Search results for: agent based web content mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33749

Search results for: agent based web content mining

33209 Foreign Language Curriculum of Mongolian Higher Educational Institutions, Problems and Solutions: In the Example of the Curriculum at National University of Mongolia

Authors: Sainbilegt Dashdorj, Delgerekhtsetseg Tsedev, Odontuya Mishigdorj, Bat-Uchral Ganzorigt

Abstract:

To develop a content-based recommendation of foreign language teaching for foreign language majoring and non-majoring classes at domestic universities by comparing the current situation, the environmental conditions, the curriculum, the plan, the content and so on of Mongolian foreign language teaching with the ones at the universities in the education development leading countries was set as the main goal and thus, it is considered to become an important step not only for solving an urgent foreign language teaching issue at Mongolian higher educational institutions but also for enhancing the foreign language knowledge of the national human resource in the globalizing world.

Keywords: CEFR, content standart, language curriculum, multilingualism

Procedia PDF Downloads 577
33208 Using Textual Pre-Processing and Text Mining to Create Semantic Links

Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo

Abstract:

This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.

Keywords: semantic links, data mining, linked data, SKOS

Procedia PDF Downloads 179
33207 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 179
33206 A Hybrid Approach for Thread Recommendation in MOOC Forums

Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard

Abstract:

Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.

Keywords: association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis

Procedia PDF Downloads 294
33205 Characterization of Biocomposites Based on Mussel Shell Wastes

Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk

Abstract:

Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.

Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties

Procedia PDF Downloads 314
33204 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8

Procedia PDF Downloads 124
33203 The Green Synthesis AgNPs from Basil Leaf Extract

Authors: Wanida Wonsawat

Abstract:

Bioreduction of silver nanoparticles (AgNPs) from silver ions (Ag+) using water extract of Thai basil leaf was successfully carried out. The basil leaf extract provided a reducing agent and stabilizing agent for a synthesis of metal nanoparticles. Silver nanoparticles received from cut and uncut basil leaf was compared. The resulting silver nanoparticles are characterized by UV-Vis spectroscopy. The maximum intensities of silver nanoparticle from cut and uncut basil leaf were 410 and 420, respectively. The techniques involved are simple, eco-friendly and rapid.

Keywords: basil leaves, silver nanoparticles, green synthesis, plant extract

Procedia PDF Downloads 588
33202 Heritage Value and Industrial Tourism Potential of the Urals, Russia

Authors: Anatoly V. Stepanov, Maria Y. Ilyushkina, Alexander S. Burnasov

Abstract:

Expansion of tourism, especially after WWII, has led to significant improvements in the regional infrastructure. The present study has revealed a lot of progress in the advancement of industrial heritage narrative in the Central Urals. The evidence comes from the general public’s increased fascination with some of Europe’s oldest mining and industrial sites, and the agreement of many stakeholders that the Urals industrial heritage should be preserved. The development of tourist sites in Nizhny Tagil and Nevyansk, gold-digging in Beryosovsky, gemstone search in Murzinka, and the progress with the Urals Gemstone Ring project are the examples showing the immense opportunities of industrial heritage tourism development in the region that are still to be realized. Regardless of the economic future of the Central Urals, whether it will remain an industrial region or experience a deeper deindustrialization, the sprouts of the industrial heritage tourism should be advanced and amplified for the benefit of local communities and the tourist community at large as it is hard to imagine a more suitable site for the discovery of industrial and mining heritage than the Central Urals Region of Russia.

Keywords: industrial heritage, mining heritage, Central Urals, Russia

Procedia PDF Downloads 136
33201 Using Data Mining Techniques to Evaluate the Different Factors Affecting the Academic Performance of Students at the Faculty of Information Technology in Hashemite University in Jordan

Authors: Feras Hanandeh, Majdi Shannag

Abstract:

This research studies the different factors that could affect the Faculty of Information Technology in Hashemite University students’ accumulative average. The research paper verifies the student information, background, their academic records, and how this information will affect the student to get high grades. The student information used in the study is extracted from the student’s academic records. The data mining tools and techniques are used to decide which attribute(s) will affect the student’s accumulative average. The results show that the most important factor which affects the students’ accumulative average is the student Acceptance Type. And we built a decision tree model and rules to determine how the student can get high grades in their courses. The overall accuracy of the model is 44% which is accepted rate.

Keywords: data mining, classification, extracting rules, decision tree

Procedia PDF Downloads 416
33200 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.

Keywords: clustering, unsupervised learning, pattern recognition, categorical datasets, knowledge discovery, k-means

Procedia PDF Downloads 259
33199 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules

Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez

Abstract:

Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.

Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems

Procedia PDF Downloads 421
33198 A Linear Programming Approach to Assist Roster Construction Under a Salary Cap

Authors: Alex Contarino

Abstract:

Professional sports leagues often have a “free agency” period, during which teams may sign players with expiring contracts.To promote parity, many leagues operate under a salary cap that limits the amount teams can spend on player’s salaries in a given year. Similarly, in fantasy sports leagues, salary cap drafts are a popular method for selecting players. In order to sign a free agent in either setting, teams must bid against one another to buy the player’s services while ensuring the sum of their player’s salaries is below the salary cap. This paper models the bidding process for a free agent as a constrained optimization problem that can be solved using linear programming. The objective is to determine the largest bid that a team should offer the player subject to the constraint that the value of signing the player must exceed the value of using the salary cap elsewhere. Iteratively solving this optimization problem for each available free agent provides teams with an effective framework for maximizing the talent on their rosters. The utility of this approach is demonstrated for team sport roster construction and fantasy sport drafts, using recent data sets from both settings.

Keywords: linear programming, optimization, roster management, salary cap

Procedia PDF Downloads 111
33197 Travel Behavior Simulation of Bike-Sharing System Users in Kaoshiung City

Authors: Hong-Yi Lin, Feng-Tyan Lin

Abstract:

In a Bike-sharing system (BSS), users can easily rent bikes from any station in the city for mid-range or short-range trips. BSS can also be integrated with other types of transport system, especially Green Transportation system, such as rail transport, bus etc. Since BSS records time and place of each pickup and return, the operational data can reflect more authentic and dynamic state of user behaviors. Furthermore, land uses around docking stations are highly associated with origins and destinations for the BSS users. As urban researchers, what concerns us more is to take BSS into consideration during the urban planning process and enhance the quality of urban life. This research focuses on the simulation of travel behavior of BSS users in Kaohsiung. First, rules of users’ behavior were derived by analyzing operational data and land use patterns nearby docking stations. Then, integrating with Monte Carlo method, these rules were embedded into a travel behavior simulation model, which was implemented by NetLogo, an agent-based modeling tool. The simulation model allows us to foresee the rent-return behaviour of BSS in order to choose potential locations of the docking stations. Also, it can provide insights and recommendations about planning and policies for the future BSS.

Keywords: agent-based model, bike-sharing system, BSS operational data, simulation

Procedia PDF Downloads 333
33196 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 68
33195 A Mathematical Agent-Based Model to Examine Two Patterns of Language Change

Authors: Gareth Baxter

Abstract:

We use a mathematical model of language change to examine two recently observed patterns of language change: one in which most speakers change gradually, following the mean of the community change, and one in which most individuals use predominantly one variant or another, and change rapidly if they change at all. The model is based on Croft’s Utterance Selection account of language change, which views language change as an evolutionary process, in which different variants (different ‘ways of saying the same thing’) compete for usage in a population of speakers. Language change occurs when a new variant replaces an older one as the convention within a given population. The present model extends a previous simpler model to include effects related to speaker aging and interspeaker variation in behaviour. The two patterns of individual change (one more centralized and the other more polarized) were recently observed in historical language changes, and it was further observed that slower changes were more associated with the centralized pattern, while quicker changes were more polarized. Our model suggests that the two patterns of change can be explained by different balances between the preference of speakers to use one variant over another and the degree of accommodation to (propensity to adapt towards) other speakers. The correlation with the rate of change appears naturally in our model, and results from the fact that both differential weighting of variants and the degree of accommodation affect the time for change to occur, while also determining the patterns of change. This work represents part of an ongoing effort to examine phenomena in language change through the use of mathematical models. This offers another way to evaluate qualitative explanations that cannot be practically tested (or cannot be tested at all) in a real-world, large-scale speech community.

Keywords: agent based modeling, cultural evolution, language change, social behavior modeling, social influence

Procedia PDF Downloads 235
33194 Institional Logics and Individual Actors: What Can an Organizational Change Agent Do?

Authors: Miraç Savaş Turhan, Ali Danışman

Abstract:

New institutional theorists in organization theory have used institutional logics perspective to explain the contradictory practices in modern western societies. Accordingly, distinct institutional logics are embedded in central institutions such as the market, state, democracy, family, and religion. Individual and organizational actors and their practices are restricted and guided by institutional logics in a particular field. Through this perspective, actors are assumed to have a situated, embedded, boundedly intentional, and adaptive role against the structure in social, cultural and political context. Since the early 1990's, increasing number of studies has attempted to explain the role of actors in creating, maintaining, and changing institutions. Yet, most of these studies have focused on organizational field-level actors, ignoring the role that can be played by individual actors within organizations. As a result, we have much information about what organizational field level actors can do, but relatively little knowledge about the ability of organizational change agents within organization in relation to institutional orders. This study is an attempt to find out how the ability of individual actors who attempt to change their organization is constrained and shaped by institutional logics dominating the field. We examine this issue in a private school in the Turkish Education field. We first describe dominating institutional logics in the Turkish Education field. Then we conducted in-depth interviews and content analysis in the school. The early results indicate that attempts and actions of organizational change agents are remarkably directed and shaped by the dominating institutional logics in the Turkish Education field.

Keywords: Institutional logics, individual actors, organizational change, organizational change agent

Procedia PDF Downloads 395
33193 Prospective Mathematics Teachers' Content Knowledge on the Definition of Limit and Derivative

Authors: Reyhan Tekin Sitrava

Abstract:

Teachers should have robust and comprehensive content knowledge for effective mathematics teaching. It was explained that content knowledge includes knowing the facts, truths, and concepts; explaining the reasons behind these facts, truths and concepts, and making relationship between the concepts and other disciplines. By virtue of its importance, it will be significant to explore teachers and prospective teachers’ content knowledge related to variety of topics in mathematics. From this point of view, the purpose of this study was to investigate prospective mathematics teachers’ content knowledge. Particularly, it was aimed to reveal the prospective teachers’ knowledge regarding the definition of limit and derivate. To achieve the purpose and to get in-depth understanding, a qualitative case study method was used. The data was collected from 34 prospective mathematics teachers through a questionnaire containing 2 questions. The first question required the prospective teachers to define the limit and the second one required to define the derivative. The data was analyzed using content analysis method. Based on the analysis of the data, although half of the prospective teachers (50%) could write the definition of the limit, nine prospective teachers (26.5%) could not define limit. However, eight prospective teachers’ definition was regarded as partially correct. On the other hand, twenty-seven prospective teachers (79.5%) could define derivative, but seven of them (20.5%) defined it partially. According to the findings, most of the prospective teachers have robust content knowledge on limit and derivative. This result is important because definitions have a virtual role in learning and teaching of mathematics. More specifically, definition is starting point to understand the meaning of a concept. From this point of view, prospective teachers should know the definitions of the concepts to be able to teach them correctly to the students. In addition, they should have knowledge about the relationship between limit and derivative so that they can explain these concepts conceptually. Otherwise, students may memorize the rules of calculating the derivative and the limit. In conclusion, the present study showed that most of the prospective mathematics teachers had enough knowledge about the definition of derivative and limit. However, the rest of them should learn their definition conceptually. The examples of correct, partially correct, and incorrect definition of both concepts will be presented and discussed based on participants’ statements. This study has some implications for instructors. Instructors should be careful about whether students learn the definition of these concepts or not. In order to this, the instructors may give prospective teachers opportunities to discuss the definition of these concepts and the relationship between the concepts.

Keywords: content knowledge, derivative, limit, prospective mathematics teachers

Procedia PDF Downloads 221
33192 The Effect of Metformin in Combination with Dexamethasone on the CXCR4 Level in Multiple Myeloma Cell Line

Authors: Seyede Sanaz Seyedebrahimi, Shima Rahimi, Shohreh Fakhari, Ali Jalili

Abstract:

Background: CXCR4, as a chemokine receptor, plays well-known roles in various types of cancers. Several studies have been conducted to overcome CXCR4 axis acts in multiple myeloma (MM) pathogenesis and progression. Dexamethasone, a standard treatment for multiple myeloma, has been shown to increase CXCR4 levels in multiple myeloma cell lines. Herein, we focused on the effects of metformin and dexamethasone on CXCR4 at the cellular level and the migration rate of cell lines after exposure to a combination compared to single-agent models. Materials and Method: Multiple myeloma cell lines (U266 and RPMI8226) were cultured with different metformin and dexamethasone concentrations in single-agent and combination models. The simultaneous combination doses were calculated by CompuSyn software. Cell surface and mRNA expression of CXCR4 were determined using flow cytometry and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay, respectively. The Transwell cell migration assay evaluated the migration ability. Results: In concurred with previous studies, our results showed a dexamethasone up-regulation effect on CXCR4 in a dose-dependent manner. Although, the metformin single-agent model could reduce CXCR4 expression of U266 and RPMI8226 in cell surface and mRNA expression level. Moreover, the administration of metformin and dexamethasone simultaneously exerted a higher suppression effect on CXCR4 expression than the metformin single-agent model. The migration rate through the combination model's matrigel membrane was remarkably lower than the metformin and dexamethasone single-agent model. Discussion: According to our findings, the combination of metformin and dexamethasone effectively inhibited dexamethasone-induced CXCR4 expression in multiple myeloma cell lines. As a result, metformin may be counted as an alternative medicine combined with other chemotherapies to combat multiple myeloma. However, more research is required.

Keywords: CXCR4, dexamethasone, metformin, migration, multiple myeloma

Procedia PDF Downloads 156
33191 Content Based Video Retrieval System Using Principal Object Analysis

Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham

Abstract:

Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.

Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM

Procedia PDF Downloads 301
33190 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 54
33189 The Influence of Water Content on the Shear Resistance of Silty Sands

Authors: Mohamed Boualem Salah

Abstract:

This work involves an experimental study of the behavior of chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the contracting and dilatancy, the angle of internal friction and cohesion etc.). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands etc.) is currently the state of several studies to better use. We studied in this work: The influence of the following factors on the shear strength: (The density, the fines content, the water content). The apparatus used for the tests is the shear box casagrande. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils.

Keywords: behavior, shear strength, sand, silt, friction angle, cohesion, fines content, moisture content

Procedia PDF Downloads 408
33188 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 378
33187 Improvement of Low Delta-9 Tetrahydrocannabinol (THC) Hemp Cultivars for High Fiber Content

Authors: Sarita Pinmanee, Saipan Krapbia, Rataya Yanaphan

Abstract:

Hemp (Cannabis sativa L.) is multi-purpose crop delivering fibers, shives, and seed. The fiber is used today for special paper, insulation material, and biocomposites. This research was to improve low delta-9 Tetrahydrocannabinol (THC) hemp variety for high fiber contents. Mass selection for increased fiber content in four low THC Thai cultivars (including RPF1, RPF2, RPF3, and RPF4) was carried out in highland areas in the northern Thailand. Research work was conducted for three consecutive growing seasons during 2012 to 2014 at Pangda Royal Agricultural Station, Samoeng District, Chiang Mai Province, Thailand. Results of selection indicated that after selecting for three successive generations, the average fiber content of four low THC Thai cultivars increased to 28-36 %. The resulted of selection was found that fiber content of RPF1, RPF2, RPF3 and RPF4 increased to 20.6, 19.1, 19.9 and 22.8%, respectively. In addition, THC contents of these four varieties were 0.07, 0.138, 0.08 and 0.072 % respectively. As well, mass selection method was considered as an effective and suitable method for improving this fiber content.

Keywords: Hemp, mass selection, fiber content, low THC content

Procedia PDF Downloads 411
33186 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks

Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir

Abstract:

Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.

Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.

Procedia PDF Downloads 89
33185 The Effect of Si Content on the Physical Properties of Nanostructured (Ni75Fe25)100-xSix Alloy Elaborated by Mechanical Alloying

Authors: A. Kaibi, A. Guittoum, M. Hemmous, D. Martínez-Blanco, P. Gorria, J. A. Blanco, M. Kechouane

Abstract:

The present work deals with the effect of Si content on the physical properties of nanostructured (Ni75Fe25)100-x Six (x=0, 3.5, 6.5, 9, 12, and 15 at %) powders elaborated by mechanical alloying for a milling time of 96 h. The microstructure, hyperfine, and magnetic properties of the powders were investigated as a function of Si content by means of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Mössbauer Spectroscopy, and Vibrating Sample magnetometry (VSM). From XRD spectra, the formation of FCC disordered Ni (Fe,Si) solid solution was evidenced after 96 h. As Si content increases, the lattice parameter and the grain size decrease (from ~28 to 15 nm), while the microstrain level decreases from 0.98% to 0.65%. From SEM micrographs, we showed that powder particles become round in shape and decrease in size with increasing Si content. For all Si content, the adjustment of Mössbauer spectra confirmed the formation of a disordered ferromagnetic NiFeSi phase. From hysteresis curves, we have extracted the values of saturation magnetization and coercive field for all powders. The evolution of Ms and Hc as a function of Si content will be discussed.

Keywords: nanostructured powders, (Ni75Fe25)100-xSix alloy, microstructure, magnetic properties

Procedia PDF Downloads 27
33184 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects

Authors: Victor Radich, Tania Basso, Regina Moraes

Abstract:

Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.

Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring

Procedia PDF Downloads 85
33183 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 196
33182 Effect of Crude oil Contamination on the Morphological Traits and Protein Content of Avicennia Marina

Authors: Babak Moradi, Hassan Zare-Maivan

Abstract:

A greenhouse investigation has been conducted to study the effect of crude oil on morphology and protein content of Avicennia marina plant. Avicennia marina seeds were sown in different concentrations of the crude oil mixed soil (i.e., 2.5, 5, 7.5, and 10 w/w). Controls and replicates were also set up. Morphological traits were recorded 4 months after plantation. Avicennia marina seedlings could tolerate up to 10% (w/w). Results demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Plant height, total leaf number and length reduced significantly with increase of crude oil contamination. Investigation revealed that there is a great impact of crude oil contamination on protein content of the roots of the experimental plant. Protein content of roots grown in different concentrations of crude oil were more than those of the control plant. Further, results also showed that protein content was increased with increased concentration of crude oil.

Keywords: Avicennia marina, morphology, oil contamination, protein content

Procedia PDF Downloads 376
33181 An Inquiry into the Usage of Complex Systems Models to Examine the Effects of the Agent Interaction in a Political Economic Environment

Authors: Ujjwall Sai Sunder Uppuluri

Abstract:

Group theory is a powerful tool that researchers can use to provide a structural foundation for their Agent Based Models. These Agent Based models are argued by this paper to be the future of the Social Science Disciplines. More specifically, researchers can use them to apply evolutionary theory to the study of complex social systems. This paper illustrates one such example of how theoretically an Agent Based Model can be formulated from the application of Group Theory, Systems Dynamics, and Evolutionary Biology to analyze the strategies pursued by states to mitigate risk and maximize usage of resources to achieve the objective of economic growth. This example can be applied to other social phenomena and this makes group theory so useful to the analysis of complex systems, because the theory provides the mathematical formulaic proof for validating the complex system models that researchers build and this will be discussed by the paper. The aim of this research, is to also provide researchers with a framework that can be used to model political entities such as states on a 3-dimensional plane. The x-axis representing resources (tangible and intangible) available to them, y the risks, and z the objective. There also exist other states with different constraints pursuing different strategies to climb the mountain. This mountain’s environment is made up of risks the state faces and resource endowments. This mountain is also layered in the sense that it has multiple peaks that must be overcome to reach the tallest peak. A state that sticks to a single strategy or pursues a strategy that is not conducive to the climbing of that specific peak it has reached is not able to continue advancement. To overcome the obstacle in the state’s path, it must innovate. Based on the definition of a group, we can categorize each state as being its own group. Each state is a closed system, one which is made up of micro level agents who have their own vectors and pursue strategies (actions) to achieve some sub objectives. The state also has an identity, the inverse being anarchy and/or inaction. Finally, the agents making up a state interact with each other through competition and collaboration to mitigate risks and achieve sub objectives that fall within the primary objective. Thus, researchers can categorize the state as an organism that reflects the sum of the output of the interactions pursued by agents at the micro level. When states compete, they employ a strategy and that state which has the better strategy (reflected by the strategies pursued by her parts) is able to out-compete her counterpart to acquire some resource, mitigate some risk or fulfil some objective. This paper will attempt to illustrate how group theory combined with evolutionary theory and systems dynamics can allow researchers to model the long run development, evolution, and growth of political entities through the use of a bottom up approach.

Keywords: complex systems, evolutionary theory, group theory, international political economy

Procedia PDF Downloads 139
33180 Effect of Sulfur Content on Fatigue Strength of AISI 4140 Steel

Authors: Sachin S. Patil, Mohan I. Mehta, Sandip J. Sutar, Akshay B. Patil, Shreyas S. Kirwai, Suresh Arangi

Abstract:

MnS is the most commonly found inclusion in steel, which is desirable for machinability of alloy steels but only up to a certain limit, beyond which it weakens fatigue properties of steel. In present work, the effect of sulfur content and its inclusions on the fatigue behavior of AISI 4140 steel is studied (sulfur content 0.002% and 0.016%). Metallurgical analysis, Mechanical testing and Rotating Bending Fatigue (RBF) test were carried out. With the increase in sulfur content, ductility and toughness of the material decrease significantly and large scatter is observed in UTS and impact energy values. From the results of RBF testing, it can be observed that increase in sulfur content from 0.002% to 0.016% has a negligible effect on the endurance strength of AISI 4140 for similar hardness level. Fractography analysis was carried out to study the failure modes in testing.

Keywords: AISI 4140, sulfur content, MnS inclusion, rotating bending fatigue

Procedia PDF Downloads 399