity promoting cancer cell proliferation. The global increase in frequency and mortality, as well as the poor prognosis of oral squamous cell carcinoma, has intensified current research efforts in the field of prevention and early detection of this disease. The advances in the understanding of the molecular basis of oral cancer should help in the identification of new markers. The study of the carcinogenic process of the oral cancer, including continued analysis of new genetic alterations, along with their temporal sequencing during initiation, promotion and progression, will allow us to identify new diagnostic and prognostic factors, which will provide a promising basis for the application of more rational and efficient treatments. Telomerase activity has been readily found in most cancer biopsies, in premalignant lesions or germ cells. Activity of telomerase is generally absent in normal tissues. It is known to be induced upon immortalization or malignant transformation of human cells such as in oral cancer cells. Maintenance of telomeres plays an essential role during transformation of precancer to malignant stage. Mammalian telomeres, a specialized nucleoprotein structures are composed of large conctamers of the guanine-rich sequence 5_-TTAGGG-3_. The roles of telomeres in regulating both stability of genome and replicative immortality seem to contribute in essential ways in cancer initiation and progression. It is concluded that activity of telomerase can be used as a biomarker for diagnosis of malignant oral cancer and a target for inactivation in chemotherapy or gene therapy. Its expression will also prove to be an important diagnostic tool as well as a novel target for cancer therapy. The activation of telomerase may be an important step in tumorgenesis which can be controlled by inactivating its activity during chemotherapy. The expression and activity of telomerase are indispensable for cancer development. There are no drugs which can effect extremely to treat oral cancers. There is a general call for new emerging drugs or methods that are highly effective towards cancer treatment, possess low toxicity, and have a minor environment impact. Some novel natural products also offer opportunities for innovation in drug discovery. Natural compounds isolated from medicinal plants, as rich sources of novel anticancer drugs, have been of increasing interest with some enzyme (telomerase) blockage property. The alarming reports of cancer cases increase the awareness amongst the clinicians and researchers pertaining to investigate newer drug with low toxicity.Keywords: oral carcinoma, telomere, telomerase, blockage
Procedia PDF Downloads 17568 Working Memory and Audio-Motor Synchronization in Children with Different Degrees of Central Nervous System's Lesions
Authors: Anastasia V. Kovaleva, Alena A. Ryabova, Vladimir N. Kasatkin
Abstract:
Background: The most simple form of entrainment to a sensory (typically auditory) rhythmic stimulus involves perceiving and synchronizing movements with an isochronous beat with one level of periodicity, such as that produced by a metronome. Children with pediatric cancer usually treated with chemo- and radiotherapy. Because of such treatment, psychologists and health professionals declare cognitive and motor abilities decline in cancer patients. The purpose of our study was to measure working memory characteristics with association with audio-motor synchronization tasks, also involved some memory resources, in children with different degrees of central nervous system lesions: posterior fossa tumors, acute lymphoblastic leukemia, and healthy controls. Methods: Our sample consisted of three groups of children: children treated for posterior fossa tumors (PFT-group, n=42, mean age 12.23), children treated for acute lymphoblastic leukemia (ALL-group, n=11, mean age 11.57) and neurologically healthy children (control group, n=36, mean age 11.67). Participants were tested for working memory characteristics with Cambridge Neuropsychological Test Automated Battery (CANTAB). Pattern recognition memory (PRM) and spatial working memory (SWM) tests were applied. Outcome measures of PRM test include the number and percentage of correct trials and latency (speed of participant’s response), and measures of SWM include errors, strategy, and latency. In the synchronization tests, the instruction was to tap out a regular beat (40, 60, 90 and 120 beats per minute) in synchrony with the rhythmic sequences that were played. This meant that for the sequences with an isochronous beat, participants were required to tap into every auditory event. Variations of inter-tap-intervals and deviations of children’s taps from the metronome were assessed. Results: Analysis of variance revealed the significant effect of group (ALL, PFT and control) on such parameters as short-term PRM, SWM strategy and errors. Healthy controls demonstrated more correctly retained elements, better working memory strategy, compared to cancer patients. Interestingly that ALL patients chose the bad strategy, but committed significantly less errors in SWM test then PFT and controls did. As to rhythmic ability, significant associations of working memory were found out only with 40 bpm rhythm: the less variable were inter-tap-intervals of the child, the more elements in memory he/she could retain. The ability to audio-motor synchronization may be related to working memory processes mediated by the prefrontal cortex whereby each sensory event is actively retrieved and monitored during rhythmic sequencing. Conclusion: Our results suggest that working memory, tested with appropriate cognitive methods, is associated with the ability to synchronize movements with rhythmic sounds, especially in sub-second intervals (40 per minute).Keywords: acute lymphoblastic leukemia (ALL), audio-motor synchronization, posterior fossa tumor, working memory
Procedia PDF Downloads 30067 Phenotypic and Molecular Heterogeneity Linked to the Magnesium Transporter CNNM2
Authors: Reham Khalaf-Nazzal, Imad Dweikat, Paula Gimenez, Iker Oyenarte, Alfonso Martinez-Cruz, Domonik Muller
Abstract:
Metal cation transport mediator (CNNM) gene family comprises 4 isoforms that are expressed in various human tissues. Structurally, CNNMs are complex proteins that contain an extracellular N-terminal domain preceding a DUF21 transmembrane domain, a ‘Bateman module’ and a C-terminal cNMP-binding domain. Mutations in CNNM2 cause familial dominant hypomagnesaemia. Growing evidence highlights the role of CNNM2 in neurodevelopment. Mutations in CNNM2 have been implicated in epilepsy, intellectual disability, schizophrenia, and others. In the present study, we aim to elucidate the function of CNNM2 in the developing brain. Thus, we present the genetic origin of symptoms in two family cohorts. In the first family, three siblings of a consanguineous Palestinian family in which parents are first cousins, and consanguinity ran over several generations, presented a varying degree of intellectual disability, cone-rod dystrophy, and autism spectrum disorder. Exome sequencing and segregation analysis revealed the presence of homozygous pathogenic mutation in the CNNM2 gene, the parents were heterozygous for that gene mutation. Magnesium blood levels were normal in the three children and their parents in several measurements. They had no symptoms of hypomagnesemia. The CNNM2 mutation in this family was found to locate in the CBS1 domain of the CNNM2 protein. The crystal structure of the mutated CNNM2 protein was not significantly different from the wild-type protein, and the binding of AMP or MgATP was not dramatically affected. This suggests that the CBS1 domain could be involved in pure neurodevelopmental functions independent of its magnesium-handling role, and this mutation could have affected a protein partner binding or other functions in this protein. In the second family, another autosomal dominant CNNM2 mutation was found to run in a large family with multiple individuals over three generations. All affected family members had hypomagnesemia and hypermagnesuria. Oral supplementation of magnesium did not increase the levels of magnesium in serum significantly. Some affected members of this family have defects in fine motor skills such as dyslexia and dyslalia. The detected mutation is located in the N-terminal part, which contains a signal peptide thought to be involved in the sorting and routing of the protein. In this project, we describe heterogenous clinical phenotypes related to CNNM2 mutations and protein functions. In the first family, and up to the authors’ knowledge, we report for the first time the involvement of CNNM2 in retinal photoreceptor development and function. In addition, we report the presence of a neurophenotype independent of magnesium status related to the CNNM2 protein mutation. Taking into account the different modes of inheritance and the different positions of the mutations within CNNM2 and its different structural and functional domains, it is likely that CNNM2 might be involved in a wide spectrum of neuropsychiatric comorbidities with considerable varying phenotypes.Keywords: magnesium transport, autosomal recessive, autism, neurodevelopment, CBS domain
Procedia PDF Downloads 15366 Influence of Packing Density of Layers Placed in Specific Order in Composite Nonwoven Structure for Improved Filtration Performance
Authors: Saiyed M Ishtiaque, Priyal Dixit
Abstract:
Objectives: An approach is being suggested to design the filter media to maximize the filtration efficiency with minimum possible pressure drop of composite nonwoven by incorporating the layers of different packing densities induced by fibre of different deniers and punching parameters by using the concept of sequential punching technique in specific order in layered composite nonwoven structure. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layer of differently oriented fibres influenced by fibres of different deniers and punching parameters in various combinations to minimize the pressure drop at maximum possible filtration efficiency. Methodology Used: This work involves preparation of needle punched layered structure with batts 100g/m2 basis weight having fibre denier, punch density and needle penetration depth as variables to produce 300 g/m2 basis weight nonwoven composite. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layers of differently oriented fibres influenced by considered variables in various combinations. to minimize the pressure drop at maximum possible filtration efficiencyFor developing layered nonwoven fabrics, batts made of fibre of different deniers having 100g/m2 each basis weight were placed in various combinations. For second set of experiment, the composite nonwoven fabrics were prepared by using 3 denier circular cross section polyester fibre having 64 mm length on needle punched nonwoven machine by using the sequential punching technique to prepare the composite nonwoven fabrics. In this technique, three semi punched fabrics of 100 g/m2 each having either different punch densities or needle penetration depths were prepared for first phase of fabric preparation. These fabrics were later punched altogether to obtain the overall basis weight of 300 g/m2. The total punch density of the composite nonwoven fabric was kept at 200 punches/ cm2 with a needle penetration depth of 10 mm. The layered structures so formed were subcategorised into two groups- homogeneous layered structure in which all the three batts comprising the nonwoven fabric were made from same denier of fibre, punch density and needle penetration depth and were placed in different positions in respective fabric and heterogeneous layered structure in which batts were made from fibres of different deniers, punch densities and needle penetration depths and were placed in different positions. Contributions: The results concluded that reduction in pressure drop is not derived by the overall packing density of the layered nonwoven fabric rather sequencing of layers of specific packing density in layered structure decides the pressure drop. Accordingly, creation of inverse gradient of packing density in layered structure provided maximum filtration efficiency with least pressure drop. This study paves the way for the possibility of customising the composite nonwoven fabrics by the incorporation of differently oriented fibres in constituent layers induced by considered variablres for desired filtration properties.Keywords: filtration efficiency, layered nonwoven structure, packing density, pressure drop
Procedia PDF Downloads 7665 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances
Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia
Abstract:
A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns
Procedia PDF Downloads 17464 Carbohydrate Intake and Physical Activity Levels Modify the Association between FTO Gene Variants and Obesity and Type 2 Diabetes: First Nutrigenetics Study in an Asian Indian Population
Authors: K. S. Vimal, D. Bodhini, K. Ramya, N. Lakshmipriya, R. M. Anjana, V. Sudha, J. A. Lovegrove, V. Mohan, V. Radha
Abstract:
Gene-lifestyle interaction studies have been carried out in various populations. However, to date there are no studies in an Asian Indian population. Hence, we examined whether lifestyle factors such as diet and physical activity modify the association between fat mass and obesity–associated (FTO) gene variants and obesity and type 2 diabetes (T2D) in an Asian Indian population. We studied 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the Chennai Urban Rural Epidemiology Study (CURES) in Southern India. Obesity was defined according to the World Health Organization Asia Pacific Guidelines (non-obese, BMI < 25 kg/m2; obese, BMI ≥ 25 kg/m2). Six single nucleotide polymorphisms (SNPs) in the FTO gene (rs9940128, rs7193144, rs8050136, rs918031, rs1588413 and rs11076023) identified from recent genome-wide association studies for T2D were genotyped by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Dietary assessment was carried out using a validated food frequency questionnaire and physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the model. A joint likelihood ratio test of the main SNP effects and the SNP-diet/physical activity interaction effects was used in the linear regression analyses to maximize statistical power. Statistical analyses were performed using STATA version 13. There was a significant interaction between FTO SNP rs8050136 and carbohydrate energy percentage (Pinteraction=0.04) on obesity, where the ‘A’ allele carriers of the SNP rs8050136 had 2.46 times higher risk of obesity than those with ‘CC’ genotype (P=3.0x10-5) among individuals in the highest tertile of carbohydrate energy percentage. Furthermore, among those who had lower levels of physical activity, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times higher risk of obesity than those with ‘CC’ genotype (P=4.0x10-5). We also found a borderline interaction between SNP rs11076023 and carbohydrate energy percentage (Pinteraction=0.08) on T2D, where the ‘A’ allele carriers in the highest tertile of carbohydrate energy percentage, had 1.57 times higher risk of T2D than those with ‘TT’ genotype (P=0.002). There was also a significant interaction between SNP rs11076023 and physical activity (Pinteraction=0.03) on T2D. No further significant interactions between SNPs and macronutrient intake or physical activity on obesity and T2D were observed. In conclusion, this is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. These findings suggest that the association between FTO gene variants and obesity and T2D is influenced by carbohydrate intake and physical activity levels. Greater understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions will advance the development of behavioral intervention and personalised lifestyle strategies predicted to reduce the development of metabolic diseases in ‘A’ allele carriers of both SNPs in this Asian Indian population.Keywords: dietary intake, FTO, obesity, physical activity, type 2 diabetes, Asian Indian.
Procedia PDF Downloads 53263 Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway
Authors: Wei Xiao, Gangzhi Cai, Xingliang Qin, Hongyan Ren, Zaidong Hua, Zhe Zhu, Hongwei Xiao, Ximin Zheng, Jie Yao, Yanzhen Bi
Abstract:
Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid.Keywords: fat deposition, MEF2C, miR222, myostatin, SCD5, pig
Procedia PDF Downloads 13062 Long Non-Coding RNAs Mediated Regulation of Diabetes in Humanized Mouse
Authors: Md. M. Hossain, Regan Roat, Jenica Christopherson, Colette Free, Zhiguang Guo
Abstract:
Long noncoding RNA (lncRNA) mediated post-transcriptional gene regulation, and their epigenetic landscapes have been shown to be involved in many human diseases. However, their regulation in diabetes through governing islet’s β-cell function and survival needs to be elucidated. Due to the technical and ethical constraints, it is difficult to study their role in β-cell function and survival in human under in vivo condition. In this study, humanized mice have been developed through transplanting human pancreatic islet under the kidney capsule of NOD.SCID mice and induced β-cell death leading to diabetes condition to study lncRNA mediated regulation. For this, human islets from 3 donors (3000 IEQ, purity > 80%) were transplanted under the kidney capsule of STZ induced diabetic NOD.scid mice. After at least 2 weeks of normoglycecemia, lymphocytes from diabetic NOD mice were adoptively transferred and islet grafts were collected once blood glucose reached > 200 mg/dl. RNA from human donor islets, islet grafts from humanized mice with either adoptive lymphocyte transfer (ALT) or PBS control (CTL) were ribodepleted; barcoded fragment libraries were constructed and sequenced on the Ion Proton sequencer. lncRNA expression in isolated human islets, islet grafts from humanized mice with and without induced β-cell death and their regulation in human islets function in vitro under glucose challenge, cytokine mediated inflammation and induced apoptotic condition were investigated. Out of 3155 detected lncRNAs, 299 that highly expressed in islets were found to be significantly downregulated and 224 upregulated in ALT compared to CTL. Most of these are found to be collocated within 5 kb upstream and 1 kb downstream of 788 up- and 624 down-regulated mRNAs. Genomic Regions Enrichment of Annotations Analysis revealed deregulated and collocated genes are related to pancreas endocrine development; insulin synthesis, processing, and secretion; pancreatitis and diabetes. Many of them, that found to be located within enhancer domains for islet specific gene activity, are associated to the deregulation of known islet/βcell specific transcription factors and genes that are important for β-cell differentiation, identity, and function. RNA sequencing analysis revealed aberrant lncRNA expression which is associated to the deregulated mRNAs in β-cell function as well as in molecular pathways related to diabetes. A distinct set of candidate lncRNA isoforms were identified as highly enriched and specific to human islets, which are deregulated in human islets from donors with different BMIs and with type 2 diabetes. These RNAs show an interesting regulation in cultured human islets under glucose stimulation and with induced β-cell death by cytokines. Aberrant expression of these lncRNAs was detected in the exosomes from the media of islets cultured with cytokines. Results of this study suggest that the islet specific lncRNAs are deregulated in human islet with β-cell death, hence important in diabetes. These lncRNAs might be important for human β-cell function and survival thus could be used as biomarkers and novel therapeutic targets for diabetes.Keywords: β-cell, humanized mouse, pancreatic islet, LncRNAs
Procedia PDF Downloads 16461 Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis
Authors: Oleg Reva, Ilya Korotetskiy, Marina Lankina, Murat Kulmanov, Aleksandr Ilin
Abstract:
Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections.Keywords: complete genome sequencing, computational modeling, drug resistance reversion, Mycobacterium tuberculosis
Procedia PDF Downloads 26360 Microbiological and Physicochemical Evaluation of Traditional Greek Kopanisti Cheese Produced by Different Starter Cultures
Authors: M. Kazou, A. Gavriil, O. Kalagkatsi, T. Paschos, E. Tsakalidou
Abstract:
Kopanisti cheese is a Greek soft Protected Designation of Origin (PDO) cheese made of raw cow, sheep or goat milk, or mixtures of them, with similar organoleptic characteristics to that of Roquefort cheese. Traditional manufacturing of Kopanisti cheese is limited in small-scale dairies, without the addition of starter cultures. Instead, an amount of over-mature Kopanisti cheese, called Mana Kopanisti, is used to initiate ripening. Therefore, the selection of proper starter cultures and the understanding of the contribution of various microbial groups to its overall quality is crucial for the production of a high-quality final product with standardized organoleptic and physicochemical characteristics. Taking the above into account, the aim of the present study was the investigation of Kopanisti cheese microbiota and its role in cheese quality. For this purpose, four different types of Kopanisti were produced in triplicates, all with pasteurized cow milk, with the addition of (A) the typical mesophilic species Lactococcus lactis and Lactobacillus paracasei used as starters in the production of soft spread cheeses, (B) strains of Lactobacillus acidipiscis and Lactobacillus rennini previously isolated from Kopanisti and Mana Kopanisti, (C) all the species from (A) and (B) as inoculum, and finally (D) the species from (A) and Mana Kopanisti. Physicochemical and microbiological analysis was performed for milk and cheese samples during ripening. Enumeration was performed for major groups of lactic acid bacteria (LAB), total mesophilic bacteria, yeasts as well as hygiene indicator microorganisms. Bacterial isolates from all the different LAB groups, apart from enterococci, alongside yeasts isolates, were initially grouped using repetitive sequence-based polymerase chain reaction (rep-PCR) and then identified at the species level using 16S rRNA gene and internal transcribed spacer (ITS) DNA region sequencing, respectively. Sensory evaluation was also performed for final cheese samples at the end of the ripening period (35 days). Based on the results of the classical microbiological analysis, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, ranged between 7 and 10 log colony forming unit (CFU) g⁻¹, phychrotrophic bacteria, and yeast extract glucose chloramphenicol (YGC) isolates between 4 and 8 log CFU g⁻¹, while coliforms and enterococci up to 2 log CFU g⁻¹ throughout ripening in cheese samples A, C and D. In contrast, in cheese sample B, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, phychrotrophic bacteria, and YGC isolates ranged between 0 and 10 log CFU g⁻¹ and coliforms and enterococci up to 2 log CFU g⁻¹. Although the microbial counts were not that different among samples, identification of the bacterial and yeasts isolates revealed the complex microbial community structure present in each cheese sample. Differences in the physicochemical characteristics among the cheese samples were also observed, with pH ranging from 4.3 to 5.3 and moisture from 49.6 to 58.0 % in the final cheese products. Interestingly, the sensory evaluation also revealed differences among samples, with cheese sample B ranking first based on the total score. Overall, the combination of these analyses highlighted the impact of different starter cultures on the Kopanisti microbiota as well as on the physicochemical and sensory characteristics of the final product.Keywords: Kopanisti cheese, microbiota, classical microbiological analysis, physicochemical analysis
Procedia PDF Downloads 13559 Gut Microbial Dynamics in a Mouse Model of Inflammation-Linked Carcinogenesis as a Result of Diet Supplementation with Specific Mushroom Extracts
Authors: Alvarez M., Chapela M. J., Balboa E., Rubianes D., Sinde E., Fernandez de Ana C., Rodríguez-Blanco A.
Abstract:
The gut microbiota plays an important role as gut inflammation could contribute to colorectal cancer development; however, this role is still not fully understood, and tools able to prevent this progression are yet to be developed. The main objective of this study was to monitor the effects of a mushroom extracts formulation in gut microbial community composition of an Azoxymethane (AOM)/Dextran sodium sulfate (DSS) mice model of inflammation-linked carcinogenesis. For the in vivo study, 41 adult male mice of the C57BL / 6 strain were obtained. 36 of them have been induced in a state of colon carcinogenesis by a single intraperitoneal administration of AOM at a dose of 12.5 mg/kg; the control group animals received instead of the same volume of 0.9% saline. DSS is an extremely toxic polysaccharide sulfate that causes chronic inflammation of the colon mucosa, favoring the appearance of severe colitis and the production of tumors induced by AOM. Induction by AOM/DSS is an interesting platform for chemopreventive intervention studies. This time the model was used to monitor gut microbiota changes as a result of supplementation with a specific mushroom extracts formulation previously shown to have prebiotic activity. The animals have been divided into three groups: (i) Cancer + mushroom extracts formulation experimental group: to which the MicoDigest2.0 mushroom extracts formulation developed by Hifas da Terra S.L has been administered dissolved in drinking water at an estimated concentration of 100 mg / ml. (ii) Control group of animals with Cancer: to which normal water has been administered without any type of treatment. (iii) Control group of healthy animals: these are the animals that have not been induced cancer or have not received any treatment in drinking water. This treatment has been maintained for a period of 3 months, after which the animals were sacrificed to obtain tissues that were subsequently analyzed to verify the effects of the mushroom extract formulation. A microbiological analysis has been carried out to compare the microbial communities present in the intestines of the mice belonging to each of the study groups. For this, the methodology of massive sequencing by molecular analysis of the 16S gene has been used (Ion Torrent technology). Initially, DNA extraction and metagenomics libraries were prepared using the 16S Metagenomics kit, always following the manufacturer's instructions. This kit amplifies 7 of the 9 hypervariable regions of the 16S gene that will then be sequenced. Finally, the data obtained will be compared with a database that makes it possible to determine the degree of similarity of the sequences obtained with a wide range of bacterial genomes. Results obtained showed that, similarly to certain natural compounds preventing colorectal tumorigenesis, a mushroom formulation enriched the Firmicutes and Proteobacteria phyla and depleted Bacteroidetes. Therefore, it was demonstrated that the consumption of the mushroom extracts’ formulation developed could promote the recovery of the microbial balance that is disrupted in the mice model of carcinogenesis. More preclinical and clinical studies are needed to validate this promising approach.Keywords: carcinogenesis, microbiota, mushroom extracts, inflammation
Procedia PDF Downloads 15058 Mobile Genetic Elements in Trematode Himasthla Elongata Clonal Polymorphism
Authors: Anna Solovyeva, Ivan Levakin, Nickolai Galaktionov, Olga Podgornaya
Abstract:
Animals that reproduce asexually were thought to have the same genotypes within generations for a long time. However, some refuting examples were found, and mobile genetic elements (MGEs) or transposons are considered to be the most probable source of genetic instability. Dispersed nature and the ability to change their genomic localization enables MGEs to be efficient mutators. Hence the study of MGEs genomic impact requires an appropriate object which comprehends both representative amounts of various MGEs and options to evaluate the genomic influence of MGEs. Animals that reproduce asexually seem to be a decent model to study MGEs impact in genomic variability. We found a small marine trematode Himasthla elongata (Himasthlidae) to be a good model for such investigation as it has a small genome size, diverse MGEs and parthenogenetic stages in the lifecycle. In the current work, clonal diversity of cercaria was traced with an AFLP (Amplified fragment length polymorphism) method, diverse zones from electrophoretic patterns were cloned, and the nature of the fragments explored. Polymorphic patterns of individual cercariae AFLP-based fingerprints are enriched with retrotransposons of different families. The bulk of those sequences are represented by open reading frames of non-Long Terminal Repeats containing elements(non-LTR) yet Long-Terminal Repeats containing elements (LTR), to a lesser extent in variable figments of AFLP array. The CR1 elements expose both in polymorphic and conservative patterns are remarkably more frequent than the other non-LTR retrotransposons. This data was confirmed with shotgun sequencing-based on Illumina HiSeq 2500 platform. Individual cercaria of the same clone (i.e., originated from a single miracidium and inhabiting one host) has a various distribution of MGE families detected in sequenced AFLP patterns. The most numerous are CR1 and RTE-Bov retrotransposons, typical for trematode genomes. Also, we identified LTR-retrotransposons of Pao and Gypsy families among DNA transposons of CMC-EnSpm, Tc1/Mariner, MuLE-MuDR and Merlin families. We detected many of them in H. elongata transcriptome. Such uneven MGEs distribution in AFLP sequences’ sets reflects the different patterns of transposons spreading in cercarial genomes as transposons affect the genome in many ways (ectopic recombination, gene structure interruption, epigenetic silencing). It is considered that they play a key role in the origins of trematode clonal polymorphism. The authors greatly appreciate the help received at the Kartesh White Sea Biological Station of the Russian Academy of Sciences Zoological Institute. This work is funded with RSF 19-74-20102 and RFBR 17-04-02161 grants and the research program of the Zoological Institute of the Russian Academy of Sciences (project number AAAA-A19-119020690109-2).Keywords: AFLP, clonal polymorphism, Himasthla elongata, mobile genetic elements, NGS
Procedia PDF Downloads 12657 Gene Expression Profiling of Iron-Related Genes of Pasteurella multocida Serotype A Strain PMTB2.1
Authors: Shagufta Jabeen, Faez Jesse Firdaus Abdullah, Zunita Zakaria, Nurulfiza Mat Isa, Yung Chie Tan, Wai Yan Yee, Abdul Rahman Omar
Abstract:
Pasteurella multocida is associated with acute, as well as, chronic infections in avian and bovine such as pasteurellosis and hemorrhagic septicemia (HS) in cattle and buffaloes. Iron is one of the most important nutrients for pathogenic bacteria including Pasteurella and acts as a cofactor or prosthetic group in several essential enzymes and is needed for amino acid, pyrimidine, and DNA biosynthesis. In our recent study, we showed that 2% of Pasteurella multocida serotype A strain PMTB2.1 encode for iron regulating genes (Accession number CP007205.1). Genome sequencing of other Pasteurella multocida serotypes namely PM70 and HB01 also indicated up to 2.5% of the respective genome encode for iron regulating genes, suggesting that Pasteurella multocida genome comprises of multiple systems for iron uptake. Since P. multocida PMTB2.1 has more than 40 CDs out of 2097 CDs (approximately 2%), encode for iron-regulated. The gene expression profiling of four iron-regulating genes namely fbpb, yfea, fece and fur were characterized under iron-restricted environment. The P. multocida strain PMTB2.1 was grown in broth with and without iron chelating agent and samples were collected at different time points. Relative mRNA expression profile of these genes was determined using Taqman probe based real-time PCR assay. The data analysis, normalization with two house-keeping genes and the quantification of fold changes were carried out using Bio-Rad CFX manager software version 3.1. Results of this study reflect that iron reduced environment has significant effect on expression profile of iron regulating genes (p < 0.05) when compared to control (normal broth) and all evaluated genes act differently with response to iron reduction in media. The highest relative fold change of fece gene was observed at early stage of treatment indicating that PMTB2.1 may utilize its periplasmic protein at early stage to acquire iron. Furthermore, down-regulation expression of fece with the elevated expression of other genes at later time points suggests that PMTB2.1 control their iron requirements in response to iron availability by down-regulating the expression of iron proteins. Moreover, significantly high relative fold change (p ≤ 0.05) of fbpb gene is probably associated with the ability of P. multocida to directly use host iron complex such as hem, hemoglobin. In addition, the significant increase (p ≤ 0.05) in fbpb and yfea expressions also reflects the utilization of multiple iron systems in P. multocida strain PMTB2.1. The findings of this study are very much important as relative scarcity of free iron within hosts creates a major barrier to microbial growth inside host and utilization of outer-membrane proteins system in iron acquisition probably occurred at early stage of infection with P. multocida. In conclusion, the presence and utilization of multiple iron system in P. multocida strain PMTB2.1 revealed the importance of iron in the survival of P. multocida.Keywords: iron-related genes, real-time PCR, gene expression profiling, fold changes
Procedia PDF Downloads 46256 Exploring Fluoroquinolone-Resistance Dynamics Using a Distinct in Vitro Fermentation Chicken Caeca Model
Authors: Bello Gonzalez T. D. J., Setten Van M., Essen Van A., Brouwer M., Veldman K. T.
Abstract:
Resistance to fluoroquinolones (FQ) has evolved increasingly over the years, posing a significant challenge for the treatment of human infections, particularly gastrointestinal tract infections caused by zoonotic bacteria transmitted through the food chain and environment. In broiler chickens, a relatively high proportion of FQ resistance has been observed in Escherichia coli indicator, Salmonella and Campylobacter isolates. We hypothesize that flumequine (Flu), used as a secondary choice for the treatment of poultry infections, could potentially be associated with a high proportion of FQ resistance. To evaluate this hypothesis, we used an in vitro fermentation chicken caeca model. Two continuous single-stage fermenters were used to simulate in real time the physiological conditions of the chicken caeca microbial content (temperature, pH, caecal content mixing, and anoxic environment). A pool of chicken caecal content containing FQ-resistant E. coli obtained from chickens at slaughter age was used as inoculum along with a spiked FQ-susceptible Campylobacter jejuni strain isolated from broilers. Flu was added to one of the fermenters (Flu-fermenter) every 24 hours for two days to evaluate the selection and maintenance of FQ resistance over time, while the other served as a control (C-Fermenter). The experiment duration was 5 days. Samples were collected at three different time points: before, during and after Flu administration. Serial dilutions were plated on Butzler culture media with and without Flu (8mg/L) and enrofloxacin (4mg/L) and on MacConkey culture media with and without Flu (4mg/L) and enrofloxacin (1mg/L) to determine the proportion of resistant strains over time. Positive cultures were identified by mass spectrometry and matrix-assisted laser desorption/ionization (MALDI). A subset of the obtained isolates were used for Whole Genome Sequencing analysis. Over time, E. coli exhibited positive growth in both fermenters, while C. jejuni growth was detected up to day 3. The proportion of Flu-resistant E. coli strains recovered remained consistent over time after antibiotic selective pressure, while in the C-fermenter, a decrease was observed at day 5; a similar pattern was observed in the enrofloxacin-resistant E. coli strains. This suggests that Flu might play a role in the selection and persistence of enrofloxacin resistance, compared to C-fermenter, where enrofloxacin-resistant E. coli strains appear at a later time. Furthermore, positive growth was detected from both fermenters only on Butzler plates without antibiotics. A subset of C. jejuni strains from the Flu-fermenter revealed that those strains were susceptible to ciprofloxacin (MIC < 0.12 μg/mL). A selection of E. coli strains from both fermenters revealed the presence of plasmid-mediated quinolone resistance (PMQR) (qnr-B19) in only one strain from the C-fermenter belonging to sequence type (ST) 48, and in all from Flu-fermenter belonged to ST189. Our results showed that Flu selective impact on PMQR-positive E. coli strains, while no effect was observed in C. jejuni. Maintenance of Flu-resistance was correlated with antibiotic selective pressure. Further studies into antibiotic resistance gene transfer among commensal and zoonotic bacteria in the chicken caeca content may help to elucidate the resistance spread mechanisms.Keywords: fluoroquinolone-resistance, escherichia coli, campylobacter jejuni, in vitro model
Procedia PDF Downloads 6455 Bacterial Community Diversity in Soil under Two Tillage Systems
Authors: Dalia Ambrazaitienė, Monika Vilkienė, Danute Karcauskienė, Gintaras Siaudinis
Abstract:
The soil is a complex ecosystem that is part of our biosphere. The ability of soil to provide ecosystem services is dependent on microbial diversity. T Tillage is one of the major factors that affect soil properties. The no-till systems or shallow ploughless tillage are opposite of traditional deep ploughing, no-tillage systems, for instance, increase soil organic matter by reducing mineralization rates and stimulating litter concentrations of the top soil layer, whereas deep ploughing increases the biological activity of arable soil layer and reduces the incidence of weeds. The role of soil organisms is central to soil processes. Although the number of microbial species in soil is still being debated, the metagenomic approach to estimate microbial diversity predicted about 2000 – 18 000 bacterial genomes in 1 g of soil. Despite the key role of bacteria in soil processes, there is still lack of information about the bacterial diversity of soils as affected by tillage practices. This study focused on metagenomic analysis of bacterial diversity in long-term experimental plots of Dystric Epihypogleyic Albeluvisols in western part of Lithuania. The experiment was set up in 2013 and had a split-plot design where the whole-plot treatments were laid out in a randomized design with three replicates. The whole-plot treatments consisted of two tillage methods - deep ploughing (22-25 cm) (DP), ploughless tillage (7-10 cm) (PT). Three subsamples (0-20 cm) were collected on October 22, 2015 for each of the three replicates. Subsamples from the DP and PT systems were pooled together wise to make two composition samples, one representing deep ploughing (DP) and the other ploughless tillage (PT). Genomic DNA from soil sample was extracted from approximately 200 mg field-moist soil by using the D6005 Fungal/Bacterial Miniprep set (Zymo Research®) following the manufacturer’s instructions. To determine bacterial diversity and community composition, we employed a culture – independent approach of high-throughput pyrosequencing of the 16S rRNA gene. Metagenomic sequencing was made with Illumina MiSeq platform in Base Clear Company. The microbial component of soil plays a crucial role in cycling of nutrients in biosphere. Our study was a preliminary attempt at observing bacterial diversity in soil under two common but contrasting tillage practices. The number of sequenced reads obtained for PT (161 917) was higher than DP (131 194). The 10 most abundant genus in soil sample were the same (Arthrobacter, Candidatus Saccharibacteria, Actinobacteria, Acidobacterium, Mycobacterium, Bacillus, Alphaproteobacteria, Longilinea, Gemmatimonas, Solirubrobacter), just the percent of community part was different. In DP the Arthrobacter and Acidobacterium consist respectively 8.4 % and 2.5%, meanwhile in PT just 5.8% and 2.1% of all community. The Nocardioides and Terrabacter were observed just in PT. This work was supported by the project VP1-3.1-ŠMM-01-V-03-001 NKPDOKT and National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: deep ploughing, metagenomics, ploughless tillage, soil community analysis
Procedia PDF Downloads 24654 Purple Spots on Historical Parchments: Confirming the Microbial Succession at the Basis of Biodeterioration
Authors: N. Perini, M. C. Thaller, F. Mercuri, S. Orlanducci, A. Rubechini, L. Migliore
Abstract:
The preservation of cultural heritage is one of the major challenges of today’s society, because of the fundamental right of future generations to inherit it as the continuity with their historical and cultural identity. Parchments, consisting of a semi-solid matrix of collagen produced from animal skin (i.e., sheep or goats), are a significant part of the cultural heritage, being used as writing material for many centuries. Due to their animal origin, parchments easily undergo biodeterioration. The most common biological damage is characterized by isolated or coalescent purple spots that often leads to the detachment of the superficial layer and the loss of the written historical content of the document. Although many parchments with the same biodegradative features were analyzed, no common causative agent has been found so far. Very recently, a study was performed on a purple-damaged parchment roll dated back 1244 A.D, the A.A. Arm. I-XVIII 3328, belonging to the oldest collection of the Vatican Secret Archive (Fondo 'Archivum Arcis'), by comparing uncolored undamaged and purple damaged areas of the same document. As a whole, the study gave interesting results to hypothesize a model of biodeterioration, consisting of a microbial succession acting in two main phases: the first one, common to all the damaged parchments, is characterized by halophilic and halotolerant bacteria fostered by the salty environment within the parchment maybe induced by bringing of the hides; the second one, changing with the individual history of each parchment, determines the identity of its colonizers. The design of this model was pivotal to this study, performed by different labs of the Tor Vergata University (Rome, Italy), in collaboration with the Vatican Secret Archive. Three documents, belonging to a collection of dramatically damaged parchments archived as 'Faldone Patrizi A 19' (dated back XVII century A.D.), were analyzed through a multidisciplinary approach, including three updated technologies: (i) Next Generation Sequencing (NGS, Illumina) to describe the microbial communities colonizing the damaged and undamaged areas, (ii) RAMAN spectroscopy to analyze the purple pigments, (iii) Light Transmitted Analysis (LTA) to evaluate the kind and entity of the damage to native collagen. The metagenomic analysis obtained from NGS revealed DNA sequences belonging to Halobacterium salinarum mainly in the undamaged areas. RAMAN spectroscopy detected pigments within the purple spots, mainly bacteriorhodopsine/rhodopsin-like pigments, a purple transmembrane protein containing retinal and present in Halobacteria. The LTA technique revealed extremely damaged collagen structures in both damaged and undamaged areas of the parchments. In the light of these data, the study represents a first confirmation of the microbial succession model described above. The demonstration of this model is pivotal to start any possible new restoration strategy to bring back historical parchments to their original beauty, but also to open opportunities for intervention on a huge amount of documents.Keywords: biodeterioration, parchments, purple spots, ecological succession
Procedia PDF Downloads 17153 Interferon-Induced Transmembrane Protein-3 rs12252-CC Associated with the Progress of Hepatocellular Carcinoma by Up-Regulating the Expression of Interferon-Induced Transmembrane Protein 3
Authors: Yuli Hou, Jianping Sun, Mengdan Gao, Hui Liu, Ling Qin, Ang Li, Dongfu Li, Yonghong Zhang, Yan Zhao
Abstract:
Background and Aims: Interferon-induced transmembrane protein 3 (IFITM3) is a component of ISG (Interferon-Stimulated Gene) family. IFITM3 has been recognized as a key signal molecule regulating cell growth in some tumors. However, the function of IFITM3 rs12252-CC genotype in the hepatocellular carcinoma (HCC) remains unknown to author’s best knowledge. A cohort study was employed to clarify the relationship between IFITM3 rs12252-CC genotype and HCC progression, and cellular experiments were used to investigate the correlation of function of IFITM3 and the progress of HCC. Methods: 336 candidates were enrolled in study, including 156 with HBV related HCC and 180 with chronic Hepatitis B infections or liver cirrhosis. Polymerase chain reaction (PCR) was employed to determine the gene polymorphism of IFITM3. The functions of IFITM3 were detected in PLC/PRF/5 cell with different treated:LV-IFITM3 transfected with lentivirus to knockdown the expression of IFITM3 and LV-NC transfected with empty lentivirus as negative control. The IFITM3 expression, proliferation and migration were detected by Quantitative reverse transcription polymerase chain reaction (qRT-PCR), QuantiGene Plex 2.0 assay, western blotting, immunohistochemistry, Cell Counting Kit(CCK)-8 and wound healing respectively. Six samples (three infected with empty lentiviral as control; three infected with LV-IFITM3 vector lentiviral as experimental group ) of PLC/PRF/5 were sequenced at BGI (Beijing Genomics Institute, Shenzhen,China) using RNA-seq technology to identify the IFITM3-related signaling pathways and chose PI3K/AKT pathway as related signaling to verify. Results: The patients with HCC had a significantly higher proportion of IFITM3 rs12252-CC compared with the patients with chronic HBV infection or liver cirrhosis. The distribution of CC genotype in HCC patients with low differentiation was significantly higher than that in those with high differentiation. Patients with CC genotype found with bigger tumor size, higher percentage of vascular thrombosis, higher distribution of low differentiation and higher 5-year relapse rate than those with CT/TT genotypes. The expression of IFITM3 was higher in HCC tissues than adjacent normal tissues, and the level of IFITM3 was higher in HCC tissues with low differentiation and metastatic than high/medium differentiation and without metastatic. Higher RNA level of IFITM3 was found in CC genotype than TT genotype. In PLC/PRF/5 cell with knockdown, the ability of cell proliferation and migration was inhibited. Analysis RNA sequencing and verification of RT-PCR found out the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR) pathway was associated with knockdown IFITM3.With the inhibition of IFITM3, the expression of PI3K/AKT/mTOR signaling pathway was blocked and the expression of vimentin was decreased. Conclusions: IFITM3 rs12252-CC with the higher expression plays a vital role in the progress of HCC by regulating HCC cell proliferation and migration. These effects are associated with PI3K/AKT/mTOR signaling pathway.Keywords: IFITM3, interferon-induced transmembrane protein 3, HCC, hepatocellular carcinoma, PI3K/ AKT/mTOR, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin
Procedia PDF Downloads 12552 Isolation and Identification of Sarcocystis suihominis in a Slaughtered Domestic Pig (Sus scrofa) in Benue State, Nigeria
Authors: H. I. Obadiah, S. N. Wieser, E. A. Omudu, B. O. Atu, O. Byanet, L. Schnittger, M. Florin-Christensen
Abstract:
Sarcocystis sp. are Apicomplexan protozoan parasites with a life cycle that involves a predator and a prey as final and intermediate hosts, respectively. In tissues of the intermediate hosts, the parasites produce sarcocysts that vary in size and morphology according to the species. When a suitable predator ingests sarcocyst-containing meat, the parasites are released in the intestine and undergo sexual reproduction producing infective sporocysts, which are excreted with the feces into the environment. The cycle is closed when a prey ingests sporocyst-contaminated water or pasture; the parasites gain access to the circulation, and eventually invade tissues and reproduce asexually yielding sarcocysts. Pig farming is a common practice in Nigeria as well as in many countries around the world. In addition to its importance as protein source, pork is also a source of several pathogens relevant to humans. In the case of Sarcocystis, three species have been described both in domestic and wild pigs, namely, S. miescheriana, S. porcifelis and S. suihominis. Humans can act both as final and aberrant intermediate hosts of S. suihominis, after ingesting undercooked sarcocyst-infested pork. Infections are usually asymptomatic but can be associated with inappetence, nausea, vomiting and diarrhea, or with muscle pain, fever, eosinophilia and bronchospasm, in humans acting as final or intermediate hosts, respectively. Moreover, excretion of infective forms with human feces leads to further dissemination of the infection. In this study, macroscopic sarcocysts of white color, oval shape and a size range of approximately 3-5 mm were observed in the skeletal muscle of a slaughtered pig in an abattoir in Makurdi, Benue State, Nigeria, destined to human consumption. Sarcocysts were excised and washed in distilled water, and genomic DNA was extracted using a commercial kit. The near-complete length of the 18S rRNA gene was analyzed after PCR amplification of two overlapping fragments, each of which were submitted to direct sequencing. In addition, the mitochondrial cytochrome oxidase (cox-1) gene was PCR-amplified and directly sequenced. Two phylogenetic trees containing the obtained sequences along with available relevant 18S rRNA and cox-1 sequences were constructed by neighbor joining after alignment, using the corresponding sequences of Toxoplasma gondii as outgroup. The results showed in both cases that the analyzed sequences grouped with S. suihominis with high bootstrap value, confirming the identity of this macroscopic sarcocyst-forming parasite as S. suihominis. To the best of our knowledge, these results represent the first demonstration of this parasite in pigs of Nigeria and the largest sarcocysts described so far for S. suihominis. The close proximity between pigs and humans in pig farms, and the frequent poor sanitary conditions in human dwellings strongly suggest that the parasite undergoes the sexual stages of its life cycle in humans as final hosts. These findings provide an important reference for the examination and control of Sarcocystis species in pigs of Nigeria.Keywords: nigeria, pork, sarcocystis suihominis, zoonotic parasite
Procedia PDF Downloads 8851 Effects of Glucogenic and Lipogenic Diets on Ruminal Microbiota and Metabolites in Vitro
Authors: Beihai Xiong, Dengke Hua, Wouter Hendriks, Wilbert Pellikaan
Abstract:
To improve the energy status of dairy cows in the early lactation, lots of jobs have been done on adjusting the starch to fiber ratio in the diet. As a complex ecosystem, the rumen contains a large population of microorganisms which plays a crucial role in feed degradation. Further study on the microbiota alterations and metabolic changes under different dietary energy sources is essential and valuable to better understand the function of the ruminal microorganisms and thereby to optimize the rumen function and enlarge feed efficiency. The present study will focus on the effects of two glucogenic diets (G: ground corn and corn silage; S: steam-flaked corn and corn silage) and a lipogenic diet (L: sugar beet pulp and alfalfa silage) on rumen fermentation, gas production, the ruminal microbiota and metabolome, and also their correlations in vitro. The gas production was recorded consistently, and the gas volume and producing rate at times 6, 12, 24, 48 h were calculated separately. The fermentation end-products were measured after fermenting for 48 h. The ruminal bacteria and archaea communities were determined by 16S RNA sequencing technique, the metabolome profile was tested through LC-MS methods. Compared to the diet G and S, the L diet had a lower dry matter digestibility, propionate production, and ammonia-nitrogen concentration. The two glucogenic diets performed worse in controlling methane and lactic acid production compared to the L diet. The S diet produced the greatest cumulative gas volume at any time points during incubation compared to the G and L diet. The metabolic analysis revealed that the lipid digestion was up-regulated by the diet L than other diets. On the subclass level, most metabolites belonging to the fatty acids and conjugates were higher, but most metabolites belonging to the amino acid, peptides, and analogs were lower in diet L than others. Differences in rumen fermentation characteristics were associated with (or resulting from) changes in the relative abundance of bacterial and archaeal genera. Most highly abundant bacteria were stable or slightly influenced by diets, while several amylolytic and cellulolytic bacteria were sensitive to the dietary changes. The L diet had a significantly higher number of cellulolytic bacteria, including the genera of Ruminococcus, Butyrivibrio, Eubacterium, Lachnospira, unclassified Lachnospiraceae, and unclassified Ruminococcaceae. The relative abundances of amylolytic bacteria genera including Selenomonas_1, Ruminobacter, and Succinivibrionaceae_UCG-002 were higher in diet G and S. These affected bacteria was also proved to have high associations with certain metabolites. The Selenomonas_1 and Succinivibrionaceae_UCG-002 may contribute to the higher propionate production in the diet G and S through enhancing the succinate pathway. The results indicated that the two glucogenic diets had a greater extent of gas production, a higher dry matter digestibility, and produced more propionate than diet L. The steam-flaked corn did not show a better performance on fermentation end-products than ground corn. This study has offered a deeper understanding of ruminal microbial functions which could assistant the improvement in rumen functions and thereby in the ruminant production.Keywords: gas production, metabolome, microbiota, rumen fermentation
Procedia PDF Downloads 15350 Clinical Cases of Rare Types of 'Maturity Onset Diabetes of the Young' Diabetes
Authors: Alla Ovsyannikova, Oksana Rymar, Elena Shakhtshneider, Mikhail Voevoda
Abstract:
In Siberia endocrinologists increasingly noted young patients with the course of diabetes mellitus differing from 1 and 2 types. Therefore we did a molecular genetic study for this group of patients to verify the monogenic forms of diabetes mellitus in them and researched the characteristics of this pathology. When confirming the monogenic form of diabetes, we performed a correction therapy for many patients (transfer from insulin to tablets), prevented specific complications, examined relatives and diagnosed their diabetes at the preclinical stage, revealed phenotypic characteristics of the pathology which led to the high significance of this work. Materials and Methods: We observed 5 patients (4 families). We diagnosed MODY (Maturity Onset Diabetes of the Young) during the molecular genetic testing (direct automatic sequencing). All patients had a full clinical examination, blood samples for biochemical research, determination of C-peptide and TSH, antibodies to b-cells, microalbuminuria, abdominal ultrasound, heart and thyroid ultrasound, examination of ophthalmologist. Results: We diagnosed 3 rare types of MODY: two women had MODY8, one man – MODY6 and man and his mother - MODY12. Patients with types 8 and 12 had clinical features. Age of onset hyperglycemia ranged from 26 to 34 years. In a patient with MODY6 fasting hyperglycemia was detected during a routine examination. Clinical symptoms, complications were not diagnosed. The patient observes a diet. In the first patient MODY8 was detected during first pregnancy, she had itchy skin and mostly postprandial hyperglycemia. Upon examination we determined glycated hemoglobin 7.5%, retinopathy, non-proliferative stage, peripheral neuropathy. She uses a basic bolus insulin therapy. The second patient with MODY8 also had clinical manifestations of hyperglycemia (pruritus, thirst), postprandial hyperglycemia and diabetic nephropathy, a stage of microalbuminuria. The patient was diagnosed autoimmune thyroiditis. She used inhibitors of DPP-4. The patient with MODY12 had an aggressive course. In the detection of hyperglycemia he had complaints of visual impairment, intense headaches, leg cramps. The patient had a history of childhood convulsive seizures of non-epileptic genesis, without organic pathology, which themselves were stopped at the age of 12 years. When we diagnosed diabetes a patient was 28 years, he had hypertriglyceridemia, atherosclerotic plaque in the carotid artery, proliferative retinopathy (lacerocoagulation). Diabetes and early myocardial infarction were observed in three cases in family. We prescribe therapy with sulfonylureas and SGLT-2 inhibitors with a positive effect. At the patient's mother diabetes began at a later age (30 years) and a less aggressive course was observed. She also has hypertriglyceridemia and uses oral hypoglycemic drugs. Conclusions: 1) When young patients with hyperglycemia have extrapancreatic pathologies and diabetic complications with a short duration of diabetes we can assume they have one of type of MODY diabetes. 2) In patients with monogenic forms of diabetes mellitus, the clinical manifestations of hyperglycemia in each succeeding generation are revealed at an earlier age. Research had increased our knowledge of the monogenic forms of diabetes. The reported study was supported by RSCF, research project No. 14-15-00496-P.Keywords: diabetes mellitus, MODY diabetes, monogenic forms, young patients
Procedia PDF Downloads 24449 The First Complete Mitochondrial Genome of Melon Thrips, Thrips palmi (Thripinae: Thysanoptera): Vector for Tospoviruses
Authors: Kaomud Tyagi, Rajasree Chakraborty, Shantanu Kundu, Devkant Singha, Kailash Chandra, Vikas Kumar
Abstract:
The melon thrips, Thrips palmi is a serious pest of a wide range of agriculture crops and also act as vectors for plant viruses (genus Tospovirus, family Bunyaviridae). More molecular data on this species is required to understand the cryptic speciation and evolutionary affiliations. Mitochondrial genomes have been widely used in phylogenetic and evolutionary studies in insect. So far, mitogenomes of five thrips species (Anaphothrips obscurus, Frankliniella intonsa, Frankliniella occidentalis, Scirtothrips dorsalis and Thrips imaginis) is available in the GenBank database. In this study, we sequenced the first complete mitogenome T. palmi and compared it with available thrips mitogenomes. We assembled the mitogenome from the whole genome sequencing data generated using Illumina Hiseq2500. Annotation was performed using MITOS web-server to estimate the location of protein coding genes (PCGs), transfer RNA (tRNAs), ribosomal RNAs (rRNAs) and their secondary structures. The boundaries of PCGs and rRNAs was confirmed manually in NCBI. Phylogenetic analyses were performed using the 13 PCGs data using maximum likelihood (ML) in PAUP, and Bayesian inference (BI) in MrBayes 3.2. The complete mitogenome of T. palmi was 15,333 base pairs (bp), which was greater than the genomes of A. obscurus (14,890bp), F. intonsa (15,215 bp), F. occidentalis (14,889 bp) and S. dorsalis South Asia strain (SA1) (14,283 bp), but smaller than the genomes of T. imaginis (15,407 bp) and S. dorsalis East Asia strain (EA1) (15,343bp). Like in other thrips species, the mitochondrial genome of T. palmi was represented by 37 genes, including 13 PCGs, large and small ribosomal RNA (rrnL and rrnS) genes, 22 transfer RNA (tRNAs) genes (with one extra gene for trn-Serine) and two A+T-rich control regions (CR1 and CR2). Thirty one genes were observed on heavy (H) strand and six genes on the light (L) strand. The six tRNA genes (trnG,trnK, trnY, trnW, trnF, and trnH) were found to be conserved in all thrips species mitogenomes in their locations relative to a protein-coding or rRNA gene upstream or downstream. The gene arrangements of T. palmi is very close to T. imaginis except the rearrangements in tRNAs genes: trnR (arginine), and trnE (glutamic acid) were found to be located between cox3 and CR2 in T. imaginis which were translocated between atp6 and CR1 in T. palmi; trnL1 (Leucine) and trnS1(Serine) were located between atp6 and CR1 in T. imaginis which were translocated between cox3 and CR2 in T. palmi. The location of CR1 upstream of nad5 gene was suggested to be ancestral condition of the thrips species in subfamily Thripinae, was also observed in T. palmi. Both the Maximum likelihood (ML) and Bayesian Inference (BI) phylogenetic trees generated resulted in similar topologies. The T. palmi was clustered with T. imaginis. We concluded that more molecular data on the diverse thrips species from different hierarchical level is needed, to understand the phylogenetic and evolutionary relationships among them.Keywords: thrips, comparative mitogenomics, gene rearrangements, phylogenetic analysis
Procedia PDF Downloads 17048 In Vitro Studies on Antimicrobial Activities of Lactic Acid Bacteria Isolated from Fresh Fruits for Biocontrol of Pathogens
Authors: Okolie Pius Ifeanyi, Emerenini Emilymary Chima
Abstract:
Aims: The study investigated the diversity and identities of Lactic Acid Bacteria (LAB) isolated from different fresh fruits using Molecular Nested PCR analysis and the efficacy of cell free supernatants from Lactic Acid Bacteria (LAB) isolated from fresh fruits for in vitro control of some tomato pathogens. Study Design: Nested PCR approach was used in this study employing universal 16S rRNA gene primers in the first round PCR and LAB specific Primers in the second round PCR with the view of generating specific Nested PCR products for the LAB diversity present in the samples. The inhibitory potentials of supernatant obtained from LAB isolates of fruits origin that were molecularly characterized were investigated against some tomato phytopathogens using agar-well method with the view to develop biological agents for some tomato disease causing organisms. Methodology: Gram positive, catalase negative strains of LAB were isolated from fresh fruits on Man Rogosa and Sharpe agar (Lab M) using streaking method. Isolates obtained were molecularly characterized by means of genomic DNA extraction kit (Norgen Biotek, Canada) method. Standard methods were used for Nested Polymerase Chain Reaction (PCR) amplification targeting the 16S rRNA gene using universal 16S rRNA gene and LAB specific primers, agarose gel electrophoresis, purification and sequencing of generated Nested PCR products (Macrogen Inc., USA). The partial sequences obtained were identified by blasting in the non-redundant nucleotide database of National Center for Biotechnology Information (NCBI). The antimicrobial activities of characterized LAB against some tomato phytopathogenic bacteria which include (Xanthomonas campestries, Erwinia caratovora, and Pseudomonas syringae) were obtained by using the agar well diffusion method. Results: The partial sequences obtained were deposited in the database of National Centre for Biotechnology Information (NCBI). Isolates were identified based upon the sequences as Weissella cibaria (4, 18.18%), Weissella confusa (3, 13.64%), Leuconostoc paramensenteroides (1, 4.55%), Lactobacillus plantarum (8, 36.36%), Lactobacillus paraplantarum (1, 4.55%) and Lactobacillus pentosus (1, 4.55%). The cell free supernatants of LAB from fresh fruits origin (Weissella cibaria, Weissella confusa, Leuconostoc paramensenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus) can inhibits these bacteria by creating clear zones of inhibition around the wells containing cell free supernatants of the above mentioned strains of lactic acid bacteria. Conclusion: This study shows that potentially LAB can be quickly characterized by molecular methods to specie level by nested PCR analysis of the bacteria isolate genomic DNA using universal 16S rRNA primers and LAB specific primer. Tomato disease causing organisms can be most likely biologically controlled by using extracts from LAB. This finding will reduce the potential hazard from the use of chemical herbicides on plant.Keywords: nested pcr, molecular characterization, 16s rRNA gene, lactic acid bacteria
Procedia PDF Downloads 41447 Identification of Odorant Receptors through the Antennal Transcriptome of the Grapevine Pest, Lobesia botrana (Lepidoptera: Tortricidae)
Authors: Ricardo Godoy, Herbert Venthur, Hector Jimenez, Andres Quiroz, Ana Mutis
Abstract:
In agriculture, grape production has great economic importance at global level, considering that in 2013 it reached 7.4 million hectares (ha) covered by plantations of this fruit worldwide. Chile is the number one exporter in the world with 800,000 tons. However, these values have been threatened by the attack of the grapevine moth, Lobesia botrana (Denis & Schiffermuller) (Lepidoptera: Tortricidae), since its detection in 2008. Nowadays, the use of semiochemicals, in particular the major component of the sex pheromone, (E,Z)-7.9-dodecadienil acetate, are part of mating disruption methods to control L. botrana. How insect pests can recognize these molecules, is being part of huge efforts to deorphanize their olfactory mechanism at molecular level. Thus, an interesting group of proteins has been identified in the antennae of insects, where odorant-binding proteins (OBPs) are known by transporting molecules to odorant receptors (ORs) and a co-receptor (ORCO) causing a behavioral change in the insect. Other proteins such as chemosensory proteins (CSPs), ionotropic receptors (IRs), odorant degrading enzymes (ODEs) and sensory neuron membrane proteins (SNMPs) seem to be involved, but few studies have been performed so far. The above has led to an increasing interest in insect communication at a molecular level, which has contributed to both a better understanding of the olfaction process and the design of new pest management strategies. To date, it has been reported that the ORs can detect one or a small group of odorants in a specific way. Therefore, the objective of this study is the identification of genes that encode these ORs using the antennal transcriptome of L. botrana. Total RNA was extracted for females and males of L. botrana, and the antennal transcriptome sequenced by Next Generation Sequencing service using an Illumina HiSeq2500 platform with 50 million reads per sample. Unigenes were assembled using Trinity v2.4.0 package and transcript abundance was obtained using edgeR. Genes were identified using BLASTN and BLASTX locally installed in a Unix system and based on our own Tortricidae database. Those Unigenes related to ORs were characterized using ORFfinder and protein Blastp server. Finally, a phylogenetic analysis was performed with the candidate amino acid sequences for LbotORs including amino acid sequences of other moths ORs, such as Bombyx mori, Cydia pomonella, among others. Our findings suggest 61 genes encoding ORs and one gene encoding an ORCO in both sexes, where the greatest difference was found in the OR6 because of the transcript abundance according to the value of FPKM in females and males was 1.48 versus 324.00. In addition, according to phylogenetic analysis OR6 is closely related to OR1 in Cydia pomonella and OR6, OR7 in Epiphyas postvittana, which have been described as pheromonal receptors (PRs). These results represent the first evidence of ORs present in the antennae of L. botrana and a suitable starting point for further functional studies with selected ORs, such as OR6, which is potentially related to pheromonal recognition.Keywords: antennal transcriptome, lobesia botrana, odorant receptors (ORs), phylogenetic analysis
Procedia PDF Downloads 201