Search results for: ground motion modeling
1272 Sustainable Practices through Organizational Internal Factors among South African Construction Firms
Authors: Oluremi I. Bamgbade, Oluwayomi Babatunde
Abstract:
Governments and nonprofits have been in the support of sustainability as the goal of businesses especially in the construction industry because of its considerable impacts on the environment, economy, and society. However, to measure the degree to which an organisation is being sustainable or pursuing sustainable growth can be difficult as a result of the clear sustainability strategy required to assume their commitment to the goal and competitive advantage. This research investigated the influence of organisational culture and organisational structure in achieving sustainable construction among South African construction firms. A total of 132 consultants from the nine provinces in South Africa participated in the survey. The data collected were initially screened using SPSS (version 21) while Partial Least Squares Structural Equation Modeling (PLS-SEM) algorithm and bootstrap techniques were employed to test the hypothesised paths. The empirical evidence also supported the hypothesised direct effects of organisational culture and organisational structure on sustainable construction. Similarly, the result regarding the relationship between organisational culture and organisational structure was supported. Therefore, construction industry can record a considerable level of construction sustainability and establish suitable cultures and structures within the construction organisations. Drawing upon organisational control theory, these findings supported the view that these organisational internal factors have a strong contingent effect on sustainability adoption in construction project execution. The paper makes theoretical, practical and methodological contributions within the domain of sustainable construction especially in the context of South Africa. Some limitations of the study are indicated, suggesting opportunities for future research.Keywords: organisational culture, organisational structure, South African construction firms, sustainable construction
Procedia PDF Downloads 2861271 The Magnitude and Associated Factors of Immune Hemolytic Anemia among Human Immuno Deficiency Virus Infected Adults Attending University of Gondar Comprehensive Specialized Hospital North West Ethiopia 2021 GC, Cross Sectional Study Design
Authors: Samul Sahile Kebede
Abstract:
Back ground: -Immune hemolytic anemia commonly affects human immune deficiency, infected individuals. Among anemic HIV patients in Africa, the burden of IHA due to autoantibody was ranged from 2.34 to 3.06 due to the drug was 43.4%. IHA due to autoimmune is potentially a fatal complication of HIV, which accompanies the greatest percent from acquired hemolytic anemia. Objective: -The main aim of this study was to determine the magnitude and associated factors of immune hemolytic anemia among human immuno deficiency virus infected adults at the university of Gondar comprehensive specialized hospital north west Ethiopia from March to April 2021. Methods: - An institution-based cross-sectional study was conducted on 358 human immunodeficiency virus-infected adults selected by systematic random sampling at the University of Gondar comprehensive specialized hospital from March to April 2021. Data for socio-demography, dietary and clinical data were collected by structured pretested questionnaire. Five ml of venous blood was drawn from each participant and analyzed by Unicel DHX 800 hematology analyzer, blood film examination, and antihuman globulin test were performed to the diagnosis of immune hemolytic anemia. Data was entered into Epidata version 4.6 and analyzed by STATA version 14. Descriptive statistics were computed and firth penalized logistic regression was used to identify predictors. P value less than 0.005 interpreted as significant. Result; - The overall prevalence of immune hemolytic anemia was 2.8 % (10 of 358 participants). Of these, 5 were males, and 7 were in the 31 to 50 year age group. Among individuals with immune hemolytic anemia, 40 % mild and 60 % moderate anemia. The factors that showed association were family history of anemia (AOR 8.30 at 95% CI 1.56, 44.12), not eating meat (AOR 7.39 at 95% CI 1.25, 45.0), and high viral load 6.94 at 95% CI (1.13, 42.6). Conclusion and recommendation; Immune hemolytic anemia is less frequent condition in human immunodeficiency virus infected adults, and moderate anemia was common in this population. The prevalence was increased with a high viral load, a family history of anemia, and not eating meat. In these patients, early detection and treatment of immune hemolytic anemia is necessary.Keywords: anemia, hemolytic, immune, auto immune, HIV/AIDS
Procedia PDF Downloads 1041270 Quantum Mechanics as A Limiting Case of Relativistic Mechanics
Authors: Ahmad Almajid
Abstract:
The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation.Keywords: lorentz quantum factor, new, planck’s energy as a limiting case of einstein’s energy, real quantum mechanics, new equations for quantum mechanics
Procedia PDF Downloads 741269 A Study on Shavadoon Underground Living Space in Dezful and Shooshtar Cities, Southwest of Iran: As a Sample of Sustainable Vernacular Architecture
Authors: Haniyeh Okhovat, Mahmood Hosseini, Omid Kaveh Ahangari, Mona Zaryoun
Abstract:
Shavadoon is a type of underground living space, formerly used in urban residences of Dezful and Shooshtar cities in southwestern Iran. In spite of their high efficiency in creating cool spaces for hot summers of that area, Shavadoons were abandoned, like many other components of vernacular architecture, as a result of the modernism movement. However, Shavadoons were used by the local people as shelters during the 8-year Iran-Iraq war, and although several cases of bombardment happened during those years, no case of damage was reported in those two cities. On this basis, and regarding the high seismicity of Iran, the use of Shavadoons as post-disasters shelters can be considered as a good issue for research. This paper presents the results of a thorough study conducted on these spaces and their seismic behavior. First, the architectural aspects of Shavadoon and their construction technique are presented. Then, the results of seismic evaluation of a sample Shavadoon, conducted by a series of time history analyses, using Plaxis software and a set of selected earthquakes, are briefly explained. These results show that Shavadoons have good stability against seismic excitations. This stability is mainly because of the high strength of conglomerate materials inside which the Shavadoons have been excavated. On this basis, and considering other merits of this components of vernacular architecture in southwest of Iran, it is recommended that the revival of these components is seriously reconsidered by both architects and civil engineers.Keywords: Shavadoon, Iran high seismicity, Conglomerate, Modeling in Plaxis, Vernacular sustainable architecture
Procedia PDF Downloads 3031268 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 201267 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows
Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar
Abstract:
In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF
Procedia PDF Downloads 3571266 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere
Authors: Moustafa Osman Mohammed
Abstract:
This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.Keywords: air pollution, landfill emission, environmental management, monitoring/methods and impact assessment
Procedia PDF Downloads 3211265 Focus-Latent Dirichlet Allocation for Aspect-Level Opinion Mining
Authors: Mohsen Farhadloo, Majid Farhadloo
Abstract:
Aspect-level opinion mining that aims at discovering aspects (aspect identification) and their corresponding ratings (sentiment identification) from customer reviews have increasingly attracted attention of researchers and practitioners as it provides valuable insights about products/services from customer's points of view. Instead of addressing aspect identification and sentiment identification in two separate steps, it is possible to simultaneously identify both aspects and sentiments. In recent years many graphical models based on Latent Dirichlet Allocation (LDA) have been proposed to solve both aspect and sentiment identifications in a single step. Although LDA models have been effective tools for the statistical analysis of document collections, they also have shortcomings in addressing some unique characteristics of opinion mining. Our goal in this paper is to address one of the limitations of topic models to date; that is, they fail to directly model the associations among topics. Indeed in many text corpora, it is natural to expect that subsets of the latent topics have higher probabilities. We propose a probabilistic graphical model called focus-LDA, to better capture the associations among topics when applied to aspect-level opinion mining. Our experiments on real-life data sets demonstrate the improved effectiveness of the focus-LDA model in terms of the accuracy of the predictive distributions over held out documents. Furthermore, we demonstrate qualitatively that the focus-LDA topic model provides a natural way of visualizing and exploring unstructured collection of textual data.Keywords: aspect-level opinion mining, document modeling, Latent Dirichlet Allocation, LDA, sentiment analysis
Procedia PDF Downloads 931264 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes
Authors: Husham Bayazed
Abstract:
Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry
Procedia PDF Downloads 841263 Modeling Sediment Transports under Extreme Storm Situation along Persian Gulf North Coast
Authors: Majid Samiee Zenoozian
Abstract:
The Persian Gulf is a bordering sea with an normal depth of 35 m and a supreme depth of 100 m near its narrow appearance. Its lengthen bathymetric axis divorces two main geological shires — the steady Arabian Foreland and the unbalanced Iranian Fold Belt — which are imitated in the conflicting shore and bathymetric morphologies of Arabia and Iran. The sediments were experimented with from 72 offshore positions through an oceanographic cruise in the winter of 2018. Throughout the observation era, several storms and river discharge actions happened, as well as the major flood on record since 1982. Suspended-sediment focus at all three sites varied in reaction to both wave resuspension and advection of river-derived sediments. We used hydrological models to evaluation and associate the wave height and inundation distance required to carriage the rocks inland. Our results establish that no known or possible storm happening on the Makran coast is accomplished of detaching and transporting the boulders. The fluid mud consequently is conveyed seaward due to gravitational forcing. The measured sediment focus and velocity profiles on the shelf provide a strong indication to provision this assumption. The sediment model is joined with a 3D hydrodynamic module in the Environmental Fluid Dynamics Code (EFDC) model that offers data on estuarine rotation and salinity transport under normal temperature conditions. 3-D sediment transport from model simulations specify dynamic sediment resuspension and transport near zones of highly industrious oyster beds.Keywords: sediment transport, storm, coast, fluid dynamics
Procedia PDF Downloads 1131262 The Effect of Nanoclay on the Hydraulic Conductivity of Clayey Sand Soils
Authors: Javad Saeidaskari, Mohammad Hassan Baziar
Abstract:
Soil structures have been frequently damaged during piping, earthquake and other types of failures. As far as adverse circumstances were developed subsequent to piping or other similar failure types, hydraulic parameters of soil such as hydraulic conductivity should be considered. As a result, acquiring an approach to diminish soil permeability is inevitable. There are many ground improvement methods to reduce seepage, which are classified under soil treatment and stabilization methods. Recently, one of the soil improvement methods is known as nanogeotechnology. This study aims to investigate the influence of Cloisite 30B nanoclay on permeability of compacted clayey sand soils. The samples are prepared by mixing two soil types, including Kaolin clay and Firouzkooh sand, in 1:9 and 1:5 clay:sand (by mass) proportions. In experimental procedure, initially, the optimum water content and maximum dry unit weight of each samples were obtained for compaction. Then, series of permeability tests were conducted by triaxial apparatus on prepared specimens with identical relative density of 95% of maximum dry density and water content of 1% wet of optimum for different weight percentages of nanoclay (1% to 4%). Therefore, in this paper, the effect of time on treated specimen was appraised, as well as two approaches of manual mixing and ball milling were compared to reveal the importance of dispersion issue. The results show that adding nanoclay up to 3%, as its optimum content, causes notable reduction in permeability (1.60e-03 to 5.51e-05 cm/s and 3.32e-04 to 8.44e-07 cm/s in samples with 1:9 and 1:5 mixture proportions, respectively). The hydraulic conductivity of treated clayey sand (1:5 mixture proportion with 3% nanoclay) decreases gradually from 8.44e-07 to 3.00e-07 cm/s within 90 days and then tends to be consistent. The influence of mixing method on permeability results shows that the utilization of ball mill mixing effectively leads to lower values than those of manual mixing, in other words, by adding 3% nanoclay, hydraulic conductivity of specimen declines from 8.44e-07 to 2.00e-07 cm/s. In order to evaluate the interaction between soil particles and, to ensure proper dispersion of nanoparticles through clayey sand mixture, they were magnified by means of scanning electron microscope (SEM). In conclusion, the nanoclay particles in vicinity of moisture can cause soil stabilization to prevent water penetration, which eventually result in lower usage of clay and operation costs.Keywords: nanoclay, cloisite 30b, clayey sand, hydraulic conductivity
Procedia PDF Downloads 3481261 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 101260 Working Memory Growth from Kindergarten to First Grade: Considering Impulsivity, Parental Discipline Methods and Socioeconomic Status
Authors: Ayse Cobanoglu
Abstract:
Working memory can be defined as a workspace that holds and regulates active information in mind. This study investigates individual changes in children's working memory from kindergarten to first grade. The main purpose of the study is whether parental discipline methods and child impulsive/overactive behaviors affect children's working memory initial status and growth rate, controlling for gender, minority status, and socioeconomic status (SES). A linear growth curve model with the first four waves of the Early Childhood Longitudinal Study-Kindergarten Cohort of 2011 (ECLS-K:2011) is performed to analyze the individual growth of children's working memory longitudinally (N=3915). Results revealed that there is a significant variation among students' initial status in the kindergarten fall semester as well as the growth rate during the first two years of schooling. While minority status, SES, and children's overactive/impulsive behaviors influenced children's initial status, only SES and minority status were significantly associated with the growth rate of working memory. For parental discipline methods, such as giving a warning and ignoring the child's negative behavior, are also negatively associated with initial working memory scores. Following that, students' working memory growth rate is examined, and students with lower SES as well as minorities showed a faster growth pattern during the first two years of schooling. However, the findings of parental disciplinary methods on working memory growth rates were mixed. It can be concluded that schooling helps low-SES minority students to develop their working memory.Keywords: growth curve modeling, impulsive/overactive behaviors, parenting, working memory
Procedia PDF Downloads 1331259 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa
Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka
Abstract:
Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise
Procedia PDF Downloads 2031258 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 2811257 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series
Procedia PDF Downloads 1431256 Process Optimization and Automation of Information Technology Services in a Heterogenic Digital Environment
Authors: Tasneem Halawani, Yamen Khateeb
Abstract:
With customers’ ever-increasing expectations for fast services provisioning for all their business needs, information technology (IT) organizations, as business partners, have to cope with this demanding environment and deliver their services in the most effective and efficient way. The purpose of this paper is to identify optimization and automation opportunities for the top requested IT services in a heterogenic digital environment and widely spread customer base. In collaboration with systems, processes, and subject matter experts (SMEs), the processes in scope were approached by analyzing four-year related historical data, identifying and surveying stakeholders, modeling the as-is processes, and studying systems integration/automation capabilities. This effort resulted in identifying several pain areas, including standardization, unnecessary customer and IT involvement, manual steps, systems integration, and performance measurement. These pain areas were addressed by standardizing the top five requested IT services, eliminating/automating 43 steps, and utilizing a single platform for end-to-end process execution. In conclusion, the optimization of IT service request processes in a heterogenic digital environment and widely spread customer base is challenging, yet achievable without compromising the service quality and customers’ added value. Further studies can focus on measuring the value of the eliminated/automated process steps to quantify the enhancement impact. Moreover, a similar approach can be utilized to optimize other IT service requests, with a focus on business criticality.Keywords: automation, customer value, heterogenic, integration, IT services, optimization, processes
Procedia PDF Downloads 1061255 Bluetooth Communication Protocol Study for Multi-Sensor Applications
Authors: Joao Garretto, R. J. Yarwood, Vamsi Borra, Frank Li
Abstract:
Bluetooth Low Energy (BLE) has emerged as one of the main wireless communication technologies used in low-power electronics, such as wearables, beacons, and Internet of Things (IoT) devices. BLE’s energy efficiency characteristic, smart mobiles interoperability, and Over the Air (OTA) capabilities are essential features for ultralow-power devices, which are usually designed with size and cost constraints. Most current research regarding the power analysis of BLE devices focuses on the theoretical aspects of the advertising and scanning cycles, with most results being presented in the form of mathematical models and computer software simulations. Such computer modeling and simulations are important for the comprehension of the technology, but hardware measurement is essential for the understanding of how BLE devices behave in real operation. In addition, recent literature focuses mostly on the BLE technology, leaving possible applications and its analysis out of scope. In this paper, a coin cell battery-powered BLE Data Acquisition Device, with a 4-in-1 sensor and one accelerometer, is proposed and evaluated with respect to its Power Consumption. First, evaluations of the device in advertising mode with the sensors turned off completely, followed by the power analysis when each of the sensors is individually turned on and data is being transmitted, and concluding with the power consumption evaluation when both sensors are on and respectively broadcasting the data to a mobile phone. The results presented in this paper are real-time measurements of the electrical current consumption of the BLE device, where the energy levels that are demonstrated are matched to the BLE behavior and sensor activity.Keywords: bluetooth low energy, power analysis, BLE advertising cycle, wireless sensor node
Procedia PDF Downloads 901254 The Advancement of Environmental Impact Assessment for 5th Transmission Natural Gas Pipeline Project in Thailand
Authors: Penrug Pengsombut, Worawut Hamarn, Teerawuth Suwannasri, Kittiphong Songrukkiat, Kanatip Ratanachoo
Abstract:
PTT Public Company Limited or simply PTT has played an important role in strengthening national energy security of the Kingdom of Thailand by transporting natural gas to customers in power, industrial and commercial sectors since 1981. PTT has been constructing and operating natural gas pipeline system of over 4,500-km network length both onshore and offshore laid through different area classifications i.e., marine, forest, agriculture, rural, urban, and city areas. During project development phase, an Environmental Impact Assessment (EIA) is conducted and submitted to the Office of Natural Resources and Environmental Policy and Planning (ONEP) for approval before project construction commencement. Knowledge and experiences gained and revealed from EIA in the past projects definitely are developed to further advance EIA study process for newly 5th Transmission Natural Gas Pipeline Project (5TP) with approximately 415 kilometers length. The preferred pipeline route is selected and justified by SMARTi map, an advance digital one-map platform with consists of multiple layers geographic and environmental information. Sensitive area impact focus (SAIF) is a practicable impact assessment methodology which appropriate for a particular long distance infrastructure project such as 5TP. An environmental modeling simulation is adopted into SAIF methodology for impact quantified in all sensitive areas whereas other area along pipeline right-of-ways is typically assessed as an impact representative. Resulting time and cost deduction is beneficial to project for early start.Keywords: environmental impact assessment, EIA, natural gas pipeline, sensitive area impact focus, SAIF
Procedia PDF Downloads 4071253 Talent Management, Employee Competency, and Organizational Performance
Authors: Sunyoung Park
Abstract:
Context: Talent management is a strategic approach that has received considerable attention in recent years to improve employee competency and organizational performance in many organizations. The implementation of talent management involves identifying objectives and positions within the organization, developing a pool of high-potential employees, and establishing appropriate HR functions to promote high employee and organizational performance. This study aims to investigate the relationship between talent management, HR functions, employee competency, and organizational performance in the South Korean context. Research Aim: The main objective of this study is to investigate the structural relationships among talent management, human resources (HR) functions, employee competency, and organizational performance. Methodology: To achieve the research aim, this study used a quantitative research method. Specifically, a total of 1,478 responses were analyzed using structural equation modeling based on data obtained from the Human Capital Corporate Panel (HCCP) survey in South Korea. Findings: The study revealed that talent management has a positive influence on HR functions and employee competency. Additionally, HR functions directly affect employee competency and organizational performance. Employee competency was found to be related to organizational performance. Moreover, talent management and HR functions indirectly affect organizational performance through employee competency. Theoretical Importance: This study provides empirical evidence of the relationship between talent management, HR functions, employee competency, and organizational performance in the South Korean context. The findings suggest that organizations should focus on developing appropriate talent management and HR functions to improve employee competency, which, in turn, will lead to better organizational performance. Moreover, the study contributes to the existing literature by emphasizing the importance of the relationship between talent management and HR functions in improving organizational performance.Keywords: employee competency, HR functions, organizational performance, talent management
Procedia PDF Downloads 951252 A Comprehensive Study of Spread Models of Wildland Fires
Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling
Procedia PDF Downloads 811251 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System
Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky
Abstract:
Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion
Procedia PDF Downloads 2311250 Investigating the Flow Physics within Vortex-Shockwave Interactions
Authors: Frederick Ferguson, Dehua Feng, Yang Gao
Abstract:
No doubt, current CFD tools have a great many technical limitations, and active research is being done to overcome these limitations. Current areas of limitations include vortex-dominated flows, separated flows, and turbulent flows. In general, turbulent flows are unsteady solutions to the fluid dynamic equations, and instances of these solutions can be computed directly from the equations. One of the approaches commonly implemented is known as the ‘direct numerical simulation’, DNS. This approach requires a spatial grid that is fine enough to capture the smallest length scale of the turbulent fluid motion. This approach is called the ‘Kolmogorov scale’ model. It is of interest to note that the Kolmogorov scale model must be captured throughout the domain of interest and at a correspondingly small-time step. In typical problems of industrial interest, the ratio of the length scale of the domain to the Kolmogorov length scale is so great that the required grid set becomes prohibitively large. As a result, the available computational resources are usually inadequate for DNS related tasks. At this time in its development, DNS is not applicable to industrial problems. In this research, an attempt is made to develop a numerical technique that is capable of delivering DNS quality solutions at the scale required by the industry. To date, this technique has delivered preliminary results for both steady and unsteady, viscous and inviscid, compressible and incompressible, and for both high and low Reynolds number flow fields that are very accurate. Herein, it is proposed that the Integro-Differential Scheme (IDS) be applied to a set of vortex-shockwave interaction problems with the goal of investigating the nonstationary physics within the resulting interaction regions. In the proposed paper, the IDS formulation and its numerical error capability will be described. Further, the IDS will be used to solve the inviscid and viscous Burgers equation, with the goal of analyzing their solutions over a considerable length of time, thus demonstrating the unsteady capabilities of the IDS. Finally, the IDS will be used to solve a set of fluid dynamic problems related to flow that involves highly vortex interactions. Plans are to solve the following problems: the travelling wave and vortex problems over considerable lengths of time, the normal shockwave–vortex interaction problem for low supersonic conditions and the reflected oblique shock–vortex interaction problem. The IDS solutions obtained in each of these solutions will be explored further in efforts to determine the distributed density gradients and vorticity, as well as the Q-criterion. Parametric studies will be conducted to determine the effects of the Mach number on the intensity of vortex-shockwave interactions.Keywords: vortex dominated flows, shockwave interactions, high Reynolds number, integro-differential scheme
Procedia PDF Downloads 1361249 The Mediating Role of Psychological Factors in the Relationships Between Youth Problematic Internet and Subjective Well-Being
Authors: Dorit Olenik-Shemesh, Tali Heiman
Abstract:
The rapid increase in the massive use of the internet in recent yearshas led to an increase in the prevalence of a phenomenon called 'Problematic Internet use' (PIU), an emerging, growing health problem, especially during adolescents, that poses a challenge for mental health research and practitioners. Problematic Internet use (PIU) is defined as an excessive overuse of the internet, including an inability to control time spent on the internet, cognitivepreoccupation with the Internet, and continued use in spite of the adverse consequences, which may lead to psychological, social, and academic difficulties in one's life and daily functioning. However, little is known about the nature of the nexusbetween PIU and subjective well-being among adolescents. The main purpose of the current study was to explore in depth the network of connections between PIU, sense of well-being, and fourpersonal-emotional factors (resilience, self-control, depressive mood, and loneliness) that may mediate these relationships. A total sample of 433 adolescents, 214 (49.4%) girls and 219 (50.6%) boys between the ages of 12–17 (mean = 14.9, SD = 2.16), completed self-reportquestionnaires relating to the study variables. In line with the hypothesis, analysis of a Structural Equation modeling (SEM) revealed the main following results: high levels of PIU predicted low levels of well-being among adolescents. In addition, low levels of resilience and high levels of depressivemood (together), as well as low levels of self control and high levels of depressivemood (together), as well as low levels of resilience and high levels of loneliness, mediated the relationships between PIU and well-being. In general, girls were found to be higher in PIU and inresilience than boys. The study results revealed specific implications for developing intervention programs for adolescents in the context of PIU; aiming at more balanced adjusted use of the Internet along withpreventingthe decrease in well being.Keywords: probelmatic inetrent Use, well-being, adolescents, SEM model
Procedia PDF Downloads 1671248 Ultra-Wideband Antennas for Ultra-Wideband Communication and Sensing Systems
Authors: Meng Miao, Jeongwoo Han, Cam Nguyen
Abstract:
Ultra-wideband (UWB) time-domain impulse communication and radar systems use ultra-short duration pulses in the sub-nanosecond regime, instead of continuous sinusoidal waves, to transmit information. The pulse directly generates a very wide-band instantaneous signal with various duty cycles depending on specific usages. In UWB systems, the total transmitted power is spread over an extremely wide range of frequencies; the power spectral density is extremely low. This effectively results in extremely small interference to other radio signals while maintains excellent immunity to interference from these signals. UWB devices can therefore work within frequencies already allocated for other radio services, thus helping to maximize this dwindling resource. Therefore, impulse UWB technique is attractive for realizing high-data-rate, short-range communications, ground penetrating radar (GPR), and military radar with relatively low emission power levels. UWB antennas are the key element dictating the transmitted and received pulse shape and amplitude in both time and frequency domain. They should have good impulse response with minimal distortion. To facilitate integration with transmitters and receivers employing microwave integrated circuits, UWB antennas enabling direct integration are preferred. We present the development of two UWB antennas operating from 3.1 to 10.6 GHz and 0.3-6 GHz for UWB systems that provide direct integration with microwave integrated circuits. The operation of these antennas is based on the principle of wave propagation on a non-uniform transmission line. Time-domain EM simulation is conducted to optimize the antenna structures to minimize reflections occurring at the open-end transition. Calculated and measured results of these UWB antennas are presented in both frequency and time domains. The antennas have good time-domain responses. They can transmit and receive pulses effectively with minimum distortion, little ringing, and small reflection, clearly demonstrating the signal fidelity of the antennas in reproducing the waveform of UWB signals which is critical for UWB sensors and communication systems. Good performance together with seamless microwave integrated-circuit integration makes these antennas good candidates not only for UWB applications but also for integration with printed-circuit UWB transmitters and receivers.Keywords: antennas, ultra-wideband, UWB, UWB communication systems, UWB radar systems
Procedia PDF Downloads 2361247 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth
Authors: Chang Hsueh-Sheng, Chen Tzu-Ling
Abstract:
Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic
Procedia PDF Downloads 2561246 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism
Abstract:
Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning
Procedia PDF Downloads 161245 Factors Affecting Internet Behavior and Life Satisfaction of Older Adult Learners with Use of Smartphone
Authors: Horng-Ji Lai
Abstract:
The intuitive design features and friendly interface of smartphone attract older adults. In Taiwan, many senior education institutes offer smartphone training courses for older adult learners who are interested in learning this innovative technology. It is expected that the training courses can help them to enjoy the benefits of using smartphone and increase their life satisfaction. Therefore, it is important to investigate the factors that influence older adults’ behavior of using smartphone. The purpose of the research was to develop and test a research model that investigates the factors (self-efficacy, social connection, the need to seek health information, and the need to seek financial information) affecting older adult learners’ Internet behaviour and their life satisfaction with use of smartphone. Also, this research sought to identify the relationship between the proposed variables. Survey method was used to collect research data. A Structural Equation Modeling was performed using Partial Least Squares (PLS) regression for data exploration and model estimation. The participants were 394 older adult learners from smartphone training courses in active aging learning centers located in central Taiwan. The research results revealed that self-efficacy significantly affected older adult learner’ social connection, the need to seek health information, and the need to seek financial information. The construct of social connection yielded a positive influence in respondents’ life satisfaction. The implications of these results for practice and future research are also discussed.Keywords: older adults, smartphone, internet behaviour, life satisfaction
Procedia PDF Downloads 1881244 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube
Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi
Abstract:
Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators
Procedia PDF Downloads 1221243 Applications of Space Technology in Flood Risk Mapping in Parts of Haryana State, India
Authors: B. S. Chaudhary
Abstract:
The severity and frequencies of different disasters on the globe is increasing in recent years. India is also facing the disasters in the form of drought, cyclone, earthquake, landslides, and floods. One of the major causes of disasters in northern India is flood. There are great losses and extensive damage to the agricultural crops, property, human, and animal life. This is causing environmental imbalances at places. The annual global figures for losses due to floods run into over 2 billion dollar. India is a vast country with wide variations in climate and topography. Due to widespread and heavy rainfall during the monsoon months, floods of varying magnitude occur all over the country during June to September. The magnitude depends upon the intensity of rainfall, its duration and also the ground conditions at the time of rainfall. Haryana, one of the agriculturally dominated northern states is also suffering from a number of disasters such as floods, desertification, soil erosion, land degradation etc. Earthquakes are also frequently occurring but of small magnitude so are not causing much concern and damage. Most of the damage in Haryana is due to floods. Floods in Haryana have occurred in 1978, 1988, 1993, 1995, 1998, and 2010 to mention a few. The present paper deals with the Remote Sensing and GIS applications in preparing flood risk maps in parts of Haryana State India. The satellite data of various years have been used for mapping of flood affected areas. The Flooded areas have been interpreted both visually and digitally and two classes-flooded and receded water/ wet areas have been identified for each year. These have been analyzed in GIS environment to prepare the risk maps. This shows the areas of high, moderate and low risk depending on the frequency of flood witness. The floods leave a trail of suffering in the form of unhygienic conditions due to improper sanitation, water logging, filth littered in the area, degradation of materials and unsafe drinking water making the people prone to many type diseases in short and long run. Attempts have also been made to enumerate the causes of floods. The suggestions are given for mitigating the fury of floods and proper management issues related to evacuation and safe places nearby.Keywords: flood mapping, GIS, Haryana, India, remote sensing, space technology
Procedia PDF Downloads 208