Search results for: building applications
9603 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast
Authors: Helene Thieblemont, Fariborz Haghighat
Abstract:
Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage
Procedia PDF Downloads 2719602 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)
Authors: Ali Pourkazemi
Abstract:
The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies
Procedia PDF Downloads 699601 Application of the Building Information Modeling Planning Approach to the Factory Planning
Authors: Peggy Näser
Abstract:
Factory planning is a systematic, objective-oriented process for planning a factory, structured into a sequence of phases, each of which is dependent on the preceding phase and makes use of particular methods and tools, and extending from the setting of objectives to the start of production. The digital factory, on the other hand, is the generic term for a comprehensive network of digital models, methods, and tools – including simulation and 3D visualisation – integrated by a continuous data management system. Its aim is the holistic planning, evaluation and ongoing improvement of all the main structures, processes and resources of the real factory in conjunction with the product. Digital factory planning has already become established in factory planning. The application of Building Information Modeling has not yet been established in factory planning but has been used predominantly in the planning of public buildings. Furthermore, this concept is limited to the planning of the buildings and does not include the planning of equipment of the factory (machines, technical equipment) and their interfaces to the building. BIM is a cooperative method of working, in which the information and data relevant to its lifecycle are consistently recorded, managed and exchanged in a transparent communication between the involved parties on the basis of digital models of a building. Both approaches, the planning approach of Building Information Modeling and the methodical approach of the Digital Factory, are based on the use of a comprehensive data model. Therefore it is necessary to examine how the approach of Building Information Modeling can be extended in the context of factory planning in such a way that an integration of the equipment planning, as well as the building planning, can take place in a common digital model. For this, a number of different perspectives have to be investigated: the equipment perspective including the tools used to implement a comprehensive digital planning process, the communication perspective between the planners of different fields, the legal perspective, that the legal certainty in each country and the quality perspective, on which the quality criteria are defined and the planning will be evaluated. The individual perspectives are examined and illustrated in the article. An approach model for the integration of factory planning into the BIM approach, in particular for the integrated planning of equipment and buildings and the continuous digital planning is developed. For this purpose, the individual factory planning phases are detailed in the sense of the integration of the BIM approach. A comprehensive software concept is shown on the tool. In addition, the prerequisites required for this integrated planning are presented. With the help of the newly developed approach, a better coordination between equipment and buildings is to be achieved, the continuity of the digital factory planning is improved, the data quality is improved and expensive implementation errors are avoided in the implementation.Keywords: building information modeling, digital factory, digital planning, factory planning
Procedia PDF Downloads 2669600 Hygrothermal Properties of Raw Earth Material
Authors: Ichrak Hamrouni, Tariq Ouahbi, Natalija Lhuissier, Saïd Taibi, Mehrez Jemai, Olivier Crumeyrolle, Hatem Zenzri
Abstract:
Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented.Keywords: raw earth material, hygro-thermal, thermal conductivity, water vapour permeability, building materials, building materials
Procedia PDF Downloads 1759599 The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses
Authors: Mohammad Aminnia, Mahmood Hosseini
Abstract:
Environmental and functional conditions sometimes necessitate the architectural plan of the building to be asymmetric, and this result in an asymmetric structure. In such cases, finding an optimal pattern for locating the components of the lateral load bearing system, including shear walls, in the building’s plan is desired. In case of shear walls, in addition to the location, the shape of the wall cross-section is also an effective factor. Various types of shear wall and their proper layout might come effective in better stiffness distribution and more appropriate seismic response of the building. Several studies have been conducted in the context of analysis and design of shear walls; however, few studies have been performed on making decisions for the location and form of shear walls in multi-story buildings, especially those with irregular plan. In this study, an attempt has been made to obtain the most reliable seismic behavior of multi-story reinforced concrete vertically chamfered buildings by using more appropriate shear walls form and arrangement in 7-, 10-, 12-, and 15-story buildings. The considered forms and arrangements include common rectangular walls and L-, T-, U- and Z-shaped plan, located as the core or in the outer frames of the building structure. Comparison of seismic behaviors of the buildings, including maximum roof displacement, and particularly the formation of plastic hinges and their distribution in the buildings’ structures, have been done based on the results of a series of nonlinear time history analyses by using a set of selected earthquake records. Results show that shear walls with U-shaped cross-section, placed as the building central core, and also walls with Z-shaped cross-section, placed at the corners give the building more reliable seismic behavior.Keywords: vertically chamfered buildings, non-linear time history analyses, l-, t-, u- and z-shaped plan walls
Procedia PDF Downloads 2579598 Focus on Sustainable Future of New Vernacular Architecture — Building "Vernacular Consciousness" in the New Ara
Authors: Ji Min China
Abstract:
The 20th century was the century of globalization. Developed transportation and the progress of information media made the earth into a global village. The differences between regions is increasingly reduced, "cultural convergence" phenomenon intensified, regional specialties and traditional culture has been eroded. In the field of architecture, while experienced orderly rational modernism baptism, it is increasingly recognized that set the expense of cultural differences and forced to follow the universal international-style building has been outdated. At the same time, in the 21st century environmental issues has been paid more and more attention, and the concept of sustainable development and sustainable building have been proposed.This makes the domestic and foreign architects began to explore the possibilities of building and reflect local cultural characteristics of the new vernacular architecture as a viable diversified architectural tendencies by domestic and foreign architects’ favor. The author will use the production and creative process of the new vernacular architecture at home and abroad as the background, and select some outstanding examples of the analysis and discussion, then reinterpret the "new vernacular architecture" in China now. This paper will pay more attention to how to master the true meaning of the here and now "new vernacular" as well as its multiple dimensions of sustainability in the future. It also determines the paper will be a two-way aspect and multi-dimensional understanding and mining of the "new vernacular".Keywords: new vernacular architecture, regional culture, multi dimension, sustainable
Procedia PDF Downloads 4559597 Design and Modeling of Amphibious Houses for Flood Prone Areas: The Case of Nigeria
Authors: Onyebuchi Mogbo, Abdulsalam Mohammed, Salsabila Wali
Abstract:
This research discusses the design and modeling of an amphibious building. The amphibious building is a house with the function of floating during a flood event. Over the years, houses have been built to resist flood events some of which have failed. The floating house is designed to work with nature and not against it. In the event of a flood, the house will rise with the increasing water level and protect the house from sinking. For the design and modeling of this house an estimated cost of N250, 000, approximately $700, will be needed. It is expected that the house will rise when lightweight materials are incorporated in the design, and the concrete dock (in form of a hollow box) carrying the entire house in its hollow space is well designed. When there is flooding the water will fill up the concrete dock, and the house will rise upwards with vertical guides preventing it from moving side to side or out of its boundary. Architectural and Structural designs will be used in this project.Keywords: amphibious building, flood, housing, design and modelling
Procedia PDF Downloads 1809596 Weaknesses and Performance Defects of Steel Structures According to the Executive Criteria
Authors: Ehsan Sadie
Abstract:
Despite the experience of heavy losses and damages of recent earthquakes such as 8 km E of Pāhala, Hawaii, 11 km W of Salvaleón de Higüey, Dominican Republic and 49 km SSE of Punta Cana, Dominican Republic earthquakes, the possibility of large earthquakes in most populated areas of any country and the serious need for quality control in the design and implementation of buildings, not enough attention has been paid to the proper construction. Steel structures constitute a significant part of construction in any metropolitan area. This article gives a brief overview of the implementation status of these buildings in urban areas and considers the weaknesses of performance that typically occur due to negligence or insufficient mastery of the building supervisor in the principles of operation of earthquake-resistant buildings, and provide appropriate and possible solutions to improve the construction.Keywords: bracing member, concentrated load, diaphragm system, earthquake engineering, load-bearing system, shear force, seismic retrofitting, steel building, strip foundation, supervising engineer, vulnerability of building
Procedia PDF Downloads 1469595 Initial Experiences of the First Version of Slovene Sustainable Building Indicators That are Based on Level(s)
Authors: Sabina Jordan, Marjana Šijanec Zavrl, Miha Tomšič, Friderik Knez
Abstract:
To determine the possibilities for the implementation of sustainable building indicators in Slovenia, testing of the first version of the indicators, developed in the CARE4CLIMATE project and based on the EU Level(s) framework, was carried out in 2022. Invited and interested stakeholders of the construction process were provided with video content and instructions on the Slovenian e-platform of sustainable building indicators. In addition, workshops and lectures with individual subjects were also performed. The final phase of the training and testing procedure included a questionnaire, which was used to obtain information about the participants' opinions regarding the indicators. The analysis of the results of the testing, which was focused on level 2, confirmed the key preliminary finding of the development group, namely that currently, due to the lack of certain knowledge, data, and tools, all indicators for this level are not yet feasible in practice. The research also highlighted the greater need for training and specialization of experts in this field. At the same time, it showed that the testing of the first version itself was a big challenge: only 30 experts fully participated and filled out the online questionnaire. This number seems alarmingly low at first glance, but compared to level(s) testing in the EU member states, it is much more than 50 times higher. However, for the further execution of the indicators in Slovenia, it will therefore be necessary to invest a lot of effort and engagement. It is likely that state support will also be needed, for example, in the form of financial mechanisms or incentives and/or legislative background.Keywords: sustainability, building, indicator, implementation, testing, questionnaire
Procedia PDF Downloads 929594 The Relationship of Building Information Modeling (BIM) Capability in Quantity Surveying Practice and Project Performance
Authors: P. F. Wong, H. Salleh, F. A. Rahim
Abstract:
The adoption of building information modeling (BIM) is increasing in the construction industry. However, quantity surveyors are slow in adoption compared to other professions due to lack of awareness of the BIM’s potential in their profession. It is still unclear on how BIM application can enhance quantity surveyors’ work performance and project performance. The aim of this research is to identify the capabilities of BIM in quantity surveying practices and examine the relationship between BIM capabilities and project performance. Questionnaire survey and interviews were adopted for data collection. Literature reviews identified there are eleven BIM capabilities in quantity surveying practice. Questionnaire results showed that there are several BIM capabilities significantly correlated with project performance in time, cost and quality aspects and the results were validated through interviews. These findings show that BIM has the capabilities to enhance quantity surveyors’ performances and subsequently improved project performance.Keywords: Building Information Modeling (BIM), quantity surveyors, capability, project performance
Procedia PDF Downloads 3679593 Interoperable Design Coordination Method for Sharing Communication Information Using Building Information Model Collaboration Format
Authors: Jin Gang Lee, Hyun-Soo Lee, Moonseo Park
Abstract:
The utilization of BIM and IFC allows project participants to collaborate across different areas by consistently sharing interoperable product information represented in a model. Comments or markups generated during the coordination process can be categorized as communication information, which can be shared in less standardized manner. It can be difficult to manage and reuse such information compared to the product information in a model. The present study proposes an interoperable coordination method using BCF (the BIM Collaboration Format) for managing and sharing the communication information during BIM based coordination process. A management function for coordination in the BIM collaboration system is developed to assess its ability to share the communication information in BIM collaboration projects. This approach systematically links communication information during the coordination process to the building model and serves as a type of storage system for retrieving knowledge created during BIM collaboration projects.Keywords: design coordination, building information model, BIM collaboration format, industry foundation classes
Procedia PDF Downloads 4329592 Specialized Building Terminology of the 19th Century
Authors: Klara Kroftova, Martin Ebel
Abstract:
Human history is characterized by continuous evolution. As mankind developed, so did crafts, doctrine, and, of course, language. Each field of human activity, science, and art or architecture has its own vocabulary, terms with its specific, well-defined meaning. These are words or phrases that may have a general meaning in a certain context, but which, when used in specific contexts, are characterized by their expertise. The development of architecture in this area is, therefore, closely related to the development of architecture. People discovered new building materials, building constructions, decorating, furnishings, etc. and with each new knowledge came a new name. Architecture and construction were specific to individual nations, but throughout human history, they were also copied differently from other nations. Thus, the terminology of the Czech language was established, but also adopted from foreign languages. In this paper, we will focus on the linguistic analysis of terms that we most often encounter in the study of 19th-century architecture in the Austro-Hungarian Monarchy. The article is supplemented by a small picture dictionary.Keywords: tenement houses, 19th century, terminology, Austro-Hungarian monarchy
Procedia PDF Downloads 1259591 Application of Grey Theory in the Forecast of Facility Maintenance Hours for Office Building Tenants and Public Areas
Authors: Yen Chia-Ju, Cheng Ding-Ruei
Abstract:
This study took case office building as subject and explored the responsive work order repair request of facilities and equipment in offices and public areas by gray theory, with the purpose of providing for future related office building owners, executive managers, property management companies, mechanical and electrical companies as reference for deciding and assessing forecast model. Important conclusions of this study are summarized as follows according to the study findings: 1. Grey Relational Analysis discusses the importance of facilities repair number of six categories, namely, power systems, building systems, water systems, air conditioning systems, fire systems and manpower dispatch in order. In terms of facilities maintenance importance are power systems, building systems, water systems, air conditioning systems, manpower dispatch and fire systems in order. 2. GM (1,N) and regression method took maintenance hours as dependent variables and repair number, leased area and tenants number as independent variables and conducted single month forecast based on 12 data from January to December 2011. The mean absolute error and average accuracy of GM (1,N) from verification results were 6.41% and 93.59%; the mean absolute error and average accuracy of regression model were 4.66% and 95.34%, indicating that they have highly accurate forecast capability.Keywords: rey theory, forecast model, Taipei 101, office buildings, property management, facilities, equipment
Procedia PDF Downloads 4449590 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock
Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,
Abstract:
Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure
Procedia PDF Downloads 4109589 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building
Authors: Kittipob Kondee, Chutima Prommak
Abstract:
In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.Keywords: indoor positioning system, optimization system design, multi-floor building, wireless sensor networks
Procedia PDF Downloads 2469588 Influence of Shading on a BIPV System’s Performance in an Urban Context: Case Study of BIPV Systems of the Science Center of Complexity Building of the National and Autonomous University of Mexico in Mexico City
Authors: Viridiana Edith Ardura Perea, José Luis Bermúdez Alcocer
Abstract:
The purpose of this paper is to establish the influence of shading on a Building Integrated Photovoltaic (BIPV) system´s performance in an urban context. The PV systems of the Science Center of Complexity (Centro de Ciencias de la Complejidad) Building based in the Main Campus of the National and Autonomous University of Mexico (UNAM) in Mexico City was taken as case study. The PV systems are placed on the rooftop and on the south façade of the building. The south-façade PV system, operating as sunshades, consists of two strings: one at the ground floor and the other one at the first floor. According to the building’s facility manager, the south-façade PV system generates 42% less electricity per kilowatt peak (kWp) installed than the one on the roof. The methods applied in this study were Solar Radiation Analysis (SRA) simulations performed with the Insight 360 Plug-in from Revit 2018® and an on-site measurement using specialized tools. The results of the SRA simulations showed that the shading casted by the PV system placed on the first floor on top of the PV system of the ground floor decreases its solar incident radiation over 50%. The simulation outcome was compared and validated to the measured data obtained from the on-site measurement. In conclusion, the loss factor achieved from the shading of the PVs is due to the surroundings and the PV system´s own design. The south-façade BIPV system’s deficient design generates critical losses on its performance and decreases its profitability.Keywords: building integrated photovoltaics design, energy analysis software, shading losses, solar radiation analysis
Procedia PDF Downloads 1799587 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques
Authors: Kishor T. Zingre, Seshadhri Srinivasan
Abstract:
Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates
Procedia PDF Downloads 1149586 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience
Authors: Al-Amin, Huanjun Jiang, Anayat Ali
Abstract:
Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network
Procedia PDF Downloads 859585 Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications
Authors: Vinay Kumar K. S., Shravani V., Spoorthi G., Udith K. S., Divya T. M., Venkatesha M.
Abstract:
In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology.Keywords: Ansys HFSS, gain, return loss, slot array, microstrip patch antenna, 5G antenna
Procedia PDF Downloads 1129584 The Performance of Natural Light by Roof Systems in Cultural Buildings
Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo
Abstract:
This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.Keywords: natural lighting, roof lighting systems, natural lighting in museums, comfort lighting
Procedia PDF Downloads 2109583 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation
Authors: Desmond Young
Abstract:
In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.Keywords: energy, ADMD, electrical load assessment, energy benchmarks
Procedia PDF Downloads 1129582 An Approximate Formula for Calculating the Fundamental Mode Period of Vibration of Practical Building
Authors: Abdul Hakim Chikho
Abstract:
Most international codes allow the use of an equivalent lateral load method for designing practical buildings to withstand earthquake actions. This method requires calculating an approximation to the fundamental mode period of vibrations of these buildings. Several empirical equations have been suggested to calculate approximations to the fundamental periods of different types of structures. Most of these equations are knowing to provide an only crude approximation to the required fundamental periods and repeating the calculation utilizing a more accurate formula is usually required. In this paper, a new formula to calculate a satisfactory approximation of the fundamental period of a practical building is proposed. This formula takes into account the mass and the stiffness of the building therefore, it is more logical than the conventional empirical equations. In order to verify the accuracy of the proposed formula, several examples have been solved. In these examples, calculating the fundamental mode periods of several farmed buildings utilizing the proposed formula and the conventional empirical equations has been accomplished. Comparing the obtained results with those obtained from a dynamic computer has shown that the proposed formula provides a more accurate estimation of the fundamental periods of practical buildings. Since the proposed method is still simple to use and requires only a minimum computing effort, it is believed to be ideally suited for design purposes.Keywords: earthquake, fundamental mode period, design, building
Procedia PDF Downloads 2849581 Building Information Modelling: A Solution to the Limitations of Prefabricated Construction
Authors: Lucas Peries, Rolla Monib
Abstract:
The construction industry plays a vital role in the global economy, contributing billions of dollars annually. However, the industry has been struggling with persistently low productivity levels for years, unlike other sectors that have shown significant improvements. Modular and prefabricated construction methods have been identified as potential solutions to boost productivity in the construction industry. These methods offer time advantages over traditional construction methods. Despite their potential benefits, modular and prefabricated construction face hindrances and limitations that are not present in traditional building systems. Building information modelling (BIM) has the potential to address some of these hindrances, but barriers are preventing its widespread adoption in the construction industry. This research aims to enhance understanding of the shortcomings of modular and prefabricated building systems and develop BIM-based solutions to alleviate or eliminate these hindrances. The research objectives include identifying and analysing key issues hindering the use of modular and prefabricated building systems, investigating the current state of BIM adoption in the construction industry and factors affecting its successful implementation, proposing BIM-based solutions to address the issues associated with modular and prefabricated building systems, and assessing the effectiveness of the developed solutions in removing barriers to their use. The research methodology involves conducting a critical literature review to identify the key issues and challenges in modular and prefabricated construction and BIM adoption. Additionally, an online questionnaire will be used to collect primary data from construction industry professionals, allowing for feedback and evaluation of the proposed BIM-based solutions. The data collected will be analysed to evaluate the effectiveness of the solutions and their potential impact on the adoption of modular and prefabricated building systems. The main findings of the research indicate that the identified issues from the literature review align with the opinions of industry professionals, and the proposed BIM-based solutions are considered effective in addressing the challenges associated with modular and prefabricated construction. However, the research has limitations, such as a small sample size and the need to assess the feasibility of implementing the proposed solutions. In conclusion, this research contributes to enhancing the understanding of modular and prefabricated building systems' limitations and proposes BIM-based solutions to overcome these limitations. The findings are valuable to construction industry professionals and BIM software developers, providing insights into the challenges and potential solutions for implementing modular and prefabricated construction systems in future projects. Further research should focus on addressing the limitations and assessing the feasibility of implementing the proposed solutions from technical and legal perspectives.Keywords: building information modelling, modularisation, prefabrication, technology
Procedia PDF Downloads 989580 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications
Authors: Udayan Patankar, Shashwati Bhagat, Vilas Nitneware, Ants Koel
Abstract:
An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band.Keywords: RFIC, PAE, RF CMOS, impedance matching
Procedia PDF Downloads 2249579 Energy-Saving Methods and Principles of Energy-Efficient Concept Design in the Northern Hemisphere
Authors: Yulia A. Kononova, Znang X. Ning
Abstract:
Nowadays, architectural development is getting faster and faster. Nevertheless, modern architecture often does not meet all the points, which could help our planet to get better. As we know, people are spending an enormous amount of energy every day of their lives. Because of the uncontrolled energy usage, people have to increase energy production. As energy production process demands a lot of fuel sources, it courses a lot of problems such as climate changes, environment pollution, animals’ distinction, and lack of energy sources also. Nevertheless, nowadays humanity has all the opportunities to change this situation. Architecture is one of the most popular fields where it is possible to apply new methods of saving energy or even creating it. Nowadays we have kinds of buildings, which can meet new willing. One of them is energy effective buildings, which can save or even produce energy, combining several energy-saving principles. The main aim of this research is to provide information that helps to apply energy-saving methods while designing an environment-friendly building. The research methodology requires gathering relevant information from literature, building guidelines documents and previous research works in order to analyze it and sum up into a material that can be applied to energy-efficient building design. To mark results it should be noted that the usage of all the energy-saving methods applied to a design project of building results in ultra-low energy buildings that require little energy for space heating or cooling. As a conclusion it can be stated that developing methods of passive house design can decrease the need of energy production, which is an important issue that has to be solved in order to save planet sources and decrease environment pollution.Keywords: accumulation, energy-efficient building, storage, superinsulation, passive house
Procedia PDF Downloads 2629578 Introducing an Innovative Structural Fuse for Creation of Repairable Buildings with See-Saw Motion during Earthquake and Investigating It by Nonlinear Finite Element Modeling
Authors: M. Hosseini, N. Ghorbani Amirabad, M. Zhian
Abstract:
Seismic design codes accept structural and nonstructural damages after the sever earthquakes (provided that the building is prevented from collapse), so that in many cases demolishing and reconstruction of the building is inevitable, and this is usually very difficult, costly and time consuming. Therefore, designing and constructing of buildings in such a way that they can be easily repaired after earthquakes, even major ones, is quite desired. For this purpose giving the possibility of rocking or see-saw motion to the building structure, partially or as a whole, has been used by some researchers in recent decade .the central support which has a main role in creating the possibility of see-saw motion in the building’s structural system. In this paper, paying more attention to the key role of the central fuse and support, an innovative energy dissipater which can act as the central fuse and support of the building with seesaw motion is introduced, and the process of reaching an optimal geometry for that by using finite element analysis is presented. Several geometric shapes were considered for the proposed central fuse and support. In each case the hysteresis moment rotation behavior of the considered fuse were obtained under simultaneous effect of vertical and horizontal loads, by nonlinear finite element analyses. To find the optimal geometric shape, the maximum plastic strain value in the fuse body was considered as the main parameter. The rotational stiffness of the fuse under the effect of acting moments is another important parameter for finding the optimum shape. The proposed fuse and support can be called Yielding Curved Bars and Clipped Hemisphere Core (YCB&CHC or more briefly YCB) energy dissipater. Based on extensive nonlinear finite element analyses it was found out the using rectangular section for the curved bars gives more reliable results. Then, the YCB energy dissipater with the optimal shape was used in a structural model of a 12 story regular building as its central fuse and support to give it the possibility of seesaw motion, and its seismic responses were compared to those of a the building in the fixed based conditions, subjected to three-components acceleration of several selected earthquakes including Loma Prieta, Northridge, and Park Field. In building with see-saw motion some simple yielding-plate energy dissipaters were also used under circumferential columns.The results indicated that equipping the buildings with central and circumferential fuses result in remarkable reduction of seismic responses of the building, including the base shear, inter story drift, and roof acceleration. In fact by using the proposed technique the plastic deformations are concentrated in the fuses in the lowest story of the building, so that the main body of the building structure remains basically elastic, and therefore, the building can be easily repaired after earthquake.Keywords: rocking mechanism, see-saw motion, finite element analysis, hysteretic behavior
Procedia PDF Downloads 4089577 Comparison of Steel and Composite Analysis of a Multi-Storey Building
Authors: Çiğdem Avcı Karataş
Abstract:
Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.Keywords: composite analysis, earthquake, steel, multi-storey building
Procedia PDF Downloads 5719576 Evaluation Criteria for Performance of Knitted Terry Fabrics and Building Elements of Fashion: A Critical Review
Authors: Harpinder Kaur, Amit Madahar
Abstract:
The terry fabric is one of the fastest growing and challenging sub-sectors of the textile industry. Terry fabrics are produced using ground weft, ground warp, and pile yarns. The terry fabrics not only finds applications in towels but also in home textile products, sauna dressing- gowns, slippers, jackets, garments, apparels, outerwears, overcoats, sweatshirts, children’s clothes, and hygiene products for babies, beachwear, sleepwear, gloves, scarfs, shawls, etc. In some cases, these wide ranges of applications not only demand a high degree of absorption but also necessitate the due consideration for the handle properties of the fabrics. These fabrics are required to be accessed for their performance in terms of absorbency and comfort characteristics. Since material (yarns, colors, fabrics, fashion, patrons, accessories and fittings) are the core elements of structure of fashion, hence textile and fashion go hand in hand. This paper throws some light on the performance evaluation of terry fabrics. Here, characteristics/features that are required to be achieved for satisfactory performance of the terry fabrics with reference to fashion are discussed. The terry fabrics are being modified over the years in terms of the raw material requirements such as 100% cotton or blends or cotton with other fibers in order to obtain better performance as well as their structural parameters including stitch length and stitch density etc.Keywords: absorbency, comfort, cotton, performance, terry fabrics, fashion
Procedia PDF Downloads 1469575 Probabilistic Seismic Loss Assessment of Reinforced Concrete (RC) Frame Buildings Pre- and Post-Rehabilitation
Authors: A. Flora, A. Di Lascio, D. Cardone, G. Gesualdi, G. Perrone
Abstract:
This paper considers the seismic assessment and retrofit of a pilotis-type RC frame building, which was designed for gravity loads only, prior to the introduction of seismic design provisions. Pilotis-type RC frame buildings, featuring an uniform infill throughout the height and an open ground floor, were, and still are, quite popular all over the world, as they offer large open areas very suitable for retail space at the ground floor. These architectural advantages, however, are of detriment to the building seismic behavior, as they can determine a soft-storey collapse mechanism. Extensive numerical analyses are carried out to quantify and benchmark the performance of the selected building, both in terms of overall collapse capacity and expected losses. Alternative retrofit strategies are then examined, including: (i) steel jacketing of RC columns and beam-column joints, (ii) steel bracing and (iv) seismic isolation. The Expected Annual Loss (EAL) of the selected case-study building, pre- and post-rehabilitation, is evaluated, following a probabilistic approach. The breakeven time of each solution is computed, comparing the initial cost of the retrofit intervention with expected benefit in terms of EAL reduction.Keywords: expected annual loss, reinforced concrete buildings, seismic loss assessment, seismic retrofit
Procedia PDF Downloads 2409574 Using Passive Cooling Strategies to Reduce Thermal Cooling Load for Coastal High-Rise Buildings of Jeddah, Saudi Arabia
Authors: Ahmad Zamzam
Abstract:
With the development of the economy in recent years, Saudi Arabia has been maintaining high economic growth. Therefore, its energy consumption has increased dramatically. This economic growth reflected on the expansion of high-rise tower's construction. Jeddah coastal strip (cornice) has many high-rise buildings planned to start next few years. These projects required a massive amount of electricity that was not planned to be supplied by the old infrastructure. This research studies the effect of the building envelope on its thermal performance. It follows a parametric simulation methodology using Ecotect software to analyze the effect of the building envelope design on its cooling energy load for an office high-rise building in Jeddah, Saudi Arabia, which includes building geometrical form, massing treatments, orientation and glazing type effect. The research describes an integrated passive design approach to reduce the cooling requirement for high-rise building through an improved building envelope design. The research used Ecotect to make four simulation studies; the first simulation compares the thermal performance of five high-rise buildings, presenting the basic shape of the plan. All the buildings have the same plan area and same floor height. The goal of this simulation is to find out the best shape for the thermal performance. The second simulation studies the effect of orientation on the thermal performance by rotating the same building model to find out the best and the worst angle for the building thermal performance. The third simulation studies the effect of the massing treatment on the total cooling load. It compared five models with different massing treatment, but with the same total built up area. The last simulation studied the effect of the glazing type by comparing the total cooling load of the same building using five different glass type and also studies the feasibility of using these glass types by studying the glass cost effect. The results indicate that using the circle shape as building plan could reduce the thermal cooling load by 40%. Also, using shading devices could reduce the cooling loads by 5%. The study states that using any of the massing grooving, recess or any treatment that could increase the outer exposed surface is not preferred and will decrease the building thermal performance. Also, the result shows that the best direction for glazing and openings from thermal performance viewpoint in Jeddah is the North direction while the worst direction is the East one. The best direction angle for openings - regarding the thermal performance in Jeddah- is 15 deg West and the worst is 250 deg West (110 deg East). Regarding the glass type effect, comparing to the double glass with air fill type as a reference case, the double glass with Air-Low-E will save 14% from the required amount of the thermal cooling load annually. Argon fill and triple glass will save 16% and 17% from the total thermal cooling load respectively, but for the glass cost purpose, using the Argon fill and triple glass is not feasible.Keywords: passive cooling, reduce thermal load, Jeddah, building shape, energy
Procedia PDF Downloads 128