Search results for: dynamic adaptation of the gains
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5233

Search results for: dynamic adaptation of the gains

4693 Flow Dynamics of Nanofluids in a Horizontal Cylindrical Annulus Using Nonhomogeneous Dynamic Model

Authors: M. J. Uddin, M. M. Rahman

Abstract:

Transient natural convective flow dynamics of nanofluids in a horizontal homocentric annulus using nonhomogeneous dynamic model has been experimented numerically. The simulation is carried out for four different shapes of the inner wall, which is either cylindrical, elliptical, square or triangular. The outer surface of the annulus is maintained at constant low temperature while the inner wall is maintained at a uniform temperature; higher than the outer one. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic deposition phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To find the best performer, the local Nusselt number is demonstrated for different shapes of the inner wall. The heat transfer enhancement for different nanofluids for four different shapes of the inner wall is exhibited.

Keywords: nanofluids, annulus, nonhomogeneous dynamic model, heat transfer

Procedia PDF Downloads 169
4692 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network

Authors: Ahmed O. Babaleye, Rafet E. Kurt

Abstract:

The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.

Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis

Procedia PDF Downloads 278
4691 Textile Firms Response to the Restriction of Nonylphenol and Its Ethoxylates: Looking from the Perspectives of Attitude and the Perceptions of Technical and Organizational Adaptabilities, Risks, Benefits, and Barriers

Authors: Hien T. T. Ho, Tsunemi Watanabe

Abstract:

The regulatory and market pressures on the restriction of nonylphenol and its ethoxylates in textile articles have confronted the textile manufacturers, particularly those in developing countries. This study aimed to examine the tentative behavior of the textile manufacturers in Vietnam from the perspectives of attitude and the perceptions of technical and organizational adaptabilities, risks, benefits, and barriers. Personal interviews were conducted with five technical specialists from four textile firms and one chemical supplier. The environmental regulatory and market situations regarding the chemical use in Vietnam were also described. The findings revealed two main opposing trends of chemical substitution depending on the market orientation of firms that governed the patterns of risk and benefit perception. The indirect influence of perceived adaptabilities on firm tentative behavior through perceived risks was elucidated, which initiated a conceptual model of firm’s behavior combining the organizational-based and the rational-based relationships. The intermediary role of non-governmental textile and garment industrial/ trade associations is highlighted to strengthen private firm’s informative capacity.

Keywords: firm behavior, institutional analysis, organizational adaptation, technical adaptation

Procedia PDF Downloads 162
4690 Exploring Electroactive Polymers for Dynamic Data Physicalization

Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel

Abstract:

Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.

Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization

Procedia PDF Downloads 95
4689 Legal Interpretation of the Transplanted Law

Authors: Wahyu Kurniawan

Abstract:

Indonesia developed the legal system radically since 1999. Several laws have been established and mostly the result of transplantation. Laws were made general but legal problems have been growing. In the legal enforcement, the judges have authority to interpret the laws. Authority and freedom are the source of corruption by the courts in Indonesia. Therefore, it should be built the conceptual framework to interpret the transplanted laws as the legal basis in deciding the cases. This article describes legal development based on interpretation of transplanted law in Indonesia by using the Indonesian Supervisory Commission for Business Competition (KPPU) decisions between 2000 and 2010 as the object of the research. The study was using law as a system theory and theories of legal interpretation especially the static and dynamic interpretations. The research showed that the KPPU interpreted the concept that exists in the Competition Law by using static and dynamic interpretation. Static interpretation was used to interpret the legal concepts based on two grounds, minute of meeting during law making process and the definitions that have been recognized in the Indonesian legal system. Dynamic interpretation was used when the KPPU developing the definition of the legal concepts. The general purpose of the law and the theories of the basis of the law were the conceptual framework in using dynamic interpretation. There are two recommendations in this article. Firstly, interpreting the laws by the judges should be based on the correct conceptual framework. Secondly, the technique of interpreting the laws would be the method of controlling the judges.

Keywords: legal interpretation, legal transplant, competition law, KPPU

Procedia PDF Downloads 338
4688 Dynamic Relaxation and Isogeometric Analysis for Finite Deformation Elastic Sheets with Combined Bending and Stretching

Authors: Nikhil Padhye, Ellen Kintz, Dan Dorci

Abstract:

Recent years have seen a rising interest in study and applications of materially uniform thin-structures (plates/shells) subject to finite-bending and stretching deformations. We introduce a well-posed 2D-model involving finite-bending and stretching of thin-structures to approximate the three-dimensional equilibria. Key features of this approach include: Non-Uniform Rational B-Spline (NURBS)-based spatial discretization for finite elements, method of dynamic relaxation to predict stable equilibria, and no a priori kinematic assumption on the deformation fields. The approach is validated against the benchmark problems,and the use of NURBS for spatial discretization facilitates exact spatial representation and computation of curvatures (due to C1-continuity of interpolated displacements) for this higher-order accuracy 2D-model.

Keywords: Isogeometric Analysis, Plates/Shells , Finite Element Methods, Dynamic Relaxation

Procedia PDF Downloads 163
4687 Exploring Multi-Feature Based Action Recognition Using Multi-Dimensional Dynamic Time Warping

Authors: Guoliang Lu, Changhou Lu, Xueyong Li

Abstract:

In action recognition, previous studies have demonstrated the effectiveness of using multiple features to improve the recognition performance. We focus on two practical issues: i) most studies use a direct way of concatenating/accumulating multi features to evaluate the similarity between two actions. This way could be too strong since each kind of feature can include different dimensions, quantities, etc; ii) in many studies, the employed classification methods lack of a flexible and effective mechanism to add new feature(s) into classification. In this paper, we explore an unified scheme based on recently-proposed multi-dimensional dynamic time warping (MD-DTW). Experiments demonstrated the scheme's effectiveness of combining multi-feature and the flexibility of adding new feature(s) to increase the recognition performance. In addition, the explored scheme also provides us an open architecture for using new advanced classification methods in the future to enhance action recognition.

Keywords: action recognition, multi features, dynamic time warping, feature combination

Procedia PDF Downloads 434
4686 The Effect of Ethnic and Boko Haram Insurgency in the Economic Development of Cultural Heritage and Tourism Industries in Nigeria

Authors: Chinwe Juliana Abara, Dayo Keshi

Abstract:

Through cultural heritage materials, nations witness significant boom in the world of art and tourism as well as attract foreign investors and tourists to the benefit of the regions and countries where they are located. There are notable heritage sites which record visits by tourists in their thousands annually. According to UNESCO the cultural heritage reflects the life of the community, its history and its identity. Its preservation helps to rebuild broken communities, re-establish their identities, and link their past with their present and future. During any form of conflict or war, a lot happen. People die, houses destroyed and every other thing in the society suffers. Wars and conflicts in various countries have claimed antiquities, heritage materials, contemporary Arts, Galleries, Museums, Archives and very important Monuments and Heritage sites. My Paper deals with the effects of insurgencies and conflicts on cultural heritage and tourism industries in Nigeria and how they can be protected and restored so as to yield the desirable economic gains. Preceding from the premise that conflict of any type puts our cultural heritage at risk; this paper also explores the practical challenges and opportunities available to us in the face of incessant ethnic and Boko Haram (western education is abomination) insurgents and their wanton destruction of lives and properties. There will be a review of relevant literature and documents on the effects of violence on heritage materials and tourism industries in Nigeria particularly and other parts of the world in generally .My paper also highlights the activities the National Council for Arts and Culture as well as other Cultural Agencies in Nigeria have employed to sensitize the stakeholders, the youth, the elderly, and the community at large on the need for peaceful co-existence so as to collectively strive to safeguard and secure our cultural heritage in the face of all these challenges for posterity and desirable economic gains.

Keywords: cultural heritage, conflict, tourism, insurgency, challenges

Procedia PDF Downloads 392
4685 Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion

Authors: M. Yoneda

Abstract:

It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field.

Keywords: dynamic interaction, footbridge, stationary people, structural damping

Procedia PDF Downloads 271
4684 Development of a Mobile APP for Establishing Thermal Sensation Maps using Citizen Participation

Authors: Jeong-Min Son, Jeong-Hee Eum, Jin-Kyu Min, Uk-Je Sung, Ju-Eun Kim

Abstract:

While various environmental problems are severe due to climate change, especially in cities where population and development are concentrated, urban thermal environment problems such as heat waves and tropical nights are particularly worsening. Accordingly, the Korean government provides basic data related to the urban thermal environment to support each local government in effectively establishing policies to cope with heat waves. However, the basic data related to the thermal environment provided by the government has limitations in establishing a regional thermal adaptation plan with a minimum unit of cities, counties, and districts. In addition, the urban heat environment perceived by people differs in each region and space. Therefore, it is necessary to prepare practical measures that can be used to establish regional-based policies for heat wave adaptation by identifying people’s heat perception in the entire city. This study aims to develop a mobile phone application (APP) to gather people’s thermal sensation information and create Korea’s first thermal map based on this information. In addition, through this APP, citizens directly propose thermal adaptation policies, and urban planners and policymakers accept citizens' opinions, so this study provides a tool to solve local thermal environment problems. To achieve this purpose, first, the composition and contents of the app were discussed by examining various existing apps and cases for citizen participation and collection of heat information. In addition, factors affecting human thermal comfort, such as spatial, meteorological, and demographic factors, were investigated to construct the APP system. Based on these results, the basic version of the APP was developed. Second, the living lab methodology was adopted to gather people’s heat perception using the developed app to conduct overall evaluation and feedback of people on the APP. The people participating in the living lab were selected as those living in Daegu Metropolitan City, which is located in South Korea and annually records high temperatures. The user interface was improved through the living lab to make the app easier to use and the thermal map was modified. This study expects to establish high-resolution thermal maps for effective policies and measures and to solve local thermal environmental problems using the APP. The collected information can be used to evaluate spatial, meteorological, and demographic characteristics that affect the perceived heat of citizens. In addition, it is expected that the research can be expanded by gathering thermal information perceived by citizens of foreign cities as well as other cities in South Korea through the APP developed in this study.

Keywords: mobile application, living lab, thermal map, climate change adaptation

Procedia PDF Downloads 82
4683 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator

Authors: Di Yao, Gunther Prokop, Kay Buttner

Abstract:

Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.

Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory

Procedia PDF Downloads 263
4682 Collapse Performance of Steel Frame with Hysteric Energy Dissipating Devices

Authors: Hyung-Joon Kim, Jin-Young Park

Abstract:

Energy dissipating devices (EDDs) have become more popular as seismic-force-resisting systems for building structures. However, there is little information on the collapse capacities of frames employing EDDs which are an important criterion for their seismic design. This study investigates the collapse capacities of steel frames with TADAS hysteric energy dissipative devices (HEDDs) that become an alternative to steel braced frames. To do this, 5-story steel ordinary concentrically braced frame and steel frame with HEDDs are designed and modeled. Nonlinear dynamic analyses and incremental dynamic analysis with 40 ground motions scaled to maximum considered earthquake are carried out. It is shown from analysis results that the significant enhancement in terms of the collapse capacities is found due to the introduction HEDDs.

Keywords: collapse capacity, incremental dynamic analysis, steel braced frame, TADAS hysteric energy dissipative device

Procedia PDF Downloads 479
4681 Laying the Proto-Ontological Conditions for Floating Architecture as a Climate Adaptation Solution for Rising Sea Levels: Conceptual Framework and Definition of a Performance Based Design

Authors: L. Calcagni, A. Battisti, M. Hensel, D. S. Hensel

Abstract:

Since the beginning of the 21st century, we have seen a dynamic growth of water-based (WB) architecture, mainly due to the increasing threat of floods caused by sea level rise and heavy rains, all correlated with climate change. At the same time, the shortage of land available for urban development also led architects, engineers, and policymakers to reclaim the seabed or to build floating structures. Furthermore, the drive to produce energy from renewable resources has expanded the sector of offshore research, mining, and energy industry which seeks new types of WB structures. In light of these considerations, the time is ripe to consider floating architecture as a full-fledged building typology. Currently, there is no universally recognized academic definition of a floating building. Research on floating architecture lacks a proper, commonly shared vocabulary and typology distinction. Moreover, there is no global international legal framework for urban development on water, and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, first of all, the research intends to overcome the semantic and typological issues through the conceptualization of floating architecture, laying the proto-ontological conditions for floating development, and secondly to identify the parameters to be considered in the definition of a specific PBBD framework, setting the scene for national planning strategies. The theoretical overview and re-semanticization process involve the attribution of a new meaning to the term floating architecture. This terminological work of semantic redetermination is carried out through a systematic literature review and involves quantitative and historical research as well as logical argumentation methods. As it is expected that floating urban development is most likely to take place as an extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than to those of the offshore industry. Therefore, the identification and categorization of parameters –looking towards the potential formation of a PBBD framework for floating development– takes the urban and architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics (i.e. stability and buoyancy) from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of regulatory systems that are effective in different countries around the world, addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, inhabiting water is proposed not only as a viable response to the problem of rising sea levels, thus as a resilient frontier for urban development, but also as a response to energy insecurity, clean water, and food shortages, environmental concerns, and urbanization, in line with Blue Economy principles and the Agenda 2030. This review shows how floating architecture is to all intents and purposes, an urban adaptation measure and a solution towards self-sufficiency and energy-saving objectives. Moreover, the adopted methodology is, to all extents, open to further improvements and integrations, thus not rigid and already completely determined. Along with new designs and functions that will come into play in the practice field, eventually, life on water will seem no more unusual than life on land, especially by virtue of the multiple advantages it provides not only to users but also to the environment.

Keywords: adaptation measures, building typology, floating architecture, performance based building design, rising sea levels

Procedia PDF Downloads 92
4680 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework

Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim

Abstract:

Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.

Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change

Procedia PDF Downloads 212
4679 Heuristic for Accelerating Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina, A. Kumar, P. Boulet

Abstract:

In this paper, we propose a new packing strategy to find free resources for run-time mapping of application tasks on NoC-based Heterogeneous MPSoCs. The proposed strategy minimizes the task mapping time in addition to placing the communicating tasks close to each other. To evaluate our approach, a comparative study is carried out. Experiments show that our strategy provides better results when compared to latest dynamic mapping strategies reported in the literature.

Keywords: heterogeneous MPSoCs, NoC, dynamic mapping, routing

Procedia PDF Downloads 520
4678 Control of Sensors in Metering System of Fluid

Authors: A. Harrouz, O. Harrouz, A. Benatiallah

Abstract:

This paper is to review the essential definitions, roles, and characteristics of communication of metering system. We discuss measurement, data acquisition, and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.

Keywords: data acquisition, dynamic metering system, reference standards, metrological control

Procedia PDF Downloads 487
4677 Adaptive Optimal Controller for Uncertain Inverted Pendulum System: A Dynamic Programming Approach for Continuous Time System

Authors: Dao Phuong Nam, Tran Van Tuyen, Do Trong Tan, Bui Minh Dinh, Nguyen Van Huong

Abstract:

In this paper, we investigate the adaptive optimal control law for continuous-time systems with input disturbances and unknown parameters. This paper extends previous works to obtain the robust control law of uncertain systems. Through theoretical analysis, an adaptive dynamic programming (ADP) based optimal control is proposed to stabilize the closed-loop system and ensure the convergence properties of proposed iterative algorithm. Moreover, the global asymptotic stability (GAS) for closed system is also analyzed. The theoretical analysis for continuous-time systems and simulation results demonstrate the performance of the proposed algorithm for an inverted pendulum system.

Keywords: approximate/adaptive dynamic programming, ADP, adaptive optimal control law, input state stability, ISS, inverted pendulum

Procedia PDF Downloads 191
4676 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator

Authors: K. Kouzi

Abstract:

In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.

Keywords: direct torque control, dual stator induction motor, Fuzzy Logic estimation, stator resistance adaptation

Procedia PDF Downloads 323
4675 Climate Change Adaptation in the U.S. Coastal Zone: Data, Policy, and Moving Away from Moral Hazard

Authors: Thomas Ruppert, Shana Jones, J. Scott Pippin

Abstract:

State and federal government agencies within the United States have recently invested substantial resources into studies of future flood risk conditions associated with climate change and sea-level rise. A review of numerous case studies has uncovered several key themes that speak to an overall incoherence within current flood risk assessment procedures in the U.S. context. First, there are substantial local differences in the quality of available information about basic infrastructure, particularly with regard to local stormwater features and essential facilities that are fundamental components of effective flood hazard planning and mitigation. Second, there can be substantial mismatch between regulatory Flood Insurance Rate Maps (FIRMs) as produced by the National Flood Insurance Program (NFIP) and other 'current condition' flood assessment approaches. This is of particular concern in areas where FIRMs already seem to underestimate extant flood risk, which can only be expected to become a greater concern if future FIRMs do not appropriately account for changing climate conditions. Moreover, while there are incentives within the NFIP’s Community Rating System (CRS) to develop enhanced assessments that include future flood risk projections from climate change, the incentive structures seem to have counterintuitive implications that would tend to promote moral hazard. In particular, a technical finding of higher future risk seems to make it easier for a community to qualify for flood insurance savings, with much of these prospective savings applied to individual properties that have the most physical risk of flooding. However, there is at least some case study evidence to indicate that recognition of these issues is prompting broader discussion about the need to move beyond FIRMs as a standalone local flood planning standard. The paper concludes with approaches for developing climate adaptation and flood resilience strategies in the U.S. that move away from the social welfare model being applied through NFIP and toward more of an informed risk approach that transfers much of the investment responsibility over to individual private property owners.

Keywords: climate change adaptation, flood risk, moral hazard, sea-level rise

Procedia PDF Downloads 105
4674 Energy Efficient Building Design in Nigeria: An Assessment of the Effect of the Sun on Energy Consumption in Residential Buildings

Authors: Ekele T. Ochedi, Ahmad H. Taki, Birgit Painter

Abstract:

The effect of the sun and its path on thermal comfort and energy consumption in residential buildings in tropical climates constitute a serious concern for designers, building owners, and users. Passive design approaches based on the sun and its path have been identified as a means of reducing energy consumption as well as enhancing thermal comfort in buildings worldwide. Hence, a thorough understanding regarding the sun path is key to achieving this. This is necessary due to energy need, poor energy supply, and distribution, energy poverty, and over-dependence on electric generators for power supply in Nigeria. These challenges call for a change in the approach to energy-related issues, especially in terms of buildings. The aim of this study is to explore the influence of building orientation, glazing and the use of shading devices on residential buildings in Nigeria. This is intended to provide data that will guide designers in the design of energy-efficient residential buildings. The paper used EnergyPlus to analyze a typical semi-detached residential building in Lokoja, Nigeria using hourly weather data for a period of 10 years. Building performance was studied as well as possible improvement regarding different orientations, glazing types and shading devices. The simulation results show some reductions in energy consumption in response to changes in building orientation, types of glazing and the use of shading devices. The results indicate 29.45% reduction in solar gains and 1.90% in annual operative temperature using natural ventilation only. This shows a huge potential to reduce energy consumption and improve people’s well-being through the use of proper building orientation, glazing and appropriate shading devices on building envelope. The study concludes that for a significant reduction in total energy consumption by residential buildings, the design should focus on multiple design options rather than concentrating on one or few building elements. Moreover, the investigation confirms that energy performance modeling can be used by building designers to take advantage of the sun and to evaluate various design options.

Keywords: energy consumption, energy-efficient buildings, glazing, thermal comfort, shading devices, solar gains

Procedia PDF Downloads 208
4673 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank

Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park

Abstract:

When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.

Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)

Procedia PDF Downloads 701
4672 Comparison of Fundamental Frequency Model and PWM Based Model for UPFC

Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider

Abstract:

Among all FACTS devices, the unified power flow controller (UPFC) is considered to be the most versatile device. This is due to its capability to control all the transmission system parameters (impedance, voltage magnitude, and phase angle). With the growing interest in UPFC, the attention to develop a mathematical model has increased. Several models were introduced for UPFC in literature for different type of studies in power systems. In this paper a novel comparison study between two dynamic models of UPFC with their proposed control strategies.

Keywords: FACTS, UPFC, dynamic modeling, PWM, fundamental frequency

Procedia PDF Downloads 341
4671 The Effect of Isokinetic Fatigue of Ankle, Knee, and Hip Muscles on the Dynamic Postural Stability Index

Authors: Masoumeh Shojaei, Natalie Gedayloo, Amir Sarshin

Abstract:

The purpose of the present study was to investigate the effect of Isokinetic fatigue of muscles around the ankle, knee, and hip on the indicators of dynamic postural stability. Therefore, 15 female university students (age 19.7± 0.6 years old, weight 54.6± 9.4 kg, and height 163.9± 5.6 cm) participated in within-subjects design for 5 different days. In the first session, the postural stability indices (time to stabilization after jump-landing) without fatigue were assessed by force plate and in each next sessions, one of muscle groups of the lower limb including the muscles around ankles, knees, and hip was randomly exhausted by Biodex Isokinetic dynamometer and the indices were assessed immediately after the fatigue of each muscle group. The method involved landing on a force plate from a dynamic state, and transitioning balance into a static state. Results of ANOVA with repeated measures indicated that there was no significant difference between the time to stabilization (TTS) before and after Isokinetic fatigue of the muscles around the ankle, knee and hip in medial – lateral direction (p > 0.05), but in the anterior – posterior (AP) direction, the difference was statistically significant (p < 0.05). Least Significant Difference (LSD) post hoc test results also showed that there was significant difference between TTS in knee and hip muscles before and after isokinetic fatigue in AP direction. In the other hand knee and hip muscles group were affected by isokinetic fatigue only in AP surface (p < 0.05).

Keywords: dynamic balance, fatigue, lower limb muscles, postural control

Procedia PDF Downloads 233
4670 Loving is Universal, Dating is not: Dating Experiences of International Students in Vancouver

Authors: Nel Jayson Santos

Abstract:

The growing number of international students in post-secondary institutions in Canada has positively contributed to the country’s economy and educational systems while also enriching cultural diversity in the classrooms. However, international students face social and relational challenges as they try to adapt to their host nation’s culture. One specific area of cultural adaptation among international students that has yet to be studied extensively is dating experiences and romantic relationships. Although numerous studies have been done regarding the relational challenges and dating experiences of American international students, only a few studies have focused on international students based in Canada. Hence, this study examines the dating preferences, dating challenges, and dating adaptations of international students based in Vancouver, Canada. Using a social constructivist approach, a semi-structured interview was conducted among fifteen heterosexual international college students. Inductive thematic analysis was then used to analyze the gathered data and identify common themes. Findings suggest that students’ (1) preferences were influenced by racial background and parental approval of dating partners; (2) students experienced language barriers and cultural differences; (3) students adapted through constant communication and being open-minded. Finally, the analysis intends to help counselors and psychologists in various colleges to help understand the issues of international students in terms of intimate and romantic relationships.

Keywords: higher education, international students, dating experiences, cultural adaptation

Procedia PDF Downloads 204
4669 A System Dynamic Based DSS for Ecological Urban Management in Alexandria, Egypt

Authors: Mona M. Salem, Khaled S. Al-Hagla, Hany M. Ayad

Abstract:

The concept of urban metabolism has increasingly been employed in a diverse range of disciplines as a mean to analyze and theorize the city. Urban ecology has a particular focus on the implications of applying the metabolism concept to the urban realm. This approach has been developed by a few researchers, though it has rarely if ever been used in policy development for city planning. The aim of this research is to use ecologically informed urban planning interventions to increase the sustainability of urban metabolism; with special focus on land stock as a most important city resource by developing a system dynamic based DSS. This model identifies two critical management strategy variables for the Strategic Urban Plan Alexandria SUP 2032. As a result, this comprehensive and precise quantitative approach is needed to monitor, measure, evaluate and observe dynamic urban changes working as a decision support system (DSS) for policy making.

Keywords: ecology, land resource, LULCC, management, metabolism, model, scenarios, system dynamics, urban development

Procedia PDF Downloads 376
4668 Effects of Preparation Caused by Ischemic-Reperfusion along with Sodium Bicarbonate Supplementation on Submaximal Dynamic Force Production

Authors: Sara Nasiri Semnani, Alireza Ramzani

Abstract:

Background and Aims: Sodium bicarbonate is a supplementation that used to reduce fatigue and increase power output in short-term training. On the other hand, the Ischemic Reperfusion Preconditioning (IRPC) is an appropriate stimulus to increase the submaximal contractile response. Materials and methods: 9 female student-athletes in double-blind randomized crossover design were three mode, sodium bicarbonate + IRPC, sodium bicarbonate and placebo+ IRPC. Participants moved forward single arm dumbbell hand with a weight of 2 kg can be carried out most frequently. Results: The results showed that plasma lactate concentration and records of sodium bicarbonate + IRPC and sodium bicarbonate conditions were significantly different compared to placebo + IRPC (Respectively p=0.001, p=0/02). Conclusion: According to the research findings, bicarbonate supplementation in IRPC training condition increased force and delay fatigue in submaximal dynamic contraction.

Keywords: ischemic reperfusion, preconditioning, sodium bicarbonate, submaximal dynamic force

Procedia PDF Downloads 298
4667 Model Order Reduction of Complex Airframes Using Component Mode Synthesis for Dynamic Aeroelasticity Load Analysis

Authors: Paul V. Thomas, Mostafa S. A. Elsayed, Denis Walch

Abstract:

Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defined in the certification requirements. It is computationally prohibitive to use a Global Finite Element Model (GFEM) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of Component Mode Synthesis (CMS) method for the generation of high fidelity Reduced Order Model (ROM) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with an aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of the same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads Modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.

Keywords: component mode synthesis, craig bampton reduction method, dynamic aeroelasticity analysis, model order reduction

Procedia PDF Downloads 205
4666 Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell

Authors: Marco Avila Lopez, Hasnae Ait-Douchi, Silvia De Los Santos, Badr Eddine Lebrouhi, Pamela Ramírez Vidal

Abstract:

In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions.

Keywords: fuel cell, modelling, dynamic, thermal model, PEMFC

Procedia PDF Downloads 79
4665 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 143
4664 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 144