Search results for: cognitive models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8524

Search results for: cognitive models

2884 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 71
2883 A Metaheuristic Approach for Optimizing Perishable Goods Distribution

Authors: Bahare Askarian, Suchithra Rajendran

Abstract:

Maintaining the freshness and quality of perishable goods during distribution is a critical challenge for logistics companies. This study presents a comprehensive framework aimed at optimizing the distribution of perishable goods through a mathematical model of the Transportation Inventory Location Routing Problem (TILRP). The model incorporates the impact of product age on customer demand, addressing the complexities associated with inventory management and routing. To tackle this problem, we develop both simple and hybrid metaheuristic algorithms designed for small- and medium-scale scenarios. The hybrid algorithm combines Biogeographical Based Optimization (BBO) algorithms with local search techniques to enhance performance in small- and medium-scale scenarios, extending our approach to larger-scale challenges. Through extensive numerical simulations and sensitivity analyses across various scenarios, the performance of the proposed algorithms is evaluated, assessing their effectiveness in achieving optimal solutions. The results demonstrate that our algorithms significantly enhance distribution efficiency, offering valuable insights for logistics companies striving to improve their perishable goods supply chains.

Keywords: perishable goods, meta-heuristic algorithm, vehicle problem, inventory models

Procedia PDF Downloads 28
2882 A Conceptual Framework of Strategies for Managing Intellectual Property Rights at Different Stages of Product Life Cycle

Authors: Nithyananda K. V.

Abstract:

Organizations follow various strategies for managing their intellectual property rights, either in the form of securing IP rights or using such IP rights through leveraging, monetizing, and commercializing them. It is well known that organizations adopt different intellectual property strategies in response to other organizations within the industry. But within an organization, and within the products that are being manufactured and sold by it, the strategies for managing its intellectual property rights keep changing at different stages of the product life cycle. Organizations could adopt not only different strategies for managing its intellectual property rights, but could also adopt different kinds of business models to leverage, monetize, and commercial the IP rights. This paper analyzes the various strategies that can be adopted by organizations to manage its IP rights at different stages of the product life cycle and the rationale for adopting such strategies. This would be a secondary research, based solely on the literature of strategic management, new product development, resource-based management, and the intellectual property management. This paper synthesizes the literature from these streams to propose a conceptual framework of strategies that can be adopted by organizations for managing its IP rights in conjunction with the life cycle of the products that it manufactures and sells in the market. This framework could be adopted by organizations in implementing strategies for effectively managing their IP rights.

Keywords: intellectual property strategy, management of intellectual property rights, New product development, product life cycle

Procedia PDF Downloads 301
2881 Affective (And Effective) Teaching and Learning: Higher Education Gets Social Again

Authors: Laura Zizka, Gaby Probst

Abstract:

The Covid-19 pandemic has affected the way Higher Education Institutions (HEIs) have given their courses. From emergency remote where all students and faculty were immediately confined to home teaching and learning, the continuing evolving sanitary situation obliged HEIs to adopt other methods of teaching and learning from blended courses that included both synchronous and asynchronous courses and activities to hy-flex models where some students were on campus while others followed the course simultaneously online. Each semester brought new challenges for HEIs and, subsequently, additional emotional reactions. This paper investigates the affective side of teaching and learning in various online modalities and its toll on students and faculty members over the past three semesters. The findings confirm that students and faculty who have more self-efficacy, flexibility, and resilience reported positive emotions and embraced the opportunities that these past semesters have offered. While HEIs have begun a new semester in an attempt to return to ‘normal’ face-to-face courses, this paper posits that there are lessons to be learned from these past three semesters. The opportunities that arose from the challenge of the pandemic should be considered when moving forward by focusing on a greater emphasis on the affective aspect of teaching and learning in HEIs worldwide.

Keywords: effective teaching and learning, higher education, engagement, interaction, motivation

Procedia PDF Downloads 121
2880 Neural Correlates of Attention Bias to Threat during the Emotional Stroop Task in Schizophrenia

Authors: Camellia Al-Ibrahim, Jenny Yiend, Sukhwinder S. Shergill

Abstract:

Background: Attention bias to threat play a role in the development, maintenance, and exacerbation of delusional beliefs in schizophrenia in which patients emphasize the threatening characteristics of stimuli and prioritise them for processing. Cognitive control deficits arise when task-irrelevant emotional information elicits attentional bias and obstruct optimal performance. This study is investigating neural correlates of interference effect of linguistic threat and whether these effects are independent of delusional severity. Methods: Using an event-related functional magnetic resonance imaging (fMRI), neural correlates of interference effect of linguistic threat during the emotional Stroop task were investigated and compared patients with schizophrenia with high (N=17) and low (N=16) paranoid symptoms and healthy controls (N=20). Participants were instructed to identify the font colour of each word presented on the screen as quickly and accurately as possible. Stimuli types vary between threat-relevant, positive and neutral words. Results: Group differences in whole brain effects indicate decreased amygdala activity in patients with high paranoid symptoms compared with low paranoid patients and healthy controls. Regions of interest analysis (ROI) validated our results within the amygdala and investigated changes within the striatum showing a pattern of reduced activation within the clinical group compared to healthy controls. Delusional severity was associated with significant decreased neural activity in the striatum within the clinical group. Conclusion: Our findings suggest that the emotional interference mediated by the amygdala and striatum may reduce responsiveness to threat-related stimuli in schizophrenia and that attenuation of fMRI Blood-oxygen-level dependent (BOLD) signal within these areas might be influenced by the severity of delusional symptoms.

Keywords: attention bias, fMRI, Schizophrenia, Stroop

Procedia PDF Downloads 204
2879 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode

Authors: N. Ould cherchali, M. S. Boucherit, L. Barazane, A. Morsli

Abstract:

Photovoltaic power is widely used to supply isolated or unpopulated areas (lighting, pumping, etc.). Great advantage is that this source is inexhaustible, it offers great safety in use and it is clean. But the dynamic models used to describe a photovoltaic system are complicated and nonlinear and due to nonlinear I-V and P–V characteristics of photovoltaic generators, a maximum power point tracking technique (MPPT) is required to maximize the output power. In this paper, two online techniques of maximum power point tracking using robust controller for photovoltaic systems are proposed, the first technique use fuzzy logic controller (FLC) and the second use sliding mode controller (SMC) for photovoltaic systems. The two maximum power point tracking controllers receive the partial derivative of power as inputs, and the output is the duty cycle corresponding to maximum power. A Photovoltaic generator with Boost converter is developed using MATLAB/Simulink to verify the preferences of the proposed techniques. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.

Keywords: fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller

Procedia PDF Downloads 550
2878 The Influence of Concept-Based Teaching on High School Students’ Research Skills

Authors: Nazym Alykpashova

Abstract:

This article is based on the results of the action research at Nazarbayev Intellectual School in Pavlodar, Kazakhstan. The participants of this research were high school students who study Global Perspectives and Project Work course. Intellectual schools are designed to become an experimental site that develops, monitors, studies, analyzes, approves, implements modern models of educational programs. Subjects in NIS aimed to develop skills that will be useful for students in their life. Students learn how to do projects, research credible information, solve different issues. Many subjects cover complex topics, and most teachers feel that they often have to deliver a lot of information within one hour. Many educators recognize Conceptual Teaching, as well as Conceptual Learning, has a lot of benefits for students in terms of developing their perception of the subject topics. This qualitative paper presents findings of two research questions which explored high school students’ perception of conceptual teaching and its impact on their academic performance. Individual semi-structured interviews and observations were conducted with Global Perspectives teachers and students. The results of this action research assist teachers reflect on their professional practice.

Keywords: concept-based teaching, students’ research skills, teacher’s professional development, kazakhstan

Procedia PDF Downloads 139
2877 Experimental Investigation on the Mechanical Behaviour of Three-Leaf Masonry Walls under In-Plane Loading

Authors: Osama Amer, Yaser Abdel-Aty, Mohamed Abd El Hady

Abstract:

The present paper illustrates an experimental approach to provide understanding of the mechanical behavior and failure mechanisms of different typologies of unreinforced three-leaf masonry walls of historical Islamic architectural heritage in Egypt. The main objective of this study is to investigate the propagation of possible cracking, ultimate load, deformations and failure mechanisms. Experimental data on interface-shear and compression tests on large scale three-leaf masonry wallets are provided. The wallets were built basically of Egyptian limestone and modified lime mortar. External wallets were built of stone blocks while the inner leaf was built of rubble limestone. Different loading conditions and dimensions of core layer for two types of collar joints (with and without shear keys) are considered in the tests. Mechanical properties of the constituent materials of masonry were tested and a database of characteristic properties was created. The results of the experiments will highlight the properties, force-displacement curves, stress distribution of multiple-leaf masonry walls contributing to the derivation of rational design rules and validation of numerical models.

Keywords: masonry, three-leaf walls, mechanical behavior, testing, architectural heritage

Procedia PDF Downloads 298
2876 Improvement of Model for SIMMER Code for SFR Corium Relocation Studies

Authors: A. Bachrata, N. Marie, F. Bertrand, J. B. Droin

Abstract:

The in-depth understanding of severe accident propagation in Generation IV of nuclear reactors is important so that appropriate risk management can be undertaken early in their design process. This paper is focused on model improvements in the SIMMER code in order to perform studies of severe accident mitigation of Sodium Fast Reactor. During the design process of the mitigation devices dedicated to extraction of molten fuel from the core region, the molten fuel propagation from the core up to the core catcher has to be studied. In this aim, analytical as well as the complex thermo-hydraulic simulations with SIMMER-III code are performed. The studies presented in this paper focus on physical phenomena and associated physical models that influence the corium relocation. Firstly, the molten pool heat exchange with surrounding structures is analysed since it influences directly the instant of rupture of the dedicated tubes favouring the corium relocation for mitigation purpose. After the corium penetration into mitigation tubes, the fuel-coolant interactions result in formation of debris bed. Analyses of debris bed fluidization as well as sinking into a fluid are presented in this paper.

Keywords: corium, mitigation tubes, SIMMER-III, sodium fast reactor

Procedia PDF Downloads 391
2875 Current and Future Global Distribution of Drosophila suzukii

Authors: Yousef Naserzadeh, Niloufar Mahmoudi

Abstract:

The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly native to South East Asia, has recently invaded Europe, North- and South America and is spreading rapidly. Species distribution modeling has been widely employed to indicate probable areas of invasion and to guide management strategies. Drosophila sp. is native to Asia, but since 2015, it has invaded almost every country in the world, including Africa, Australia, India, and most recently, the Americas. The growth of this species of Drosophila suzukii has been rapidly multiplying and spreading in the last decade. In fact, we examine and model the potential geographical distribution of D. suzukii for both present and future scenarios. Finally, we determine the environmental variables that affect its distribution, as well as assess the risk of encroachment on protected areas. D.suzukii has the potential to expand its occurrence, especially on continents that have already been invaded. The predictive models obtained in this study indicate potential regions that could be at risk of invasion by D. suzukii, including protected areas. These results are important and can assist in the establishment of management plans to avoid the possible harm caused by biological invasions.

Keywords: climate change, Drosophila suzukii, environmental variables, host preference, host plant, nutrition

Procedia PDF Downloads 89
2874 Fuzzy Inference System for Determining Collision Risk of Ship in Madura Strait Using Automatic Identification System

Authors: Emmy Pratiwi, Ketut B. Artana, A. A. B. Dinariyana

Abstract:

Madura Strait is considered as one of the busiest shipping channels in Indonesia. High vessel traffic density in Madura Strait gives serious threat due to navigational safety in this area, i.e. ship collision. This study is necessary as an attempt to enhance the safety of marine traffic. Fuzzy inference system (FIS) is proposed to calculate risk collision of ships. Collision risk is evaluated based on ship domain, Distance to Closest Point of Approach (DCPA), and Time to Closest Point of Approach (TCPA). Data were collected by utilizing Automatic Identification System (AIS). This study considers several ships’ domain models to give the characteristic of marine traffic in the waterways. Each encounter in the ship domain is analyzed to obtain the level of collision risk. Risk level of ships, as the result in this study, can be used as guidance to avoid the accident, providing brief description about safety traffic in Madura Strait and improving the navigational safety in the area.

Keywords: automatic identification system, collision risk, DCPA, fuzzy inference system, TCPA

Procedia PDF Downloads 554
2873 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 113
2872 Surgical Planning for the Removal of Cranial Spheno-orbital Meningioma by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques

Authors: Freddy Patricio Moncayo-Matute, Pablo Gerardo Peña-Tapia, Vázquez-Silva Efrén, Paúl Bolívar Torres-Jara, Diana Patricia Moya-Loaiza, Gabriela Abad-Farfán

Abstract:

This study describes a clinical case and the results on the application of additive manufacturing for the surgical planning in the removal of a cranial spheno-orbital meningioma. It is verified that the use of personalized anatomical models and cutting guides helps to manage the cranial anomalies approach. The application of additive manufacturing technology: Fused Deposition Modeling (FDM), as a low-cost alternative, enables the printing of the test anatomical model, which in turn favors the reduction of surgery time, as well the morbidity rate reduction too. And the printing of the personalized cutting guide, which constitutes a valuable aid to the surgeon in terms of improving the intervention precision and reducing the invasive effect during the craniotomy. As part of the results, post-surgical follow-up is included as an instrument to verify the patient's recovery and the validity of the procedure.

Keywords: surgical planning, additive manufacturing, rapid prototyping, fused deposition modeling, custom anatomical model

Procedia PDF Downloads 105
2871 You Only Get One Brain: An Exploratory Retrospective Study On Life After Adolescent TBI

Authors: Mulligan T., Barker-Collo S., Gobson K., Jones K.

Abstract:

There is a relatively scarce body of literature regarding adolescent experiences of traumatic brain injury (TBI). This qualitative study explored how sustaining a TBI at this unique stage of development might impact a young person as they navigate the challenges of adolescence and transition to adulthood, and what might support recovery. Thirteen young adults who sustained a mild-moderate TBI as an adolescent (aged 13 – 17 years), approximately 7.7 years (range = 6.7 – 8.0 years) prior, participated in the research. Semi-structured individual interviews were conducted to explore participants’ experiences surrounding and following their TBIs. Thematic analysis of interview data produced five key categories of findings: (1) Following their TBIs, many participants experienced problems with cognitive (e.g., forgetfulness, concentration difficulties), physical (e.g., migraines, fatigue) and emotional (e.g., depression, anxiety) functioning, which were often endured into adulthood. (2) TBI-related problems often adversely affected important areas of life for the participant, including school, work and friendships. (3) Changes following TBI commonly impacted identity formation. (4) Recovery processes evolved over time as the participants coped initially by just ‘getting on with it’, before learning to accept new limitations and, ultimately, growing from their TBI experiences. (5) While the presence of friends and family assisted recovery, struggles were often exacerbated by a lack of emotional support from others, in addition to the absence of any assistance or information-provision from professionals regarding what to expect following TBI. The findings suggest that even mild TBI sustained during adolescence can have consequences for an individual’s functioning, engagement in life and identity development, whilst also giving rise to post-traumatic growth. Recovery following adolescent TBI might be maximised by facilitating greater understanding of the injury and acknowledging its impacts on important areas of life, as well as the provision of emotional support and facilitating self-reflection and meaning-making.

Keywords: adolescent, brain Injury, qualitative, post-traumatic growth

Procedia PDF Downloads 61
2870 An Implementation of Incentive Systems within Property Life Cycles Will Reward Investors, Planners and Users

Authors: Nadine Wills

Abstract:

The whole life thinking of buildings (independent if these are commercial properties or residential properties) will raise if incentive systems are provided to investors, planners and users. The Use of Building Information Modelling (BIM)-Systems offers planners the possibility to plan and re-plan buildings for decades after a period of utilization without spending many capacities. The strategy-incentive should be to plan the building in a way that makes rescheduling possible by changing just parameters in the system and not re-planning the whole building. If users receive the chance to patient incentive systems, the building stock will have a long life period. Business models of tenant electricity or self-controlled operating costs are incentive systems for building –users to let fixed running costs decline without producing damages due to wrong purposes. BIM is the controlling body to ensure that users do not abuse the incentive solution and take negative influence on the building stock. The investor benefits from the planner’s and user’s incentives: the fact that the building becomes useful for the whole life without making unnecessary investments provides possibilities to make investments in different assets. Moreover, the investor gains the facility to achieve higher rents by merchandise the property with low operating costs. To execute BIM offers whole property life cycles.

Keywords: BIM, incentives, life cycle, sustainability

Procedia PDF Downloads 301
2869 The Impact of Artificial Intelligence on Spare Parts Technology

Authors: Amir Andria Gad Shehata

Abstract:

Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management

Procedia PDF Downloads 70
2868 Diversity and Distribution of Cytochrome P450 2C9 Genes Related with Medical Cannabis in Thai Patients

Authors: Tanakrit Doltanakarn

Abstract:

Introduction: These days, cannabis is being accepted in many countries due to the fact that cannabis could be use in medical. The medical cannabis is used to treat and reduce the pain many diseases. For example, neuropathic pain, Parkinson, autism disorders, cancer pain reduce the adverse effect of chemotherapy, diabetes, and migraine. Active ingredients in cannabis that modulate patients' perceptions of their conditions include Δ9‐tetrahydrocannabinol (THC), cannabidiol (CBD), flavonoids, and terpenes. However, there is an adverse effect of cannabis, cardiovascular effects, psychosis, schizophrenia, mood disorder, and cognitive alternation. These effects are from the THC and CBD ingredients in the cannabis. The metabolize processes of delta-9 THC to 11-OH-delta 9 -THC (inactive form), THC were cause of adverse effects. Interestingly, the distributions of CYP2C9 gene (CYP2C9*2 and CYP2C9*3, poor metabolizer) that might affect incidences of adverse effects in patients who treated with medical cannabis. Objective: The aim of this study we want to investigate the association between genetic polymorphism of CYP2C9 frequency and Thai patients who treated with medical cannabis. Materials and Methods:We recruited sixty-five unrelated Thai patients from the College of Pharmacy, Rangsit University. DNA were extracted using Genomic DNA Mini Kit. Genotyping of CYP2C9*2 (430C>T, rs1799853) and CYP2C9*3 (1075A>C, rs1057910) were genotyped by the TaqMan Real-time PCR assay. Results: Among these 31 medicals cannabis-induced ADRs patients, they were diagnosed with 22 (33.85%) tachycardia and 3 (4.62%) arrhythmia. There were 34 (52.31%) medical cannabis-tolerant controls who were included in this study.40 (61.53%) Thai patients were female, and 25 (38.46%) were male, with median age of 57 (range 27 – 87) years. In this study, we found none of the medical cannabis-induced ADRs carried CYP2C9*2 variant along with medical cannabis-tolerant control group. CYP2C9*3 variant (intermediate metabolizer, IM) was found just only one of thirty-one (3.23%) in the medical cannabis-induced ADRs and two of thirty-fourth (5.88%) in the tolerant controls. Conclusions: Thus, the distribution of CYP2C9 alleles offer a comprehensive view of pharmacogenomics marker in Thai population that could be used as a reference for worldwide to investigate the pharmacogenomics application.

Keywords: medical cannabis, adverse effect, CYP2C9, thai patients

Procedia PDF Downloads 104
2867 Simulation Tools for Training in the Case of Energy Sector Crisis

Authors: H. Malachova, A. Oulehlova, D. Rezac

Abstract:

Crisis preparedness training is the best possible strategy for identifying weak points, understanding vulnerability, and finding possible strategies for mitigation of blackout consequences. Training represents an effective tool for developing abilities and skills to cope with crisis situations. This article builds on the results of the research carried out in the field of preparation, realization, process, and impacts of training on subjects of energy sector critical infrastructure as a part of crisis preparedness. The research has revealed that the subjects of energy sector critical infrastructure have not realized training and therefore are not prepared for the restoration of the energy supply and black start after blackout regardless of the fact that most subjects state blackout and subsequent black start as key dangers. Training, together with mutual communication and processed crisis documentation, represent a basis for successful solutions for dealing with emergency situations. This text presents the suggested model of SIMEX simulator as a tool which supports managing crisis situations, containing training environment. Training models, possibilities of constructive simulation making use of non-aggregated as well as aggregated entities and tools of communication channels of individual simulator nodes have been introduced by the article.

Keywords: communication, energetic critical infrastructure, training, simulation

Procedia PDF Downloads 386
2866 The Promoting of Early Childhood Development in Local Government Child Center

Authors: Vorapoj Promasatayaprot, Sumattana Glangkarn

Abstract:

Background: Early childhood, the first five years of life, is a time of rapid cognitive, linguistic, social, emotional and motor development. This study was descriptive research which the main purpose of this research was to study early childhood development in Child Center of Local Government in order to emphasize the public citizen and communities participate in the Child Development Center. Method: The study designed was Action Research and divided into four steps consisted of (1) Planning (2) Acting (3) Observing and (4) Reflecting. This study was employed the areas and the subjects consisted of 10 committees of the Child Center in Thakhonyang municipality, Kantharawichai District, Maha Sarakham Province, Thailand and 50 representative parents by using the purposive sampling technique. The instrument used in this study were questionnaires. The data were analyzed using descriptive statistic; percentage, mean, standard deviation, maximum value, minimum, median. Qualitative data was collected using the observation and interview and was analysed by content analysis. Results: The results of this research were as follows: The promoting of early childhood development in child center at Thakhonyang Municipality, Kantharawichai District, Maha Sarakham Province, Thailand were 6 procedures ; (1) workshop participation (2) workshop in action plan (3) performing in action plan (4) following supervision (5) self – assessment (6) knowledge sharing seminar. The service model of the Local Fund Health Security in Thailand was passed the qualifications of local fund health security by 6 procedures to be the high potential local fund health security. Conclusion: The key success is that the commission will have to respond the performance at all process of plan to address the issue in the future. Factor of success is to community participate with transparent procedure. Coordination committee should manipulate the child center benefits among stake holders.

Keywords: child center, develop, early childhood development, local government, promote

Procedia PDF Downloads 198
2865 Effect of Pre-Aging and Aging Parameters on Mechanical Behavior of Be-Treated 7075 Aluminum Alloys: Experimental Correlation using Minitab Software

Authors: M. Tash, S. Alkahtani

Abstract:

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Duplex aging treatments were carried out for the as solution treated (SHT) specimens (pre-aged at different time and temperature followed by high temperature aging). A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of pre-aging and aging treatment parameters and any interactions between them on the mechanical properties of 7075 alloys. A mathematical models are developed to relate the alloy ultimate tensile strength, yield strength and % elongation with the different pre-aging and aging parameters i.e. Pre-aging Temperature (PA T0C), Pre-aging time (PA t h), Aging temperature (AT0C), Aging time (At h), to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of be-treated 7075 alloys.

Keywords: aging heat Treatment, tensile properties, be-treated cast Al-Mg-Zn (7075) alloys, experimental correlation

Procedia PDF Downloads 278
2864 Structural Correlates of Reduced Malicious Pleasure in Huntington's Disease

Authors: Sandra Baez, Mariana Pino, Mildred Berrio, Hernando Santamaria-Garcia, Lucas Sedeno, Adolfo Garcia, Sol Fittipaldi, Agustin Ibanez

Abstract:

Schadenfreude refers to the perceiver’s experience of pleasure at another’s misfortune. This is a multidetermined emotion which can be evoked by hostile feelings and envy. The experience of Schadenfreude engages mechanisms implicated in diverse social cognitive processes. For instance, Schadenfreude involves heightened reward processing, accompanied by increased striatal engagement and it interacts with mentalizing and perspective-taking abilities. Patients with Huntington's disease (HD) exhibit reductions of Schadenfreude experience, suggesting a role of striatal degeneration in such an impairment. However, no study has directly assessed the relationship between regional brain atrophy in HD and reduced Schadenfreude. This study investigated whether gray matter (GM) atrophy in HD patients correlates with ratings of Schadenfreude. First, we compared the performance of 20 HD patients and 23 controls on an experimental task designed to trigger Schadenfreude and envy (another social emotion acting as a control condition). Second, we compared GM volume between groups. Third, we examined brain regions where atrophy might be associated with specific impairments in the patients. Results showed that while both groups showed similar ratings of envy, HD patients reported lower Schadenfreude. The latter pattern was related to atrophy in regions of the reward system (ventral striatum) and the mentalizing network (precuneus and superior parietal lobule). Our results shed light on the intertwining of reward and socioemotional processes in Schadenfreude, while offering novel evidence about their neural correlates. In addition, our results open the door to future studies investigating social emotion processing in other clinical populations characterized by striatal or mentalizing network impairments (e.g., Parkinson’s disease, schizophrenia, autism spectrum disorders).

Keywords: envy, Gray matter atrophy, Huntigton's disease, Schadenfreude, social emotions

Procedia PDF Downloads 342
2863 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment

Authors: Jingyuan Hu, Zhandong Liu

Abstract:

CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.

Keywords: CRISPR, HMM, sequence alignment, gene editing

Procedia PDF Downloads 59
2862 Effect of Large English Studies Classes on Linguistic Achievement and Classroom Discourse at Junior Secondary Level in Yobe State

Authors: Clifford Irikefe Gbeyonron

Abstract:

Applied linguists concur that there is low-level achievement in English language use among Nigerian secondary school students. One of the factors that exacerbate this is classroom feature of which large class size is obvious. This study investigated the impact of large classes on learning English as a second language (ESL) at junior secondary school (JSS) in Yobe State. To achieve this, Solomon four-group experimental design was used. 382 subjects were divided into four groups and taught ESL for thirteen weeks. 356 subjects wrote the post-test. Data from the systematic observation and post-test were analyzed via chi square and ANOVA. Results indicated that learners in large classes (LLC) attain lower linguistic progress than learners in small classes (LSC). Furthermore, LSC have more chances to access teacher evaluation and participate actively in classroom discourse than LLC. In consequence, large classes have adverse effects on learning ESL in Yobe State. This is inimical to English language education given that each learner of ESL has their individual peculiarity within each class. It is recommended that strategies that prioritize individualization, grouping, use of language teaching aides, and theorization of innovative models in respect of large classes be considered.

Keywords: large classes, achievement, classroom discourse

Procedia PDF Downloads 412
2861 Identifying the Barriers Facing Chinese Small and Medium-Sized Enterprises and Evaluating the Effectiveness of Public Supports

Authors: A. Yongsheng Guo, B. Obedat. Abdulazeez, C. Xiaoxian Zhu

Abstract:

This study aimed to identify the barriers to the development of small and medium-sized enterprises (SMEs) in China and build a theoretical framework to evaluate the support provided by the authorities and institutions. A grounded theory approach was adopted to collect and analyze data. 32 interviews were conducted with SME managers, and open, axial and selective coding was utilized to develop themes. Based on institutional theory, grounded theory models were used to present findings. The findings showed that the main barriers in the business environment were defaulting on contracts, bureaucracy in procedures, lack of financial and legal support, limited intermediaries and channels, and poor quality of products and services. This study found that many programs were provided to support SMEs. A theoretical framework was developed to evaluate the performance of the programs from the managers’ perspective. The concepts of economy, efficiency and effectiveness were used to evaluate the perceived value of the programs. This study suggests that specialized programs are needed to suit sector-specific requirements, and creative packages are helpful in supporting SMEs' growth.

Keywords: business support, public economics, public programme, SME

Procedia PDF Downloads 64
2860 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 133
2859 Inversion of Electrical Resistivity Data: A Review

Authors: Shrey Sharma, Gunjan Kumar Verma

Abstract:

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.

Keywords: inversion, limitations, optimization, resistivity

Procedia PDF Downloads 368
2858 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering

Procedia PDF Downloads 307
2857 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model

Authors: Ariful Islam, Showkat Ahmad Lone

Abstract:

The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.

Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability

Procedia PDF Downloads 276
2856 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 83
2855 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 156