Search results for: dataset generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4494

Search results for: dataset generation

3954 The Identification of Combined Genomic Expressions as a Diagnostic Factor for Oral Squamous Cell Carcinoma

Authors: Ki-Yeo Kim

Abstract:

Trends in genetics are transforming in order to identify differential coexpressions of correlated gene expression rather than the significant individual gene. Moreover, it is known that a combined biomarker pattern improves the discrimination of a specific cancer. The identification of the combined biomarker is also necessary for the early detection of invasive oral squamous cell carcinoma (OSCC). To identify the combined biomarker that could improve the discrimination of OSCC, we explored an appropriate number of genes in a combined gene set in order to attain the highest level of accuracy. After detecting a significant gene set, including the pre-defined number of genes, a combined expression was identified using the weights of genes in a gene set. We used the Principal Component Analysis (PCA) for the weight calculation. In this process, we used three public microarray datasets. One dataset was used for identifying the combined biomarker, and the other two datasets were used for validation. The discrimination accuracy was measured by the out-of-bag (OOB) error. There was no relation between the significance and the discrimination accuracy in each individual gene. The identified gene set included both significant and insignificant genes. One of the most significant gene sets in the classification of normal and OSCC included MMP1, SOCS3 and ACOX1. Furthermore, in the case of oral dysplasia and OSCC discrimination, two combined biomarkers were identified. The combined genomic expression achieved better performance in the discrimination of different conditions than in a single significant gene. Therefore, it could be expected that accurate diagnosis for cancer could be possible with a combined biomarker.

Keywords: oral squamous cell carcinoma, combined biomarker, microarray dataset, correlated genes

Procedia PDF Downloads 423
3953 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 116
3952 Improving Our Understanding of the in vivo Modelling of Psychotic Disorders

Authors: Zsanett Bahor, Cristina Nunes-Fonseca, Gillian L. Currie, Emily S. Sena, Lindsay D.G. Thomson, Malcolm R. Macleod

Abstract:

Psychosis is ranked as the third most disabling medical condition in the world by the World Health Organization. Despite a substantial amount of research in recent years, available treatments are not universally effective and have a wide range of adverse side effects. Since many clinical drug candidates are identified through in vivo modelling, a deeper understanding of these models, and their strengths and limitations, might help us understand reasons for difficulties in psychosis drug development. To provide an unbiased summary of the preclinical psychosis literature we performed a systematic electronic search of PubMed for publications modelling a psychotic disorder in vivo, identifying 14,721 relevant studies. Double screening of 11,000 publications from this dataset so far established 2403 animal studies of psychosis, with the most common model being schizophrenia (95%). 61% of these models are induced using pharmacological agents. For all the models only 56% of publications test a therapeutic treatment. We propose a systematic review of these studies to assess the prevalence of reporting of measures to reduce risk of bias, and a meta-analysis to assess the internal and external validity of these animal models. Our findings are likely to be relevant to future preclinical studies of psychosis as this generation of strong empirical evidence has the potential to identify weaknesses, areas for improvement and make suggestions on refinement of experimental design. Such a detailed understanding of the data which inform what we think we know will help improve the current attrition rate between bench and bedside in psychosis research.

Keywords: animal models, psychosis, systematic review, schizophrenia

Procedia PDF Downloads 290
3951 Forward Conditional Restricted Boltzmann Machines for the Generation of Music

Authors: Johan Loeckx, Joeri Bultheel

Abstract:

Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.

Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)

Procedia PDF Downloads 522
3950 Adequacy of Second-Generation Laryngeal Mask Airway during Prolonged Abdominal Surgery

Authors: Sukhee Park, Gaab Soo Kim

Abstract:

Purpose: We aimed to evaluate the adequacy of second-generation laryngeal mask airway use during prolonged abdominal surgery in respect of ventilation, oxygenation, postoperative pulmonary complications (PPC), and postoperative non-pulmonary complications on living donor kidney transplant (LDKT) surgery. Methods: In total, 257 recipients who underwent LDKT using either laryngeal mask airway-ProSeal (LMA-P) or endotracheal tube (ETT) were retrospectively analyzed. Arterial partial pressure of carbon dioxide (PaCO2 and ratio of arterial partial pressure of oxygen to fractional inspired oxygen (PFR) during surgery were compared between two groups. In addition, PPC including pulmonary aspiration and postoperative non-pulmonary complications including nausea, vomiting, hoarseness, vocal cord palsy, delirium, and atrial fibrillation were also compared. Results: PaCO2 and PFR during surgery were not significantly different between the two groups. PPC was also not significantly different between the two groups. Interestingly, the incidence of delirium was significantly lower in the LMA-P group than the ETT group (3.0% vs. 10.3%, P = 0.029). Conclusions: During prolonged abdominal surgery such as LDKT, second-generation laryngeal mask airway offers adequate ventilation and oxygenation and can be considered a suitable alternative to ETT.

Keywords: laryngeal mask airway, prolonged abdominal surgery, kidney transplantation, postoperative pulmonary complication

Procedia PDF Downloads 148
3949 Phosphorus Recovery Optimization in Microbial Fuel Cell

Authors: Abdullah Almatouq

Abstract:

Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.

Keywords: energy, microbial fuel cell, phosphorus, struvite

Procedia PDF Downloads 157
3948 The Oppressive Boss and Employees' Authoritarianism: The Relation between Suppression of Voice by Employers and Employees' Preferences for Authoritarian Political Leadership

Authors: Antonia Stanojević, Agnes Akkerman

Abstract:

In contemporary society, economically active people typically spend most of their waking hours doing their job. Having that in mind, this research examines how socialization at the workplace shapes political preferences. Innovatively, it examines, in particular, the possible relationship between employees’ voice suppression by the employer and the formation of their political preferences. Since the employer is perceived as an authority figure, their behavior might induce spillovers to attitudes about political authorities and authoritarian governance. Therefore, a positive effect of suppression of voice by employers on employees' preference for authoritarian governance is expected. Furthermore, this relation is expected to be mediated by two mechanisms: system justification and power distance. Namely, it is expected that suppression of voice would create a power distance organizational climate and increase employees’ acceptance of unequal distribution of power, as well as evoke attempts of oppression rationalization through system justification. The hypotheses will be tested on the data gathered within the first wave of Work and Politics Dataset 2017 (N=6000), which allows for a wide range of demographic and psychological control variables. Although a cross-sectional analysis to be used at this point does not allow for causal inferences, the confirmation of expected relationships would encourage and justify further longitudinal research on the same panel dataset, in order to get a clearer image of the causal relationship between employers' suppression of voice and workers' political preferences.

Keywords: authoritarian values, political preferences, power distance, system justification, voice suppression

Procedia PDF Downloads 269
3947 The Incidental Linguistic Information Processing and Its Relation to General Intellectual Abilities

Authors: Evgeniya V. Gavrilova, Sofya S. Belova

Abstract:

The present study was aimed at clarifying the relationship between general intellectual abilities and efficiency in free recall and rhymed words generation task after incidental exposure to linguistic stimuli. The theoretical frameworks stress that general intellectual abilities are based on intentional mental strategies. In this context, it seems to be crucial to examine the efficiency of incidentally presented information processing in cognitive task and its relation to general intellectual abilities. The sample consisted of 32 Russian students. Participants were exposed to pairs of words. Each pair consisted of two common nouns or two city names. Participants had to decide whether a city name was presented in each pair. Thus words’ semantics was processed intentionally. The city names were considered to be focal stimuli, whereas common nouns were considered to be peripheral stimuli. Along with that each pair of words could be rhymed or not be rhymed, but this phonemic aspect of stimuli’s characteristic (rhymed and non-rhymed words) was processed incidentally. Then participants were asked to produce as many rhymes as they could to new words. The stimuli presented earlier could be used as well. After that, participants had to retrieve all words presented earlier. In the end, verbal and non-verbal abilities were measured with number of special psychometric tests. As for free recall task intentionally processed focal stimuli had an advantage in recall compared to peripheral stimuli. In addition all the rhymed stimuli were recalled more effectively than non-rhymed ones. The inverse effect was found in words generation task where participants tended to use mainly peripheral stimuli compared to focal ones. Furthermore peripheral rhymed stimuli were most popular target category of stimuli that was used in this task. Thus the information that was processed incidentally had a supplemental influence on efficiency of stimuli processing as well in free recall as in word generation task. Different patterns of correlations between intellectual abilities and efficiency in different stimuli processing in both tasks were revealed. Non-verbal reasoning ability correlated positively with free recall of peripheral rhymed stimuli, but it was not related to performance on rhymed words’ generation task. Verbal reasoning ability correlated positively with free recall of focal stimuli. As for rhymed words generation task, verbal intelligence correlated negatively with generation of focal stimuli and correlated positively with generation of all peripheral stimuli. The present findings lead to two key conclusions. First, incidentally processed stimuli had an advantage in free recall and word generation task. Thus incidental information processing appeared to be crucial for subsequent cognitive performance. Secondly, it was demonstrated that incidentally processed stimuli were recalled more frequently by participants with high nonverbal reasoning ability and were more effectively used by participants with high verbal reasoning ability in subsequent cognitive tasks. That implies that general intellectual abilities could benefit from operating by different levels of information processing while cognitive problem solving. This research was supported by the “Grant of President of RF for young PhD scientists” (contract № is 14.Z56.17.2980- MK) and the Grant № 15-36-01348a2 of Russian Foundation for Humanities.

Keywords: focal and peripheral stimuli, general intellectual abilities, incidental information processing

Procedia PDF Downloads 231
3946 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks

Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz

Abstract:

This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.

Keywords: distributed generation, heuristic approach, optimization, planning

Procedia PDF Downloads 525
3945 Hybrid Energy System for the German Mining Industry: An Optimized Model

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.

Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy

Procedia PDF Downloads 343
3944 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
3943 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 167
3942 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection

Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman

Abstract:

The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.

Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture

Procedia PDF Downloads 583
3941 The Classification Accuracy of Finance Data through Holder Functions

Authors: Yeliz Karaca, Carlo Cattani

Abstract:

This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).

Keywords: artificial neural networks, finance data, Holder regularity, multifractals

Procedia PDF Downloads 246
3940 Analyzing the Perception of Identity in Bilingual Communities: Case Study of Eritrean Immigrants in Switzerland

Authors: Warsa Melles

Abstract:

This study examines the way second-generation Eritrean immigrants living in the French-speaking part of Switzerland behave linguistically and culturally. The aim of this research is to demonstrate how the participants deal with their bilingualism (Tigrinya and French). More precisely, how does their language use correlates with their socio-cultural attitudes and how do these aspects (re)construct their identity? Data for this research was collected via, questionnaires and semi-structured interviews. Participants were asked to answer questions regarding their linguistic habits, their perception on being bilingual and their cultural identity. The major findings demonstrate that generation 2 relates more with the host country’s language since French is used as the main language in their daily interactions. On the other hand, due to the fact that they have never lived in Eritrea yet were raised by Eritrean born parents in a foreign country, it is more difficult for them to unanimously identify with just one culture. In that sense, intergenerational transmission plays a major role in the perception of identity. All the participants have at least a basic knowledge of Tigrinya, but the use of languages varies according to the purpose. Proficiency in the native language and sense of belonging can be correlated with the frequency of visits to Eritrea. In conclusion, the question of identity in the second-generation Eritrean community cannot be given a categorical and clear-cut answer instead, the new-self image that this social group aims to build is shaped by different factors that are essential to take into consideration.

Keywords: biculturalism, identity, language, migration

Procedia PDF Downloads 245
3939 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 130
3938 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach

Authors: Isara Muangthai, Lin Sue Jane

Abstract:

Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.

Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption

Procedia PDF Downloads 482
3937 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 58
3936 Integration problems of Dutch-Turkish Youngsters: A Qualitative Research

Authors: Ozge Karayalçin

Abstract:

This study tries to find out the reasons for the integration problems of third generation Dutch-Turkish youngsters by particularly focusing on the socio-cultural and socio-economic situations of these people in the Netherlands. The results obtained from the field research are summed up under four sections. These four sections are education and language, labour market, cultural factors, religion, and nationality. The underlying reasons of the integration problems are reflected from two different perspectives. The first one is the effects of social and economic enforcements implemented on the Turkish immigrant society. The second one is the traditional Turkish values that are quite different from Dutch values. The problems experienced by third generation Turkish origin Dutch youngsters are not one-sided. To conclude, solution-oriented advisements are asserted.

Keywords: acculturation levels, Dutch-Turkish youngsters, integration, transnational migrants, identity conflicts

Procedia PDF Downloads 420
3935 TRNG Based Key Generation for Certificateless Signcryption

Authors: S.Balaji, R.Sujatha, M. Ramakrishnan

Abstract:

Signcryption is a cryptographic primitive that fulfills both the functions of digital signature and public key encryption simultaneously in low cost when compared with the traditional signature-then-encryption approach. In this paper, we propose a novel mouse movement based key generation technique to generate secret keys which is secure against the outer and insider attacks. Tag Key Encapsulation Mechanism (KEM) process is implemented using True Random Number Generator (TRNG) method. This TRNG based key is used for data encryption in the Data Encapsulation Mechanism (DEM). We compare the statistical reports of the proposed system with the previous methods which implements TKEM based on pseudo random number generator

Keywords: pseudo random umber generator, signcryption, true random number generator, node deployment

Procedia PDF Downloads 341
3934 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions

Procedia PDF Downloads 306
3933 Influence of Deposition Temperature on Supercapacitive Properties of Reduced Graphene Oxide on Carbon Cloth: New Generation of Wearable Energy Storage Electrode Material

Authors: Snehal L. Kadam, Shriniwas B. Kulkarni

Abstract:

Flexible electrode material with high surface area and good electrochemical properties is the current trend captivating the researchers across globe for application in the next generation energy storage field. In the present work, crumpled sheet like reduced graphene oxide grown on carbon cloth by the hydrothermal method with a series of different deposition temperatures at fixed time. The influence of the deposition temperature on the structural, morphological, optical and supercapacitive properties of the electrode material was investigated by XRD, RAMAN, XPS, TEM, FE-SEM, UV-VISIBLE and electrochemical characterization techniques.The results show that the hydrothermally synthesized reduced graphene oxide on carbon cloth has sheet like mesoporous structure. The reduced graphene oxide material at 160°C exhibits the best supercapacitor performance, with a specific capacitance of 443 F/g at scan rate 5mV/sec. Moreover, stability studies show 97% capacitance retention over 1000 CV cycles. This result shows that hydrothermally synthesized RGO on carbon cloth is the potential electrode material and would be used in the next-generation wearable energy storage systems. The detailed analysis and results will be presented at the conference.

Keywords: graphene oxide, reduced graphene oxide, carbon cloth, deposition temperature, supercapacitor

Procedia PDF Downloads 190
3932 Effect of DG Installation in Distribution System for Voltage Monitoring Scheme

Authors: S. R. A. Rahim, I. Musirin, M. M. Othman, M. H. Hussain

Abstract:

Loss minimization is a long progressing issue mainly in distribution system. Nevertheless, its effect led to temperature rise due to significant voltage drop through the distribution line. Thus, compensation scheme should be proper scheduled in the attempt to alleviate the voltage drop phenomenon. Distributed generation has been profoundly known for voltage profile improvement provided that over-compensation or under-compensation phenomena are avoided. This paper addresses the issue of voltage improvement through different type DG installation. In ensuring optimal sizing and location of the DGs, predeveloped EMEFA technique was made to be used for this purpose. Incremental loading condition subjected to the system is the concern such that it is beneficial to the power system operator.

Keywords: distributed generation, EMEFA, power loss, voltage profile

Procedia PDF Downloads 367
3931 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates

Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery

Abstract:

Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.

Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop

Procedia PDF Downloads 95
3930 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 211
3929 Blue Hydrogen Production Via Catalytic Aquathermolysis Coupled with Direct Carbon Dioxide Capture Via Adsorption

Authors: Sherif Fakher

Abstract:

Hydrogen has been gaining a lot of global attention as an uprising contributor in the energy sector. Labeled as an energy carrier, hydrogen is used in many industries and can be used to generate electricity via fuel cells. Blue hydrogen involves the production of hydrogen from hydrocarbons using different processes that emit CO₂. However, the CO₂ is captured and stored. Hence, very little environmental damage occurs during the hydrogen production process. This research investigates the ability to use different catalysts for the production of hydrogen from different hydrocarbon sources, including coal, oil, and gas, using a two-step Aquathermolysis reaction. The research presents the results of experiments conducted to evaluate different catalysts and also highlights the main advantages of this process over other blue hydrogen production methods, including methane steam reforming, autothermal reforming, and oxidation. Two methods of hydrogen generation were investigated including partial oxidation and aquathermolysis. For those two reactions, the reaction kinetics, thermodynamics, and medium were all investigated. Following this, experiments were conducted to test the hydrogen generation potential from both methods. The porous media tested were sandstone, ash, and prozzolanic material. The spent oils used were spent motor oil and spent vegetable oil from cooking. Experiments were conducted at temperatures up to 250 C and pressures up to 3000 psi. Based on the experimental results, mathematical models were developed to predict the hydrogen generation potential at higher thermodynamic conditions. Since both partial oxidation and aquathermolysis require relatively high temperatures to undergo, it was important to devise a method by which these high temperatures can be generated at a low cost. This was done by investigating two factors, including the porous media used and the reliance on the spent oil. Of all the porous media used, the ash had the highest thermal conductivity. The second step was the partial combustion of part of the spent oil to generate the heat needed to reach the high temperatures. This reduced the cost of the heat generation significantly. For the partial oxidation reaction, the spent oil was burned in the presence of a limited oxygen concentration to generate carbon monoxide. The main drawback of this process was the need for burning. This resulted in the generation of other harmful and environmentally damaging gases. Aquathermolysis does not rely on burning, which makes it the cleaner alternative. However, it needs much higher temperatures to run the reaction. When comparing the hydrogen generation potential for both using gas chromatography, aquathermolysis generated 23% more hydrogen using the same volume of spent oil compared to partial oxidation. This research introduces the concept of using spent oil for hydrogen production. This can be a very promising method to produce a clean source of energy using a waste product. This can also help reduce the reliance on freshwater for hydrogen generation which can divert the usage of freshwater to other more important applications.

Keywords: blue hydrogen production, catalytic aquathermolysis, direct carbon dioxide capture, CCUS

Procedia PDF Downloads 31
3928 An Assesment of Unconventional Hydrocarbon Potential of the Silurian Dadaş Shales in Diyarbakır Basin, Türkiye

Authors: Ceren Sevimli, Sedat İnan

Abstract:

The Silurian Dadaş Formation within the Diyarbakir Basin in SE Türkiye, like other Silurian shales in North Africa and Middle East, represents a significant prospect for conventional and unconventional hydrocarbon exploration. The Diyarbakır Basin remains relatively underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Silurian Dadaş shales, utilizing basin modeling approach. The Dadaş shales are organic-rich and contain mainly Type II kerogen, especially the basal layer contains up to 10 wt. %TOC and thus it is named as “hot shale”. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. The data obtained from previous studies were used to calibrate basin model that has been established by using PetroMod software (Schlumberger). The calibrated model results suggest that Dadaş shales are in oil generation window and that the major episode for thermal maturation and hydrocarbon generation took place prior rot Alpine orogeny (uplift and erosion) The modeling results elucidate the burial history, maturity history, and hydrocarbon production history of the Silurian-aged Dadaş shales, as well as its hydrocarbon content in the area.

Keywords: dadaş formation, diyarbakır basin, silurian hot shale, unconventional hydrocarbon

Procedia PDF Downloads 33
3927 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 75
3926 Improving Power Quality in Wind Power Generation System

Authors: A. Omeiri, A. Djellad, P. O. Logerais, O. Riou, J. F. Durastanti

Abstract:

With the growing of electrical energy demand, wind power capacity has experienced tremendous growth in the past decade, thanks to wind power’s environmental benefits. Direct driven permanent magnet synchronous generator (PMSG) with a full size back-to-back converter set is one of the promising technologies employed with wind power generation. Wind grid integration brings the problems of voltage fluctuation and harmonic pollution. In the present study, the filter is placed between the wind system and the network to reduce the total harmonic distortion (THD) and enhance power quality during disturbances. The models of wind turbine, PMSG, power electronic converters and the filter are implemented in MATLAB/SIMULINK environment.

Keywords: wind energy conversion system, PMSG, PWM, THD, power quality, passive filter

Procedia PDF Downloads 648
3925 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation

Authors: Rashmi Malik, Videep Mishra

Abstract:

The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.

Keywords: iterative game design, generative design, gaming asset automation, generative game design

Procedia PDF Downloads 70