Search results for: electric car technology
8338 Mueller Matrix Polarimetry for Analysis Scattering Biological Fluid Media
Authors: S. Cherif, A. Medjahed, M. Bouafia, A. Manallah
Abstract:
A light wave is characterized by 4 characteristics: its amplitude, its frequency, its phase and the direction of polarization of its luminous vector (the electric field). It is in this last characteristic that we will be interested. The polarization of the light was introduced in order to describe the vectorial behavior of the light; it describes the way in which the electric field evolves in a point of space. Our work consists in studying diffusing mediums. Different types of biological fluids were selected to study the evolution of each with increasing scattering power of the medium, and in the same time to make a comparison between them. When crossing these mediums, the light undergoes modifications and/or deterioration of its initial state of polarization. This phenomenon is related to the properties of the medium, the idea is to compare the characteristics of the entering and outgoing light from the studied medium by a white light. The advantage of this model is that it is experimentally accessible workable intensity measurements with CCD sensors and allows operation in 2D. The latter information is used to discriminate some physical properties of the studied areas. We chose four types of milk to study the evolution of each with increasing scattering power of the medium.Keywords: light polarization, Mueller matrix, Mueller images, diffusing medium, milk
Procedia PDF Downloads 3298337 A Review of Research on Pre-training Technology for Natural Language Processing
Authors: Moquan Gong
Abstract:
In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.Keywords: natural language processing, pre-training, language model, word vectors
Procedia PDF Downloads 558336 Challenges Caused by the Integration of Technology as a Pedagogy in One of the Historically Disadvantaged Higher Education Institutions
Authors: Rachel Gugu Mkhasibe
Abstract:
Incorporation of technology as a pedagogy has many benefits. For instance, improvement of pedagogy, increased information access, increased cooperation, and collaboration. However, as good as it may be, this integration of technology as a pedagogy has not been widely adopted in most historically Black higher education institutions especially those in developing countries. For example, the socioeconomic background of students in historically black universities, the weak financial support available from these universities, as well as a large population of students struggle to access the recommended modern physical resources such as iPads, laptops, mobile phones, to name a few. This contributes to an increase in the increase of educational inequalities. The qualitative research approach was utilized in this work to gather detailed data about the obstacles created by the integration of technology as a pedagogy. Interviews were conducted to generate data from 20 academics from 10 Leve two students from one of the historically disadvantaged higher education Institutions in South Africa. The findings revealed that although both students and academics had overwhelming support of the integration of technology as a pedagogy in their institution, the environment which they found themselves in compromise the incorporation of technology as a pedagogy. Therefore, this paper recommends that Department of Higher Education and University Management should intervene and budget for technology to be provided in all the institutions of higher education regardless of where the institutions are situated.Keywords: collaboration, integration, pedagogy, technology
Procedia PDF Downloads 808335 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample
Authors: Suwimon Saneewong Na Ayuttaya
Abstract:
This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.Keywords: electrohydrodynamics (EHD), swirling flow, convective heat transfer, solid sample
Procedia PDF Downloads 2918334 Local Community Participation and the Adoption of Agricultural Technology in Kayunga District, Uganda
Authors: Barbara Kyampeire, Gerald Karyeijja
Abstract:
This study investigated the influence of local community participation on the adoption of new agricultural technology in Uganda, using the case study of Smooth Cayenne Pineapples in Kayunga District, Uganda. The mechanism of adoption of new technologies is often not fully understood and this prompted the study. The study adopted a descriptive, co relational, survey design. The researcher used questionnaire survey, focus group discussion as methods of data collection. A total of 152 respondents including adopters and non-adopters of new technology for producing pineapples were selected from 8 farmer groups in Kayunga District. The results indicated that the participation of the community in the planning, implementation and the monitoring and evaluation of the adoption of the new technology for producing pineapples was low thus reducing the adoption of the new technology in the District. The researcher concluded that community participation significantly influences the adoption of new agricultural technology by members of a particular community. The study thus recommended that: first, there is need for maximum involvement of members of the community in the planning, implementation and monitoring of any new agricultural technology; secondly, there is need for continued sharing of information about new agricultural technologies being introduced; and finally, community members must be equipped with Monitoring and Evaluation (M&E) skills in order to make them monitor the progress made by the new agricultural technologies.Keywords: adoption, community, technology, implementation
Procedia PDF Downloads 4218333 Videoconference Technology: An Attractive Vehicle for Challenging and Changing Tutors Practice in Open and Distance Learning Environment
Authors: Ramorola Mmankoko Ziphorah
Abstract:
Videoconference technology represents a recent experiment of technology integration into teaching and learning in South Africa. Increasingly, videoconference technology is commonly used as a substitute for the traditional face-to-face approaches to teaching and learning in helping tutors to reshape and change their teaching practices. Interestingly, though, some studies point out that videoconference technology is commonly used for knowledge dissemination by tutors and not so much for the actual teaching of course content in Open and Distance Learning context. Though videoconference technology has become one of the dominating technologies available among Open and Distance Learning institutions, it is not clear that it has been used as effectively to bridge the learning distance in time, geography, and economy. While tutors are prepared theoretically, in most tutor preparation programs, on the use of videoconference technology, there are still no practical guidelines on how they should go about integrating this technology into their course teaching. Therefore, there is an urgent need to focus on tutor development, specifically on their capacities and skills to use videoconference technology. The assumption is that if tutors become competent in the use of the videoconference technology for course teaching, then their use in Open and Distance Learning environment will become more commonplace. This is the imperative of the 4th Industrial Revolution (4IR) on education generally. Against the current vacuum in the practice of using videoconference technology for course teaching, the current study proposes a qualitative phenomenological approach to investigate the efficacy of videoconferencing as an approach to student learning. Using interviews and observation data from ten participants in Open and Distance Learning institution, the author discusses how dialogue and structure interacted to provide the participating tutors with a rich set of opportunities to deliver course content. The findings to this study highlight various challenges experienced by tutors when using videoconference technology. The study suggests tutor development programs on their capacity and skills and on how to integrate this technology with various teaching strategies in order to enhance student learning. The author argues that it is not merely the existence of the structure, namely the videoconference technology, that provides the opportunity for effective teaching, but that is the interactions, namely, the dialogue amongst tutors and learners that make videoconference technology an attractive vehicle for challenging and changing tutors practice.Keywords: open distance learning, transactional distance, tutor, videoconference
Procedia PDF Downloads 1278332 Mobile Systems: History, Technology, and Future
Authors: Shivendra Pratap Singh, Rishabh Sharma
Abstract:
The widespread adoption of mobile technology in recent years has revolutionized the way we communicate and access information. The evolution of mobile systems has been rapid and impactful, shaping our lives and changing the way we live and work. However, despite its significant influence, the history and development of mobile technology are not well understood by the general public. This research paper aims to examine the history, technology and future of mobile systems, exploring their evolution from early mobile phones to the latest smartphones and beyond. The study will analyze the technological advancements and innovations that have shaped the mobile industry, from the introduction of mobile internet and multimedia capabilities to the integration of artificial intelligence and 5G networks. Additionally, the paper will also address the challenges and opportunities facing the future of mobile technology, such as privacy concerns, battery life, and the increasing demand for high-speed internet. Finally, the paper will also provide insights into potential future developments and innovations in the mobile sector, such as foldable phones, wearable technology, and the Internet of Things (IoT). The purpose of this research paper is to provide a comprehensive overview of the history, technology, and future of mobile systems, shedding light on their impact on society and the challenges and opportunities that lie ahead.Keywords: mobile technology, artificial intelligence, networking, iot, technological advancements, smartphones
Procedia PDF Downloads 918331 Worst-Case Load Shedding in Electric Power Networks
Authors: Fu Lin
Abstract:
We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis
Procedia PDF Downloads 1388330 A Post-Occupancy Evaluation of the Impact of Indoor Environmental Quality on Health and Well-Being in Office Buildings
Authors: Suyeon Bae, Abimbola Asojo, Denise Guerin, Caren Martin
Abstract:
Post-occupancy evaluations (POEs) have been recognized for documenting occupant well-being and responses to indoor environmental quality (IEQ) factors such as thermal, lighting, and acoustic conditions. Sustainable Post-Occupancy evaluation survey (SPOES) developed by an interdisciplinary team at a Midwest University provides an evidence-based quantitative analysis of occupants’ satisfaction in office, classroom, and residential spaces to help direct attention to successful areas and areas that need improvement in buildings. SPOES is a self-administered and Internet-based questionnaire completed by building occupants. In this study, employees in three different office buildings rated their satisfaction on a Likert-type scale about 12 IEQ criteria including thermal condition, indoor air quality, acoustic quality, daylighting, electric lighting, privacy, view conditions, furnishings, appearance, cleaning and maintenance, vibration and movement, and technology. Employees rated their level of satisfaction on a Likert-type scale from 1 (very dissatisfied) to 7 (very satisfied). They also rate the influence of their physical environment on their perception of their work performance and the impact of their primary workspaces on their health on a scale from 1 (hinders) to 7 (enhances). Building A is a three-story building that includes private and group offices, classrooms, and conference rooms and amounted to 55,000 square-feet for primary workplace (N=75). Building B, a six-story building, consisted of private offices, shared enclosed office, workstations, and open desk areas for employees and amounted to 14,193 square-feet (N=75). Building C is a three-story 56,000 square-feet building that included classrooms, therapy rooms, an outdoor playground, gym, restrooms, and training rooms for clinicians (N=76). The results indicated that 10 IEQs for Building A except acoustic quality and privacy showed statistically significant correlations on the impact of the primary workspace on health. In Building B, 11 IEQs except technology showed statistically significant correlations on the impact of the primary workspace on health. Building C had statistically significant correlations between all 12 IEQ and the employees’ perception of the impact of their primary workspace on their health in two-tailed correlations (P ≤ 0.05). Out of 33 statistically significant correlations, 25 correlations (76%) showed at least moderate relationship (r ≥ 0.35). For the three buildings, daylighting, furnishings, and indoor air quality IEQs ranked highest on the impact on health. IEQs about vibration and movement, view condition, and electric lighting ranked second, followed by IEQs about cleaning and maintenance and appearance. These results imply that 12 IEQs developed in SPOES are highly related to employees’ perception of how their primary workplaces impact their health. The IEQs in this study offer an opportunity for improving occupants’ well-being and the built environment.Keywords: post-occupancy evaluation, built environment, sustainability, well-being, indoor air quality
Procedia PDF Downloads 2898329 Important Management Competencies: University of Technology Perspective
Authors: Courtley Pharaoh, D. J. Visser
Abstract:
University management is often caught between competing interests from stakeholders like students, trustees, donors, government and the community it serves. This study aimed to identify what management competencies are required by executive management members of universities of technology to effectively manage a university of technology in South Africa from the perspective of the executive management members. This exploratory study will make use of a qualitative methodology to establish what management competencies are deemed as important to manage a university of technology in South Africa from the executive management perspective. Due to the consequences of the COVID-19 Pandemic, the study made use of online face-to-face interviews to ascertain from executive management members of universities of technology what the required management competencies needed by executive management members of universities of technology to effectively manage a University of Technology in South Africa. Qualitative Content Analysis was used to analyse the data collected. The findings of the study identified a total of 26 management competencies which were categorised into three groupings or themes. This study identified a list of required management competencies needed by executive management members of universities of technology to effectively manage a university of technology in South Africa, as per the lived experience of executive management members. The researcher recommends further studies at traditional and comprehensive universities and compares the results of those future studies with the results of this study. A comprehensive list of management competencies could then be identified, which could assist with the compilation of job descriptions of executive management members of universities in South Africa.Keywords: university of technology, management competencies, executive management, executive management members, important
Procedia PDF Downloads 1018328 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device
Authors: Muthana A. M. Jameel Al-Jaboori
Abstract:
In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.Keywords: water wave, models, Wells turbine, MATLAB program
Procedia PDF Downloads 3608327 Geoelectric Survey for Groundwater Potential in Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria
Authors: Ibrahim Mohammed, Suleiman Taofiq, Muhammad Naziru Yahya
Abstract:
Geoelectrical measurements using Schlumberger Vertical Electrical Sounding (VES) method were carried out in Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria, with the aim of determining the groundwater potential in the area. Twelve (12) Vertical Electric Sounding (VES) data were collected using Terrameter (ABEM SAS 300c) and analyzed using computer software (IPI2win), which gives an automatic interpretation of the apparent resistivity. The results of the interpretation of VES data were used in the characterization of three to five geo-electric layers from which the aquifer units were delineated. Data analysis indicated that water bearing formation exists in the third and fourth layers having resistivity range of 312 to 767 Ωm and 9.51 to 681 Ωm, respectively. The thickness of the formation ranges from 14.7 to 41.8 m, while the depth is from 8.22 to 53.7 m. Based on the result obtained from the interpretation of the data, five (5) VES stations were recommended as the most viable locations for groundwater exploration in the study area. The VES stations include VES A4, A5, A6, B1, and B2. The VES results of the entire area indicated that the water bearing formation occurs at maximum depth of 53.7 m at the time of this survey.Keywords: aquifer, depth, groundwater, resistivity, Schlumberger
Procedia PDF Downloads 1648326 Analysis and Identification of Trends in Electric Vehicle Crash Data
Authors: Cody Stolle, Mojdeh Asadollahipajouh, Khaleb Pafford, Jada Iwuoha, Samantha White, Becky Mueller
Abstract:
Battery-electric vehicles (BEVs) are growing in sales and popularity in the United States as an alternative to traditional internal combustion engine vehicles (ICEVs). BEVs are generally heavier than corresponding models of ICEVs, with large battery packs located beneath the vehicle floorpan, a “skateboard” chassis, and have front and rear crush space available in the trunk and “frunk” or front trunk. The geometrical and frame differences between the vehicles may lead to incompatibilities with gasoline vehicles during vehicle-to-vehicle crashes as well as run-off-road crashes with roadside barriers, which were designed to handle lighter ICEVs with higher centers-of-mass and with dedicated structural chasses. Crash data were collected from 10 states spanning a five-year period between 2017 and 2021. Vehicle Identification Number (VIN) codes were processed with the National Highway Traffic Safety Administration (NHTSA) VIN decoder to extract BEV models from ICEV models. Crashes were filtered to isolate only vehicles produced between 2010 and 2021, and the crash circumstances (weather, time of day, maximum injury) were compared between BEVs and ICEVs. In Washington, 436,613 crashes were identified, which satisfied the selection criteria, and 3,371 of these crashes (0.77%) involved a BEV. The number of crashes which noted a fire were comparable between BEVs and ICEVs of similar model years (0.3% and 0.33%, respectively), and no differences were discernable for the time of day, weather conditions, road geometry, or other prevailing factors (e.g., run-off-road). However, crashes involving BEVs rose rapidly; 31% of all BEV crashes occurred in just 2021. Results indicate that BEVs are performing comparably to ICEVs, and events surrounding BEV crashes are statistically indistinguishable from ICEV crashes.Keywords: battery-electric vehicles, transportation safety, infrastructure crashworthiness, run-off-road crashes, ev crash data analysis
Procedia PDF Downloads 878325 Design and Simulation on Technology Capabilities in Developing countries, Design and Engineering Approach
Authors: S. Abedi, M. R. Soroush, M. Mousakhani
Abstract:
According to studies in the field of technology capabilities we identify the most important indicators to evaluate the level of "Design and Engineering" capabilities. Since the technology development correlates with the level of technology capabilities trying to promote its key importance. In this research by using FDM, the right combination of D&E capabilities indicators according to the auto industry is presented. Finally, with modeling evaluation of D&E capabilities by using FIS and check its reliability, five levels were determined to evaluate the D&E capabilities. We have analyzed 80 companies in auto industry and determined D&E capabilities of each level. Field of company activity indicators has been divided into four categories, Suspension group, Electrical group, Engine groups and trims group. The results show that half of the surveyed companies had D&E capabilities in Level 1 and 2 or in other words very low and low level of D&E.Keywords: developing countries, D&E capabilities, technology capabilities, auto industry
Procedia PDF Downloads 5348324 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles
Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel
Abstract:
Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles
Procedia PDF Downloads 1638323 Using the Technological, Pedagogical, and Content Knowledge (TPACK) Model to Address College Instructors Weaknesses in Integration of Technology in Their Current Area Curricula
Authors: Junior George Martin
Abstract:
The purpose of this study was to explore college instructors’ integration of technology in their content area curriculum. The instructors indicated that they were in need of additional training to successfully integrate technology in their subject areas. The findings point to the implementation of a proposed the Technological, Pedagogical, and Content Knowledge (TPACK) model professional development workshop to satisfactorily address the weaknesses of the instructors in technology integration. The professional development workshop is proposed as a rational solution to adequately address the instructors’ inability to the successful integration of technology in their subject area in an effort to improve their pedagogy. The intense workshop would last for 5 days and will be designed to provide instructors with training in areas such as a use of technology applications and tools, and using modern methodologies to improve technology integration. Exposing the instructors to the specific areas identified will address the weaknesses they demonstrated during the study. Professional development is deemed the most appropriate intervention based on the opportunities it provides the instructors to access hands-on training to overcome their weaknesses. The purpose of the TPACK professional development workshop will be to improve the competence of the instructors so that they are adequately prepared to integrate technology successfully in their curricula. At the end of the period training, the instructors are expected to adopt strategies that will have a positive impact on the learning experiences of the students.Keywords: higher education, modern technology tools, professional development, technology integration
Procedia PDF Downloads 3108322 The Role of Information Technology in the Supply Chain Management
Authors: Azar Alizadeh, Mohammad Reza Naserkhaki
Abstract:
The application of the IT systems for collecting and analyzing the data can have a significant effect on the performance of any company. In recent decade, different advancements and achievements in the field of information technology have changed the industry compared to the previous decade. The adoption and application of the information technology are one of the ways to achieve a distinctive competitive personality to the companies and their supply chain. The acceptance of the IT and its proper implementation cam reinforce and improve the cooperation between different parts of the supply chain by rapid transfer and distribution of the precise information and the application of the informational systems, leading to the increase in the supply chain efficiency. The main objective of this research is to study the effects and applications of the information technology on and in the supply chain management and to introduce the effective factors on the acceptance of information technology in the companies. Moreover, in order to understand the subject, we will investigate the role and importance of the information and electronic commerce in the supply chain and the characteristics of the supply chain based on the information flow approach.Keywords: electronic commerce, industry, information technology, management, supply chain, system
Procedia PDF Downloads 4838321 Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution
Authors: Clémence Royer, Stéphane Mazouffre
Abstract:
Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control.Keywords: electric propulsion, Hall Thruster, plasma diagnostics, low-frequency oscillations
Procedia PDF Downloads 888320 Electrohydrodynamic Study of Microwave Plasma PECVD Reactor
Authors: Keltoum Bouherine, Olivier Leroy
Abstract:
The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.Keywords: electron density, electric field, microwave plasma reactor, gas velocity, non-equilibrium plasma
Procedia PDF Downloads 3288319 Tip-Enhanced Raman Spectroscopy with Plasmonic Lens Focused Longitudinal Electric Field Excitation
Authors: Mingqian Zhang
Abstract:
Tip-enhanced Raman spectroscopy (TERS) is a scanning probe technique for individual objects and structured surfaces investigation that provides a wealth of enhanced spectral information with nanoscale spatial resolution and high detection sensitivity. It has become a powerful and promising chemical and physical information detection method in the nanometer scale. The TERS technique uses a sharp metallic tip regulated in the near-field of a sample surface, which is illuminated with a certain incident beam meeting the excitation conditions of the wave-vector matching. The local electric field, and, consequently, the Raman scattering, from the sample in the vicinity of the tip apex are both greatly tip-enhanced owning to the excitation of localized surface plasmons and the lightning-rod effect. Typically, a TERS setup is composed of a scanning probe microscope, excitation and collection optical configurations, and a Raman spectroscope. In the illumination configuration, an objective lens or a parabolic mirror is always used as the most important component, in order to focus the incident beam on the tip apex for excitation. In this research, a novel TERS setup was built up by introducing a plasmonic lens to the excitation optics as a focusing device. A plasmonic lens with symmetry breaking semi-annular slits corrugated on gold film was designed for the purpose of generating concentrated sub-wavelength light spots with strong longitudinal electric field. Compared to conventional far-field optical components, the designed plasmonic lens not only focuses an incident beam to a sub-wavelength light spot, but also realizes a strong z-component that dominants the electric field illumination, which is ideal for the excitation of tip-enhancement. Therefore, using a PL in the illumination configuration of TERS contributes to improve the detection sensitivity by both reducing the far-field background and effectively exciting the localized electric field enhancement. The FDTD method was employed to investigate the optical near-field distribution resulting from the light-nanostructure interaction. And the optical field distribution was characterized using an scattering-type scanning near-field optical microscope to demonstrate the focusing performance of the lens. The experimental result is in agreement with the theoretically calculated one. It verifies the focusing performance of the plasmonic lens. The optical field distribution shows a bright elliptic spot in the lens center and several arc-like side-lobes on both sides. After the focusing performance was experimentally verified, the designed plasmonic lens was used as a focusing component in the excitation configuration of TERS setup to concentrate incident energy and generate a longitudinal optical field. A collimated linearly polarized laser beam, with along x-axis polarization, was incident from the bottom glass side on the plasmonic lens. The incident light focused by the plasmonic lens interacted with the silver-coated tip apex and enhanced the Raman signal of the sample locally. The scattered Raman signal was gathered by a parabolic mirror and detected with a Raman spectroscopy. Then, the plasmonic lens based setup was employed to investigate carbon nanotubes and TERS experiment was performed. Experimental results indicate that the Raman signal is considerably enhanced which proves that the novel TERS configuration is feasible and promising.Keywords: longitudinal electric field, plasmonics, raman spectroscopy, tip-enhancement
Procedia PDF Downloads 3728318 Effect of Different Contaminants on Mineral Insulating Oil Characteristics
Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto
Abstract:
Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures
Procedia PDF Downloads 2238317 Design of a Human-in-the-Loop Aircraft Taxiing Optimisation System Using Autonomous Tow Trucks
Authors: Stefano Zaninotto, Geoffrey Farrugia, Johan Debattista, Jason Gauci
Abstract:
The need to reduce fuel and noise during taxi operations in the airports with a scenario of constantly increasing air traffic has resulted in an effort by the aerospace industry to move towards electric taxiing. In fact, this is one of the problems that is currently being addressed by SESAR JU and two main solutions are being proposed. With the first solution, electric motors are installed in the main (or nose) landing gear of the aircraft. With the second solution, manned or unmanned electric tow trucks are used to tow aircraft from the gate to the runway (or vice-versa). The presence of the tow trucks results in an increase in vehicle traffic inside the airport. Therefore, it is important to design the system in a way that the workload of Air Traffic Control (ATC) is not increased and the system assists ATC in managing all ground operations. The aim of this work is to develop an electric taxiing system, based on the use of autonomous tow trucks, which optimizes aircraft ground operations while keeping ATC in the loop. This system will consist of two components: an optimization tool and a Graphical User Interface (GUI). The optimization tool will be responsible for determining the optimal path for arriving and departing aircraft; allocating a tow truck to each taxiing aircraft; detecting conflicts between aircraft and/or tow trucks; and proposing solutions to resolve any conflicts. There are two main optimization strategies proposed in the literature. With centralized optimization, a central authority coordinates and makes the decision for all ground movements, in order to find a global optimum. With the second strategy, called decentralized optimization or multi-agent system, the decision authority is distributed among several agents. These agents could be the aircraft, the tow trucks, and taxiway or runway intersections. This approach finds local optima; however, it scales better with the number of ground movements and is more robust to external disturbances (such as taxi delays or unscheduled events). The strategy proposed in this work is a hybrid system combining aspects of these two approaches. The GUI will provide information on the movement and status of each aircraft and tow truck, and alert ATC about any impending conflicts. It will also enable ATC to give taxi clearances and to modify the routes proposed by the system. The complete system will be tested via computer simulation of various taxi scenarios at multiple airports, including Malta International Airport, a major international airport, and a fictitious airport. These tests will involve actual Air Traffic Controllers in order to evaluate the GUI and assess the impact of the system on ATC workload and situation awareness. It is expected that the proposed system will increase the efficiency of taxi operations while reducing their environmental impact. Furthermore, it is envisaged that the system will facilitate various controller tasks and improve ATC situation awareness.Keywords: air traffic control, electric taxiing, autonomous tow trucks, graphical user interface, ground operations, multi-agent, route optimization
Procedia PDF Downloads 1278316 Slip Suppression Sliding Mode Control with Various Chattering Functions
Authors: Shun Horikoshi, Tohru Kawabe
Abstract:
This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.Keywords: sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis
Procedia PDF Downloads 3248315 Local Government Digital Attention and Green Technology Innovation: Analysis Based on Spatial Durbin Model
Authors: Xin Wang, Chaoqun Ma, Zheng Yao
Abstract:
Although green technology innovation faces new opportunities and challenges in the digital era, its theoretical research remains limited. Drawing on the attention-based view, this study employs the spatial Durbin model to investigate the impact of local government digital attention and digital industrial agglomeration on green technology innovation across 30 Chinese provinces from 2011 to 2021, as well as the spatial spillover effects present. The results suggest that both government digital attention and digital industrial agglomeration positively influence green technology innovation in local and neighboring provinces, with digital industrial agglomeration exhibiting a positive moderating effect on this direct local and indirect spatial spillover relationship. The findings of this study provide a new theoretical perspective for green technology innovation research and hold valuable implications for the advancement of the attention-based view and green technology innovation.Keywords: local government digital attention, digital industrial agglomeration, green technology innovation, attention-based view
Procedia PDF Downloads 668314 Development of Mobile EEF Learning System (MEEFLS) for Mobile Learning Implementation in Kolej Poly-Tech MARA (KPTM)
Authors: M. E. Marwan, A. R. Madar, N. Fuad
Abstract:
Mobile learning (m-learning) is a new method in teaching and learning process which combines technology of mobile device with learning materials. It can enhance student's engagement in learning activities and facilitate them to access the learning materials at anytime and anywhere. In Kolej Poly-Tech Mara (KPTM), this method is seen as an important effort in teaching practice and to improve student learning performance. The aim of this paper is to discuss the development of m-learning application called Mobile EEF Learning System (MEEFLS) to be implemented for Electric and Electronic Fundamentals course using Flash, XML (Extensible Markup Language) and J2ME (Java 2 micro edition). System Development Life Cycle (SDLC) was used as an application development approach. It has three modules in this application such as notes or course material, exercises and video. MEELFS development is seen as a tool or a pilot test for m-learning in KPTM.Keywords: flash, mobile device, mobile learning, teaching and learning, SDLC, XML
Procedia PDF Downloads 5228313 French Language Teaching in Nigeria and Future with Technology
Authors: Chidiebere Samuel Ijeoma
Abstract:
The impact and importance of technology in all domains of existence cannot be overemphasized. It is like a double-edged sword which can be both constructive and destructive. The paper, therefore, tends to evaluate the impact of technology so far in the teaching and learning of French language in Nigeria. According to the study, the traditional methods of teaching French as a Foreign Language and recognized as our cultural methods of knowledge transfer are being fast replaced by digitalization in teaching. This, the research tends to portray and suggest the best way forward. In the Nigerian Primary Education System, the use of some local and cultural Instructional materials (teaching aids) is now almost history which the paper frowns at. Consequently, the study has these questions to ask?; Where are the chalks and blackboards? Where are the ‘Handworks’ (local brooms) submitted by school children as part of their Continuous Assessment? Finally, the research is in no way against the application of technology in the Nigerian French Language Teaching System but tries to draw a curtain between Technological methods of teaching French as a Foreign Language and the Original Nigerian System of teaching the language before the arrival of technology.Keywords: French language teaching, future, impact, importance of technology
Procedia PDF Downloads 3538312 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants
Authors: Coriolano Salvini
Abstract:
The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis
Procedia PDF Downloads 2138311 Augmenting Classroom Reality
Authors: Kerrin Burnell
Abstract:
In a world of increasingly technology-dependent students, the English language classroom should ideally keep up with developments to keep students engaged as much as possible. Unfortunately, as is the case in Oman, funding is not always adequate to ensure students have the most up to date technology, and most institutions are still reliant on paper-based textbooks. In order to try and bridge the gap between the technology available (smartphones) and textbooks, augmented reality (AR) technology can be utilized to enhance classroom, homework, and extracurricular activities. AR involves overlaying media (videos, images etc) over the top of physical objects (posters, book pages etc) and then sharing the media. This case study involved introducing students to a freely available entry level AR app called Aurasma. Students were asked to augment their English textbooks, word walls, research project posters, and extracurricular posters. Through surveys, interviews and an analysis of time spent accessing the different media, a determination of the appropriateness of the technology for the classroom was determined. Results indicate that the use of AR has positive effects on many aspects of the English classroom. Increased student engagement, total time spent on task, interaction, and motivation were evident, along with a decrease in technology-related anxiety. As it is proving very difficult to get tablets or even laptops in classrooms in Oman, these preliminary results indicate that many positive outcomes will come from introducing students to this innovative technology.Keywords: augmented reality, classroom technology, classroom innovation, engagement
Procedia PDF Downloads 3798310 Knowledge, Technology and Empowerment in Contemporary Scenario
Authors: Samir Roy
Abstract:
This paper investigates the relationship among knowledge, technology, and empowerment. In Physics power is defined as rate of doing work. In everyday use, the meaning of the word power is related to the capacity to bring change of value in the world. It appears that the popular aphorism “Knowledge is power” should be revisited in the context of contemporary states of affairs. For instance, classical mechanics is a system of knowledge, so also thermodynamics. But neither of them, per se, is sufficient to produce automobilin es. Boolean algebra, the logical foundation of digital electronic computers, was introduced by George Boole in 1847. But that knowledge was practically useless for almost one hundred years until digital electronics was developed in early twentieth century, which eventually led to invention of digital electronic computers. Empowerment of women is a burning issue in the arena of social justice. However, if we carefully analyze the functional elements of women’s empowerment, we find them to be highly technology driven as well as technology dependent in real life. On the other hand, technology has empowered modern states to maintain social order and promote democracy in an effective manner. This paper includes a few case studies to establish the close correspondence between knowledge, especially scientific knowledge, technology, and empowerment. It appears that in contemporary scenario, “Technology is power” is a more appropriate statement than the traditional aphorism “Knowledge is power”.Keywords: knowledge, science, technology, empowerment, change, social justice
Procedia PDF Downloads 398309 The Formulation of R&D Strategy for Biofuel Technology: A Case Study of the Aviation Industry in Iran
Authors: Maryam Amiri, Ali Rajabzade, Gholam Reza Goudarzi, Reza Heidari
Abstract:
Growth of technology and environmental changes are so fast and therefore, companies and industries have much tendency to do activities of R&D for active participation in the market and achievement to a competitive advantages. Aviation industry and its subdivisions have high level technology and play a special role in economic and social development of countries. So, in the aviation industry for getting new technologies and competing with other countries aviation industry, there is a requirement for capability in R&D. Considering of appropriate R&D strategy is supportive that day technologies of the world can be achieved. Biofuel technology is one of the newest technologies that has allocated discussion of the world in aviation industry to itself. The purpose of this research has been formulation of R&D strategy of biofuel technology in aviation industry of Iran. After reviewing of the theoretical foundations of the methods and R&D strategies, finally we classified R&D strategies in four main categories as follows: internal R&D, collaboration R&D, out sourcing R&D and in-house R&D. After a review of R&D strategies, a model for formulation of R&D strategy with the aim of developing biofuel technology in aviation industry in Iran was offered. With regard to the requirements and aracteristics of industry and technology in the model, we presented an integrated approach to R&D. Based on the techniques of decision making and analyzing of structured expert opinion, 4 R&D strategies for different scenarios and with the aim of developing biofuel technology in aviation industry in Iran were recommended. In this research, based on the common features of the implementation process of R&D, a logical classification of these methods are presented as R&D strategies. Then, R&D strategies and their characteristics was developed according to the experts. In the end, we introduced a model to consider the role of aviation industry and biofuel technology in R&D strategies. And lastly, for conditions and various scenarios of the aviation industry, we have formulated a specific R&D strategy.Keywords: aviation industry, biofuel technology, R&D, R&D strategy
Procedia PDF Downloads 576