Search results for: generating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1001

Search results for: generating

461 Household Food Insecurity and Associated Coping Strategies in Urban, Peri-Urban and Rural Settings: A Case of Morogoro and Iringa Towns, Tanzania

Authors: U. Tumaini, J. Msuya

Abstract:

Food insecurity is a worrying challenge worldwide with sub-Saharan Africa including Tanzania being the most affected. Although factors that influence household food access security status and ways of coping with such factors have been examined, little has been reported on how these coping strategies vary along the urban-rural continuum especially in medium-sized towns. The purpose of this study was to identify food insecurity coping strategies employed by households and assess whether they are similar along the urban-rural continuum. The study was cross-sectional in design whereby a random sample of 279 households was interviewed using structured questionnaire. Data were analysed using Statistical Package for Social Sciences (SPSS) Version 20 software. It was revealed that the proportion of households relying on less preferred and quality foods, eating fewer meals per day, undertaking work for food or money, performing farm and off-farm activities, and selling fall back assets was higher in rural settings compared to urban and peri-urban areas. Similarly, more households in urban and peri-urban areas cope with food access insecurity by having strict food budgets compared to those in rural households (p ≤ 0.001). The study concludes that food insecurity coping strategies vary significantly from one spatial entity to another. It is thereby recommended that poor, particularly rural households should be supported to diversify their income-generating activities not only for food security purposes during times of food shortage but also as businesses aimed at increasing their household incomes.

Keywords: food coping strategies, household food insecurity, medium-sized towns, urban-rural continuum

Procedia PDF Downloads 315
460 Sustainable Energy Supply through the Microgrid Concept: A Case Study of University of Nigeria, Nsukka

Authors: Christian Ndubisi Madu, Benjamin C. Ozumba, Ifeanyi E. Madu, Valentine E. Nnadi, Ikenna C. Ezeasor

Abstract:

The ability to generate power and achieve energy security is one of the driving forces behind the emerging ‘microgrid’ concept. Traditional power supply often operates with centralized infrastructure for generating, transmitting and distributing electricity. The inefficiency and the incessant power outages associated with the centralized power supply system in Nigeria has alienated many users who frequently turn to electric power generator sets to power their homes and offices. Such acts are unsustainable and lead to increase in the use of fossil fuels, generation of carbon dioxide emissions and other gases, and noise pollution. They also pose significant risks as they entail random purchases and storage of gasolines which are fire hazards. It is therefore important that organizations rethink their relationships to centralized power suppliers in other to improve energy accessibility and security. This study explores the energy planning processes and learning taking place at the University of Nigeria Enugu Campus as the school lead microgrid feasibility studies in its community. There is need to develop community partners to deal with the issue of energy efficiency and also to create a strategic alliance to confront political, regulatory and economic barriers to locally-based energy planning. Community-based microgrid can help to reduce the cost of adoption and diversify risks. This study offers insights into the ways in which microgrids can further democratize energy planning, procurement, and access, while simultaneously promoting efficiency and sustainability.

Keywords: microgrid, energy efficiency, sustainability, energy security

Procedia PDF Downloads 363
459 Entrepreneurship in Pakistan: Opportunities and Challenges

Authors: Bushra Jamil, Nudrat Baqri, Muhammad Hassan Saeed

Abstract:

Entrepreneurship is creating or setting up a business not only for the purpose of generating profit but also for providing job opportunities. Entrepreneurs are problem solvers and product developers. They use their financial asset for hiring a professional team and combine the innovation, knowledge, and leadership leads to a successful startup or a business. To be a successful entrepreneur, one should be people-oriented and have perseverance. One must have the ability to take risk, believe in his/her potential, and have the courage to move forward in all circumstances. Most importantly, have the ability to take risk and can assess the risk. For STEM students, entrepreneurship is of specific importance and relevance as it helps them not just to be able to solve real life existing complications but to be able to recognize and identify emerging needs and glitches. It is becoming increasingly apparent that in today’s world, there is a need as well as a desire for STEM and entrepreneurship to work together. In Pakistan, entrepreneurship is slowly emerging, yet we are far behind. It is high time that we should introduce modern teaching methods and inculcate entrepreneurial initiative in students. A course on entrepreneurship can be included in the syllabus, and we must invite businessmen and policy makers to motivate young minds for entrepreneurship. This must be pitching competitions, opportunities to win seed funding, and facilities of incubation centers. In Pakistan, there are many good public sector research institutes, yet there is a void gap in the private sector. Only few research institute are meant for research and development. BJ Micro Lab is one of them. It is SECP registered company and is working in academia to promote and facilitate research in STEM. BJ Micro Lab is a women led initiative, and we are trying to promote research as a passion, not as an arduous burden. For this, we are continuously arranging training workshops and sessions. More than 100 students have been trained in ten different workshops arranged at BJ Micro Lab.

Keywords: entrepreneurship, STEM, challenges, oppurtunties

Procedia PDF Downloads 118
458 Existence of Minimal and Maximal Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type

Authors: Jorge Gonzalez-Camus

Abstract:

In this work is proved the existence of at least one minimal and maximal mild solutions to the Cauchy problem, for fractional evolution equation of neutral type, involving a general kernel. An operator A generating a resolvent family and integral resolvent family on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Kuratowski measure of noncompactness and fixed point theorems, specifically Darbo-type, and an iterative method of lower and upper solutions, based in an order in X induced by a normal cone P. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the theory of resolvent families, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, the existence of minimal and maximal mild solutions was proved through in an iterative method of lower and upper solutions, using the Azcoli-Arzela Theorem, and the Gronwall’s inequality. Finally, we recovered the case derivate in Caputo sense.

Keywords: fractional evolution equations, Volterra integral equations, minimal and maximal mild solutions, neutral type equations, non-local in time equations

Procedia PDF Downloads 167
457 Application of Design Thinking for Technology Transfer of Remotely Piloted Aircraft Systems for the Creative Industry

Authors: V. Santamarina Campos, M. de Miguel Molina, B. de Miguel Molina, M. Á. Carabal Montagud

Abstract:

With this contribution, we want to show a successful example of the application of the Design Thinking methodology, in the European project 'Technology transfer of Remotely Piloted Aircraft Systems (RPAS) for the creative industry'. The use of this methodology has allowed us to design and build a drone, based on the real needs of prospective users. It has demonstrated that this is a powerful tool for generating innovative ideas in the field of robotics, by focusing its effectiveness on understanding and solving real user needs. In this way, with the support of an interdisciplinary team, comprised of creatives, engineers and economists, together with the collaboration of prospective users from three European countries, a non-linear work dynamic has been created. This teamwork has generated a sense of appreciation towards the creative industries, through continuously adaptive, inventive, and playful collaboration and communication, which has facilitated the development of prototypes. These have been designed to enable filming and photography in interior spaces, within 13 sectors of European creative industries: Advertising, Architecture, Fashion, Film, Antiques and Museums, Music, Photography, Televison, Performing Arts, Publishing, Arts and Crafts, Design and Software. Furthermore, it has married the real needs of the creative industries, with what is technologically and commercially viable. As a result, a product of great value has been obtained, which offers new business opportunities for small companies across this sector.

Keywords: design thinking, design for effectiveness, methodology, active toolkit, storyboards, PAR, focus group, innovation, RPAS, indoor drone, aerial film, creative industry, end users, stakeholder

Procedia PDF Downloads 195
456 Optimal Parameters of Two-Color Ionizing Laser Pulses for Terahertz Generation

Authors: I. D. Laryushin, V. A. Kostin, A. A. Silaev, N. V. Vvedenskii

Abstract:

Generation of broadband intense terahertz (THz) radiation attracts reasonable interest due to various applications, such as the THz time-domain spectroscopy, the probing and control of various ultrafast processes, the THz imaging with subwavelength resolution, and many others. One of the most promising methods for generating powerful and broadband terahertz pulses is based on focusing two-color femtosecond ionizing laser pulses in gases, including ambient air. For this method, the amplitudes of terahertz pulses are determined by the free-electron current density remaining in a formed plasma after the passage of the laser pulse. The excitation of this residual current density can be treated as multi-wave mixing: Аn effective generation of terahertz radiation is possible only when the frequency ratio of one-color components in the two-color pulse is close to irreducible rational fraction a/b with small odd sum a + b. This work focuses on the optimal parameters (polarizations and intensities) of laser components for the strongest THz generation. The optimal values of parameters are found numerically and analytically with the use of semiclassical approach for calculating the residual current density. For frequency ratios close to a/(a ± 1) with natural a, the strongest THz generation is shown to take place when the both laser components have circular polarizations and equal intensities. For this optimal case, an analytical formula for the residual current density was derived. For the frequency ratios such as 2/5, the two-color ionizing pulses with circularly polarized components practically do not excite the residual current density. However, the optimal parameters correspond generally to specific elliptical (not linear) polarizations of the components and intensity ratios close to unity.

Keywords: broadband terahertz radiation, ionization, laser plasma, ultrashort two-color pulses

Procedia PDF Downloads 199
455 Cost-Effectiveness of Forest Restoration in Nepal: A Case from Leasehold Forestry Initiatives

Authors: Sony Baral, Bijendra Basnyat, Kalyan Gauli

Abstract:

Forests are depleted throughout the world in the 1990s, and since then, various efforts have been undertaken for the restoration of the forest. A government of Nepal promoted various community based forest management in which leasehold forestry was the one introduce in 1990s, aiming to restore degraded forests land. However, few attempts have been made to systematically evaluate its cost effectiveness. Hence the study assesses the cost effectiveness of leasehold forestry intervention in the mid-hill district of Nepal following the cost and benefit analysis approach. The study followed quasi-experimental design and collected costs and benefits information from 320 leasehold forestry groups (with intervention) and 154 comparison groups (without intervention) through household survey, forest inventory and then validated with the stakeholders’ consultative workshop. The study found that both the benefits and costs from intervention outweighed without situation. The members of leasehold forestry groups were generating multiple benefits from the forests, such as firewood, grasses, fodder, and fruits, whereas those from comparison groups were mostly getting a single benefit. Likewise, extent of soil carbon is high in leasehold forests. Average expense per unit area is high in intervention sites due to high government investment for capacity building. Nevertheless, positive net present value and internal rate of return was observed for both situations. However, net present value from intervention, i.e., leasehold forestry, is almost double compared to comparison sites, revealing that community are getting higher benefits from restoration. The study concludes that leasehold forestry is a highly cost-effective intervention that contributes towards forest restoration that brings multiple benefits to rural poor.

Keywords: cost effectiveness, economic efficiency, intervention, restoration, leasehold forestry, nepal

Procedia PDF Downloads 89
454 Architectural Experience of the Everyday in Phuket Old Town

Authors: Thirayu Jumsai na Ayudhya

Abstract:

Initial attempts to understand about what architecture means to people as they go about their everyday life through my previous research revealed that knowledge such as environmental psychology, environmental perception, environmental aesthetics, did not adequately address a perceived need for the contextualized and holistic theoretical framework. In my previous research, it is found that people’s making senses of their everyday architecture can be described in terms of four super‐ordinate themes; (1) building in urban (text), (2) building in (text), (3) building in human (text), (4) and building in time (text). For more comprehensively understanding of how people make sense of their everyday architectural experience, in this ongoing research Phuket Old town was selected as the focal urban context where the distinguish character of Chino-Portuguese is remarkable. It is expected that in a unique urban context like Phuket old town unprecedented super-ordinate themes will be unveiled through the reflection of people’s everyday experiences. The ongoing research of people’s architectural experience conducted in Phuket Island, Thailand, will be presented succinctly. The research will address the question of how do people make sense of their everyday architecture/buildings especially in a unique urban context, Phuket Old town, and identify ways in which people make sense of their everyday architecture. Participant-Produced-Photograph (PPP) and Interpretative Phenomenological Analysis (IPA) are adopted as main methodologies. PPP allows people to express experiences of their everyday urban context freely without any interference or forced-data generating by researchers. With IPA methodology a small pool of participants is considered desirable given the detailed level of analysis required and its potential to produce a meaningful outcome.

Keywords: architectural experience, the everyday architecture, Phuket, Thailand

Procedia PDF Downloads 291
453 Photoelectrochemical Water Splitting from Earth-Abundant CuO Thin Film Photocathode: Enhancing Performance and Photo-Stability through Deposition of Overlayers

Authors: Wilman Septina, Rajiv R. Prabhakar, Thomas Moehl, David Tilley

Abstract:

Cupric oxide (CuO) is a promising absorber material for the fabrication of scalable, low cost solar energy conversion devices, due to the high abundance and low toxicity of copper. It is a p-type semiconductor with a band gap of around 1.5 eV, absorbing a significant portion of the solar spectrum. One of the main challenges in using CuO as solar absorber in an aqueous system is its tendency towards photocorrosion, generating Cu2O and metallic Cu. Although there have been several reports of CuO as a photocathode for hydrogen production, it is unclear how much of the observed current actually corresponds to H2 evolution, as the inevitability of photocorrosion is usually not addressed. In this research, we investigated the effect of the deposition of overlayers onto CuO thin films for the purpose of enhancing its photostability as well as performance for water splitting applications. CuO thin film was fabricated by galvanic electrodeposition of metallic copper onto gold-coated FTO substrates, followed by annealing in air at 600 °C. Photoelectrochemical measurement of the bare CuO film using 1 M phosphate buffer (pH 6.9) under simulated AM 1.5 sunlight showed a current density of ca. 1.5 mA cm-2 (at 0.4 VRHE), which photocorroded to Cu metal upon prolonged illumination. This photocorrosion could be suppressed by deposition of 50 nm-thick TiO2, deposited by atomic layer deposition. In addition, we found that insertion of an n-type CdS layer, deposited by chemical bath deposition, between the CuO and TiO2 layers was able to enhance significantly the photocurrent compared to without the CdS layer. A photocurrent of over 2 mA cm-2 (at 0 VRHE) was observed using the photocathode stack FTO/Au/CuO/CdS/TiO2/Pt. Structural, electrochemical, and photostability characterizations of the photocathode as well as results on various overlayers will be presented.

Keywords: CuO, hydrogen, photoelectrochemical, photostability, water splitting

Procedia PDF Downloads 211
452 Evaluation of Current Methods in Modelling and Analysis of Track with Jointed Rails

Authors: Hossein Askarinejad, Manicka Dhanasekar

Abstract:

In railway tracks, two adjacent rails are either welded or connected using bolted jointbars. In recent years the number of bolted rail joints is reduced by introduction of longer rail sections and by welding the rails at location of some joints. However, significant number of bolted rail joints remains in railways around the world as they are required to allow for rail thermal expansion or to provide electrical insulation in some sections of track. Regardless of the quality and integrity of the jointbar and bolt connections, the bending stiffness of jointbars is much lower than the rail generating large deflections under the train wheels. In addition, the gap or surface discontinuity on the rail running surface leads to generation of high wheel-rail impact force at the joint gap. These fundamental weaknesses have caused high rate of failure in track components at location of rail joints resulting in significant economic and safety issues in railways. The mechanical behavior of railway track at location of joints has not been fully understood due to various structural and material complexities. Although there have been some improvements in the methods for analysis of track at jointed rails in recent years, there are still uncertainties concerning the accuracy and reliability of the current methods. In this paper the current methods in analysis of track with a rail joint are critically evaluated and the new advances and recent research outcomes in this area are discussed. This research is part of a large granted project on rail joints which was defined by Cooperative Research Centre (CRC) for Rail Innovation with supports from Australian Rail Track Corporation (ARTC) and Queensland Rail (QR).

Keywords: jointed rails, railway mechanics, track dynamics, wheel-rail interaction

Procedia PDF Downloads 342
451 Bamboo: A Trendy and New Alternative to Wood

Authors: R. T. Aggangan, R. J. Cabangon

Abstract:

Bamboo is getting worldwide attention over the last 20 to 30 years due to numerous uses and it is regarded as the closest material that can be used as substitute to wood. In the domestic market, high quality bamboo products are sold in high-end markets while lower quality products are generally sold to medium and low income consumers. The global market in 2006 stands at about 7 billion US dollars and was projected to increase to US$ 17 B from 2015 to 2020. The Philippines had been actively producing and processing bamboo products for the furniture, handicrafts and construction industry. It was however in 2010 that the Philippine bamboo industry was formalized by virtue of Executive Order 879 that stated that the Philippine bamboo industry development is made a priority program of the government and created the Philippine Bamboo Industry Development Council (PBIDC) to provide the overall policy and program directions of the program for all stakeholders. At present, the most extensive use of bamboo is for the manufacture of engineered bamboo for school desks for all public schools as mandated by EO 879. Also, engineered bamboo products are used for high-end construction and furniture as well as for handicrafts. Development of cheap adhesives, preservatives, and finishing chemicals from local species of plants, development of economical methods of drying and preservation, product development and processing of lesser-used species of bamboo, development of processing tools, equipment and machineries are the strategies that will be employed to reduce the price and mainstream engineered bamboo products in the local and foreign market. In addition, processing wastes from bamboo can be recycled into fuel products such as charcoal are already in use. The more exciting possibility, however, is the production of bamboo pellets that can be used as a substitute for wood pellets for heating, cooking and generating electricity.

Keywords: bamboo charcoal and light distillates, engineered bamboo, furniture and handicraft industries, housing and construction, pellets

Procedia PDF Downloads 238
450 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 153
449 The Shannon Entropy and Multifractional Markets

Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese

Abstract:

Introduced by Shannon in 1948 in the field of information theory as the average rate at which information is produced by a stochastic set of data, the concept of entropy has gained much attention as a measure of uncertainty and unpredictability associated with a dynamical system, eventually depicted by a stochastic process. In particular, the Shannon entropy measures the degree of order/disorder of a given signal and provides useful information about the underlying dynamical process. It has found widespread application in a variety of fields, such as, for example, cryptography, statistical physics and finance. In this regard, many contributions have employed different measures of entropy in an attempt to characterize the financial time series in terms of market efficiency, market crashes and/or financial crises. The Shannon entropy has also been considered as a measure of the risk of a portfolio or as a tool in asset pricing. This work investigates the theoretical link between the Shannon entropy and the multifractional Brownian motion (mBm), stochastic process which recently is the focus of a renewed interest in finance as a driving model of stochastic volatility. In particular, after exploring the current state of research in this area and highlighting some of the key results and open questions that remain, we show a well-defined relationship between the Shannon (log)entropy and the memory function H(t) of the mBm. In details, we allow both the length of time series and time scale to change over analysis to study how the relation modify itself. On the one hand, applications are developed after generating surrogates of mBm trajectories based on different memory functions; on the other hand, an empirical analysis of several international stock indexes, which confirms the previous results, concludes the work.

Keywords: Shannon entropy, multifractional Brownian motion, Hurst–Holder exponent, stock indexes

Procedia PDF Downloads 102
448 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM

Procedia PDF Downloads 378
447 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping

Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope

Abstract:

The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.

Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing

Procedia PDF Downloads 73
446 Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century

Authors: Stephen L. Roberts

Abstract:

This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance.

Keywords: algorithms, global health, pandemic, surveillance

Procedia PDF Downloads 175
445 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 61
444 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market

Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago

Abstract:

An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.

Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis

Procedia PDF Downloads 59
443 Qualitative Inquiry on Existential Concerns and Well-Being among the Youth of Higher Education Institutions in Ethiopia: Case Study of Addis Ababa University

Authors: Ezgiamn Abraha Hagos

Abstract:

Higher education is important for college students to develop their authentic identity by means of getting exposure to diverse ideas and experiences. However, current college students are not successfully achieving a satisfying sense of meaning and purpose in their lives, which often places them in a state of existential vacuum. Thus, this study uncovers the existential concerns of youth in higher education by means of assessing their view on meaningful life and integration of it as a guide into their lives and challenges faced in doing so. Data were procured from thirty undergraduate students of Addis Ababa University, Ethiopia via interview, naïve sketch method, and content analysis of selected magazines and newspapers. Data were analyzed using organization, immersion, generating themes, coding, offering interpretation as well as checking the data. Relationship, education, and belief were found to be main sources of meaning. But, many of the study participants failed to articulate their meaning in life explicitly and identified to be in a state of drifting. Moreover, hopelessness, economic problems and quality of training impinge their sense of meaning in life negatively. The content analysis principally embodied the youth in higher education as a group of people confronted with rafts of challenges such as debauchery, moral crisis, self-destructive behaviors and hankering for support and direction. Thus, crafting the asset-based approach and counseling services that will prepare the youth for the future and develop holistically in terms of body and mind are tremendously vital.

Keywords: higher education institutions; meaning in life; youth

Procedia PDF Downloads 101
442 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 352
441 Faculty Attendance Management System (FAMS)

Authors: G. C. Almiranez, J. Mercado, L. U. Aumentado, J. M. Mahaguay, J. P. Cruz, M. L. Saballe

Abstract:

This research project focused on the development of an application that aids the university administrators to establish an efficient and effective system in managing faculty attendance and discourage unnecessary absences. The Faculty Attendance Management System (FAMS) is a web based and mobile application which is proven to be efficient and effective in handling and recording data, generating updated reports and analytics needed in managing faculty attendance. The FAMS can facilitate not only a convenient and faster way of gathering and recording of data but it can also provide data analytics, immediate feedback system mechanism and analysis. The software database architecture uses MySQL for web based and SQLite for mobile applications. The system includes different modules that capture daily attendance of faculty members, generate faculty attendance reports and analytics, absences notification system for faculty members, chairperson and dean regarding absences, and immediate communication system concerning the absences incurred. Quantitative and qualitative evaluation showed that the system satisfactory meet the stakeholder’s requirements. The functionality, usability, reliability, performance, and security all turned out to be above average. System testing, integration testing and user acceptance testing had been conducted. Results showed that the system performed very satisfactory and functions as designed. Performance of the system is also affected by Internet infrastructure or connectivity of the university. The faculty analytics generated from the system may not only be used by Deans and Chairperson in their evaluation of faculty performance but as well as the individual faculty to increase awareness on their attendance in class. Hence, the system facilitates effective communication between system stakeholders through FAMS feedback mechanism and up to date posting of information.

Keywords: faculty attendance management system, MySQL, SQLite, FAMS, analytics

Procedia PDF Downloads 431
440 Dealing with Buckling Effect in Snorkel by Finite Element Analysis: A Life Enhancement Approach in CAS-OB Operation

Authors: Subodh Nath Patel, Raja Raman, Mananshi Adhikary, Jitendra Mathur, Sandip Bhattacharyya

Abstract:

The composition adjustment by sealed argon bubbling–oxygen blowing (CAS-OB) process is a process designed for adjusting steel composition and temperature during secondary metallurgy. One of the equipment in the said process is a snorkel or bell, fixed to a movable bracket. Snorkel serves the purpose of feeding ferroalloys into the liquid metal simultaneously removing gases to the gas cleaning system through its port at its top. The bell-shaped snorkel consists of two parts. The upper part has an inside liner, and the lower part is lined on both side with high-alumina castable reinforced with 2% stainless steel needles. Both the parts are coupled with a flange bolt system. These flanges were found to get buckled during operation, and the gap was generating between them. This problem was chronic since its. It was expected to give a life of 80 heats, but it was failing within 45-50 heats. After every 25-30 heats, it had to be repaired by changing and/or tightening its nuts and bolts. Visual observation, microstructural analysis through optical microscopes and SEM, hardness measurement and thermal strain calculation were carried out to find out the root cause of this problem. The calculated thermal strain was compared with actual thermal strain; comparison of the two revealed that thermal strain was responsible for buckling. Finite element analysis (FEA) was carried out to reaffirm the effect temperature on the flanges. FEA was also used in the modification in the design of snorkel flange to accommodate thermal strain. Thermal insulation was also recommended which increased its life from 45 heats to 65 heats, impacting business process positively.

Keywords: CAS OB process, finite element analysis, snorkel, thermal strain

Procedia PDF Downloads 129
439 Study of Efficiency of Flying Animal Using Computational Simulation

Authors: Ratih Julistina, M. Agoes Moelyadi

Abstract:

Innovation in aviation technology evolved rapidly by time to time for acquiring the most favorable value of utilization and is usually denoted by efficiency parameter. Nature always become part of inspiration, and for this sector, many researchers focused on studying the behavior of flying animal to comprehend the fundamental, one of them is birds. Experimental testing has already conducted by several researches to seek and calculate the efficiency by putting the object in wind tunnel. Hence, computational simulation is needed to conform the result and give more visualization which is based on Reynold Averaged Navier-Stokes equation solution for unsteady case in time-dependent viscous flow. By creating model from simplification of the real bird as a rigid body, those are Hawk which has low aspect ratio and Swift with high aspect ratio, subsequently generating the multi grid structured mesh to capture and calculate the aerodynamic behavior and characteristics. Mimicking the motion of downstroke and upstroke of bird flight which produced both lift and thrust, the sinusoidal function is used. Simulation is carried out for varied of flapping frequencies within upper and lower range of actual each bird’s frequency which are 1 Hz, 2.87 Hz, 5 Hz for Hawk and 5 Hz, 8.9 Hz, 13 Hz for Swift to investigate the dependency of frequency effecting the efficiency of aerodynamic characteristics production. Also, by comparing the result in different condition flights with the morphology of each bird. Simulation has shown that higher flapping frequency is used then greater aerodynamic coefficient is obtained, on other hand, efficiency on thrust production is not the same. The result is analyzed from velocity and pressure contours, mesh movement as to see the behavior.

Keywords: characteristics of aerodynamic, efficiency, flapping frequency, flapping wing, unsteady simulation

Procedia PDF Downloads 232
438 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area

Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos

Abstract:

We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.

Keywords: computational fluid dynamics, extreme events, loading, tsunami

Procedia PDF Downloads 106
437 Prompt Design for Code Generation in Data Analysis Using Large Language Models

Authors: Lu Song Ma Li Zhi

Abstract:

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.

Keywords: large language models, prompt design, data analysis, code generation

Procedia PDF Downloads 14
436 Bank, Stock Market Efficiency and Economic Growth: Lessons for ASEAN-5

Authors: Tan Swee Liang

Abstract:

This paper estimates bank and stock market efficiency associations with real per capita GDP growth by examining panel-data across three different regions using Panel-Corrected Standard Errors (PCSE) regression developed by Beck and Katz (1995). Data from five economies in ASEAN (Singapore, Malaysia, Thailand, Philippines, and Indonesia), five economies in Asia (Japan, China, Hong Kong SAR, South Korea, and India) and seven economies in OECD (Australia, Canada, Denmark, Norway, Sweden, United Kingdom U.K., and United States U.S.), between 1990 and 2017 are used. Empirical findings suggest one, for Asia-5 high bank net interest margin means greater bank profitability, hence spurring economic growth. Two, for OECD-7 low bank overhead costs (as a share of total assets) may reflect weak competition and weak investment in providing superior banking services, hence dampening economic growth. Three, stock market turnover ratio has negative association with OECD-7 economic growth, but a positive association with Asia-5, which suggest the relationship between liquidity and growth is ambiguous. Lastly, for ASEAN-5 high bank overhead costs (as a share of total assets) may suggest expenses have not been channelled efficiently to income generating activities. One practical implication of the findings is that policy makers should take necessary measures toward financial liberalisation policies that boost growth through the efficiency channel, so that funds are efficiently allocated through the financial system between financial and real sectors.

Keywords: financial development, banking system, capital markets, economic growth

Procedia PDF Downloads 128
435 Mitigation of Wind Loads on a Building Using Small Wind Turbines

Authors: Arindam Chowdhury, Andres Tremante, Mohammadtaghi Moravej, Bodhisatta Hajra, Ioannis Zisis, Peter Irwin

Abstract:

Extreme wind events, such as hurricanes, have caused significant damage to buildings, resulting in losses worth millions of dollars. The roof of a building is most vulnerable to wind-induced damage due to the high suctions experienced by the roof in extreme wind conditions. Wind turbines fitted to buildings can help generate energy, but to our knowledge, their application to wind load mitigation is not well known. This paper presents results from an experimental study to assess the effect of small wind turbines (developed and patented by the first and second authors) on the wind loads on a low rise building roof. The tests were carried out for an open terrain at the Wall of Wind (WOW) experimental facility at Florida International University (FIU), Miami, Florida, USA, for three cases – bare roof, roof fitted with wind turbines placed closer to the roof edges, and roof with wind turbines placed away from the roof edges. Results clearly indicate that the presence of the wind turbines reduced the mean and peak pressure coefficients (less suction) on the roof when compared to the bare deck case. Furthermore, the peak pressure coefficients were found to be lower (less suction) when the wind turbines were placed closer to the roof, than away from the roof. Flow visualization studies using smoke and gravel clearly showed that the presence of the turbines disrupted the formation of vortices formed by cornering winds, thereby reducing roof suctions and preventing lift off of roof coverings. This study shows that the wind turbines besides generating wind energy, can be used for mitigating wind induced damage to the building roof. Future research must be directed towards understanding the effect of these wind turbines on other roof geometries (e.g. hip/gable) in different terrain conditions.

Keywords: wall of wind, wind loads, wind turbine, building

Procedia PDF Downloads 241
434 Solid State Fermentation Process Development for Trichoderma asperellum Using Inert Support in a Fixed Bed Fermenter

Authors: Mauricio Cruz, Andrés Díaz García, Martha Isabel Gómez, Juan Carlos Serrato Bermúdez

Abstract:

The disadvantages of using natural substrates in SSF processes have been well recognized and mainly are associated to gradual decomposition of the substrate, formation of agglomerates and decrease of porosity bed generating limitations in the mass and heat transfer. Additionally, in several cases, materials with a high agricultural value such as sour milk, beets, rice, beans and corn have been used. Thus, the use of economic inert supports (natural or synthetic) in combination with a nutrient suspension for the production of biocontrol microorganisms is a good alternative in SSF processes, but requires further studies in the fields of modeling and optimization. Therefore, the aim of this work is to compare the performance of two inert supports, a synthetic (polyurethane foam) and a natural one (rice husk), identifying the factors that have the major effects on the productivity of T. asperellum Th204 and the maximum specific growth rate in a PROPHYTA L05® fixed bed bioreactor. For this, the six factors C:N ratio, temperature, inoculation rate, bed height, air moisture content and airflow were evaluated using a fractional design. The factors C:N and air flow were identified as significant on the productivity (expressed as conidia/dry substrate•h). The polyurethane foam showed higher maximum specific growth rate (0.1631 h-1) and productivities of 3.89 x107 conidia/dry substrate•h compared to rice husk (2.83x106) and natural substrate based on rice (8.87x106) used as control. Finally, a quadratic model was generated and validated, obtaining productivities higher than 3.0x107 conidia/dry substrate•h with air flow at 0.9 m3/h and C:N ratio at 18.1.

Keywords: bioprocess, scale up, fractional design, C:N ratio, air flow

Procedia PDF Downloads 504
433 Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations

Authors: Reza Soleimanpour, Ching Tai Ng

Abstract:

Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates.

Keywords: contact acoustic nonlinearity, delamination, fibre reinforced composite beam, finite element, nonlinear guided waves

Procedia PDF Downloads 196
432 Public Policy as a Component of Entrepreneurship Ecosystems: Challenges of Implementation

Authors: José Batista de Souza Neto

Abstract:

This research project has as its theme the implementation of public policies to support micro and small businesses (MSEs). The research problem defined was how public policies for access to markets that drive the entrepreneurial ecosystem of MSEs are implemented. The general objective of this research is to understand the process of implementing a public policy to support the entrepreneurial ecosystem of MSEs by the Support Service for Micro and Small Enterprises of the State of São Paulo (SEBRAESP). Public policies are constituent elements of entrepreneurship ecosystems that influence the creation and development of ventures from the action of the entrepreneur. At the end of the research, it is expected to achieve the results for the following specific objectives: (a) understand how the entrepreneurial ecosystem of MSEs is constituted; (b) understand how market access public policies for MSEs are designed and implemented; (c) understand SEBRAE's role in the entrepreneurship ecosystem; and (d) offer an action plan and monitor its execution up to march, 2023. The field research will be conducted based on Action Research, with a qualitative and longitudinal approach to the data. Data collection will be based on narratives produced since 2019 when the decision to implement Comércio Brasil program, a public policy focused on generating market access for 4280 MSEs yearly, was made. The narratives will be analyzed by the method of document analysis and narrative analysis. It is expected that the research will consolidate the relevance of public policies to market access for MSEs and the role of SEBRAE as a protagonist in the implementation of these public policies in the entrepreneurship ecosystem will be demonstrated. Action research is recognized as an intervention method, it is expected that this research will corroborate its role in supporting management processes.

Keywords: entrepreneurship, entrepreneurship ecosystem, public policies, SEBRAE, action research

Procedia PDF Downloads 176