Search results for: organic solar cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6567

Search results for: organic solar cells

957 The Influence of Bacteriocins Producing Lactic Acid Bacteria Multiplied in an Alternative Substrate on Calves Blood Parameters

Authors: E. Bartkiene, V. Krungleviciute, J. Kucinskiene, R. Antanaitis, A. Kucinskas

Abstract:

In calves less than 10-day-old, infection commonly cause severe diarrhoea and high mortality. To prevention of calves diseases a common practice is to treat calves with prophylactic antibiotics, in this case the use of lactic acid bacteria (LAB) is promising. Often LAB strains are incubated in comercial de Man-Rogosa-Sharpe (MRS) medium, the culture are centrifuged, the cells are washing with sterile water, and this suspension is used as a starter culture for animal health care. Juice of potatoe tubers is industrial wastes, wich may constitute a source of digestible nutrients for microorganisms. In our study the ability of LAB to utilize potatoe tubers juice in cell synthesis without external nutrient supplement was investigated, and the influence of multiplied LAB on calves blood parameters was evaluated. Calves were selected based on the analogy principle (treatment group (n=6), control group (n=8)). For the treatment group 14 days was given a 50 ml of fermented potatoe tubers juice containing 9.6 log10 cfu/ml of LAB. Blood parameters (gas and biochemical) were assessed by use of an auto-analyzers (Hitachi 705 and EPOC). Before the experiment, blood pH of treatment group calves was 7.33, control – 7.36, whereas, after 14 days, 7.28 and 7.36, respectively. Calves blood pH in the treatment group remained stable over the all experiment period. Concentration of PCO2 in control calves group blood increased from 63.95 to 70.93, whereas, in the treatment group decreased from 63.08 to 60.71. Concentration of lactate in the treatment group decreased from 3.20 mmol/l to 2.64 mmol/l, whereas, in control - increased from 3.95 mmol/l to 4.29 mmol/l. Concentration of AST in the control calves group increased from 50.18 IU/L to 58.9 IU/L, whereas, in treatment group decreased from 49.82 IU/L to 33.1 IU/L. We conclude that the 50 ml of fermented potatoe tubers juice containing 9.6 log10 cfu/ml of LAB per day, by using 14 days, reduced risk of developing acidosis (stabilizes blood pH (p < 0.05)), reduces lactates and PCO2 concentration (p < 0.05) and risk of liver lesions (reduces AST concentration (p < 0.005)) in blood of calves.

Keywords: alternative substrate, blood parameters, calves, lactic acid bacteria

Procedia PDF Downloads 301
956 Antibacterial Activities of Lactic Acid Bacteria on Potential Multidrug - Resistant Pathogens Isolated from Rabbit

Authors: Checkfaith I. Aizebeoje, Temitope O. Lawal, Bolanle A. Adeniyi

Abstract:

The overuse and abuse of antibiotics in treating zoonotic infections in humans and opportunistic infections in rabbit has contributed to the increase in antimicrobial drug resistance, therefore, an alternative to antibiotics is needed in treating these infections. The study was carried out to determine the antimicrobial activity of lactic acid bacteria (LAB) isolated from rabbit’s faeces against multidrug-resistant (MDR) pathogens isolated from the same rabbit. Twelve faecal samples and twelve swabs from fur samples were randomly collected aseptically from apparently healthy rabbits from Ajibode, Ibadan and University of Ibadan research farm in Ibadan, Oyo state, Nigeria. Lactic acid bacteria and multidrug-resistant pathogens were isolated using appropriate agar media and identified by partial sequencing of the 16SrRNA gene. Antibiotic susceptibility pattern of isolated bacteria and LAB were determined by the agar diffusion method. The antibacterial activity of the LAB against the test pathogens was determined using the agar overlay and agar diffusion methods. The pathogens Myroides gitamensis, Citrobacter rodentium, Acinetobacter johnsonii, Enterobacter oryzendophyticus and Serratia marcescens as well as twenty-eight (28) species of LAB belonging to Acetobacter and Lactobacillus genera were identified and characterized. Lactobacillus plantarum had the highest (60.71%) occurrence of the LAB. Viable cells and cell free supernatant (CFS) of isolated LAB inhibited the growth of the test organisms with the largest zone of inhibition (40 mm) produced by Lactobacillus plantarum against Citrobacter rodentium. This study showed that LAB from rabbit possess considerable antibacterial activity against multidrug-resistant bacteria from the same environment.

Keywords: antibacterial activities, cell-free supernatant, lactic acid bacteria; multidrug-resistant pathogens, rabbits’ faeces

Procedia PDF Downloads 120
955 Initiation of Paraptosis-Like PCD Pathway in Hepatocellular Carcinoma Cell Line by Hep88 mAb through the Binding of Mortalin (HSPA9) and Alpha-Enolase

Authors: Panadda Rojpibulstit, Suthathip Kittisenachai, Songchan Puthong, Sirikul Manochantr, Pornpen Gamnarai, Sasichai Kangsadalampai, Sittiruk Roytrakul

Abstract:

Hepatocellular carcinoma (HCC) is the most primary hepatic cancer worldwide. Nowadays a targeted therapy via monoclonal antibodies (mAbs) specific to tumor-associated antigen is continually developed in HCC treatment. In this regard, after establishing and consequently exploring Hep88 mAb’s tumoricidal effect on hepatocellular carcinoma cell line (HepG2 cell line), the Hep88 mAb’s specific Ag from both membrane and cytoplasmic fractions of HepG2 cell line was identified by 2-D gel electrophoresis and western blot analysis. After in-gel digestion and subsequent analysis by liquid chromatography-mass spectrometry (LC-MS), mortalin (HSPA9) and alpha-enolase were identified. The recombinant proteins specific to Hep88 mAb were cloned and expressed in E.coli BL21 (DE3). Moreover, alteration of HepG2 and Chang liver cell line after being induced by Hep88 mAb for 1-3 days was investigated using a transmission electron microscope. The result demonstrated that Hep88 mAb can bind to the recombinant mortalin (HSPA9) andalpha-enolase. In addition, gradual appearance of mitochondria vacuolization and endoplasmic reticulum dilatation were observed. Taken together, paraptosis-like programmed cell death (PCD) of HepG2 is induced by binding of mortalin (HSPA9) and alpha-enolase to Hep88 mAb. Mortalin depletion by formation of Hep88 mAb-mortalin (HSPA9) complex might initiate transcription-independent of p53-mediated apoptosis. Additionally, Hep88 mAb-alpha-enolase complex might initiate HepG2 cells energy exhaustion by glycolysis pathway obstruction. These results imply that Hep88 mAb might be a promising tool for development of an effective treatment of HCC in the next decade.

Keywords: Hepatocellular carcinoma, Monoclonal antibody, Paraptosis-like program cell death, Transmission electron microscopy, mortalin (HSPA9), alpha-enolase

Procedia PDF Downloads 349
954 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes

Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim

Abstract:

Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.

Keywords: EBFC, glucose, MWCNT, microfluidic

Procedia PDF Downloads 313
953 Analysis of NMDA Receptor 2B Subunit Gene (GRIN2B) mRNA Expression in the Peripheral Blood Mononuclear Cells of Alzheimer's Disease Patients

Authors: Ali̇ Bayram, Semih Dalkilic, Remzi Yigiter

Abstract:

N-methyl-D-aspartate (NMDA) receptor is a subtype of glutamate receptor and plays a pivotal role in learning, memory, neuronal plasticity, neurotoxicity and synaptic mechanisms. Animal experiments were suggested that glutamate-induced excitotoxic injuriy and NMDA receptor blockage lead to amnesia and other neurodegenerative diseases including Alzheimer’s disease (AD), Huntington’s disease, amyotrophic lateral sclerosis. Aim of this study is to investigate association between NMDA receptor coding gene GRIN2B expression level and Alzheimer disease. The study was approved by the local ethics committees, and it was conducted according to the principles of the Declaration of Helsinki and guidelines for the Good Clinical Practice. Peripheral blood was collected 50 patients who diagnosed AD and 49 healthy control individuals. Total RNA was isolated with RNeasy midi kit (Qiagen) according to manufacturer’s instructions. After checked RNA quality and quantity with spectrophotometer, GRIN2B expression levels were detected by quantitative real time PCR (QRT-PCR). Statistical analyses were performed, variance between two groups were compared with Mann Whitney U test in GraphpadInstat algorithm with 95 % confidence interval and p < 0.05. After statistical analyses, we have determined that GRIN2B expression levels were down regulated in AD patients group with respect to control group. But expression level of this gene in each group was showed high variability. İn this study, we have determined that NMDA receptor coding gene GRIN2B expression level was down regulated in AD patients when compared with healthy control individuals. According to our results, we have speculated that GRIN2B expression level was associated with AD. But it is necessary to validate these results with bigger sample size.

Keywords: Alzheimer’s disease, N-methyl-d-aspartate receptor, NR2B, GRIN2B, mRNA expression, RT-PCR

Procedia PDF Downloads 380
952 A Facile One Step Modification of Poly(dimethylsiloxane) via Smart Polymers for Biomicrofluidics

Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta

Abstract:

Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. It is easily patterned and can replicate features down to nanometers. Its flexibility, gas permeability that allows oxygenation, and low cost also drive its wide adoption. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant non-specific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. While silicon, glass, and thermoplastics have been used, they come with problems of their own such as rigidity, high cost, and special tooling needs, which limit their use to a smaller user base. Many strategies to alleviate these common problems with PDMS are lack of general practical applicability, or have limited shelf lives in terms of the modifications they achieve. This restricts large scale implementation and adoption by industrial and research communities. Accordingly, we aim to tailor biocompatible PDMS surfaces by developing a simple and one step bulk modification approach with novel smart materials to reduce non-specific molecular adsorption and to stabilize long-term cell analysis with PDMS substrates. Smart polymers that blended with PDMS during device manufacture, spontaneously segregate to surfaces when in contact with aqueous solutions and create a < 1 nm layer that reduces non-specific adsorption of organic and biomolecules. Our methods are fully compatible with existing PDMS device manufacture protocols without any additional processing steps. We have demonstrated that our modified PDMS microfluidic system is effective at blocking the adsorption of proteins while retaining the viability of primary rat hepatocytes and preserving the biocompatibility, oxygen permeability, and transparency of the material. We expect this work will enable the development of fouling-resistant biomedical materials from microfluidics to hospital surfaces and tubing.

Keywords: cell culture, microfluidics, non-specific protein adsorption, PDMS, smart polymers

Procedia PDF Downloads 287
951 Screening of Lactic Acid Bacteria Isolated from Traditional Fermented Products: Potential Probiotic Bacteria with Antimicrobial and Cytotoxic Activities

Authors: Genesis Julyus T. Agcaoili, Esperanza C. Cabrera

Abstract:

Thirty (30) isolates of lactic acid bacteria (LAB) from traditionally-prepared fermented products specifically fermented soy-bean paste, fermented mustard and fermented rice-fish mixture were studied for their in vitro antimicrobial and cytotoxic activities. Seventeen (17) isolates were identified as Lactobacillus plantarum, while 13 isolates were identified as Enterococcus spp using 16s rDNA sequences. Disc diffusion method was used to determine the antibacterial activity of LAB against Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), while the modified agar overlay method was used to determine the antifungal activity of LAB isolates on the yeast Candida albicans, and the dermatophytes Microsporum gypseum, Trichophyton rubrum and Epidermophyton floccosum. The filter-sterilized LAB supernatants were evaluated for their cytotoxicity to mammalian colon cancer cell lines (HT-29 and HCT116) and normal human dermal fibrolasts (HDFn) using resazurin assay (PrestoBlueTM). Colchicine was the positive control. No antimicrobial activity was observed against the bacterial test organisms and the yeast Candida albicans. On the other hand, all of the tested LAB strains were fungicidal for all the test dermatophytes. Cytotoxicity index profiles of the supernatants of the 15 randomly picked LABs and negative control (brain heart infussion broth) suggest nontoxicity to the cells when compared to colchicine, whereas all LAB supernatants were found to be cytotoxic to HT-29 and HCT116 colon cancer cell lines. Results provide strong support for the role of the lactic acid bacteria studied in antimicrobial treatment and anticancer therapy.

Keywords: antimicrobial, fermented products, fungicidal activity, lactic acid bacteria, probiotics

Procedia PDF Downloads 226
950 “MaxSALIVA”: A Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection and Repair in Head and Neck Cancer

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral and dental health (consequently, general health and well-being). Where it normally bathes the oral cavity and acts as a clearing agent. This becomes more apparent when the amount and quality of salivare significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the fifth most common malignancy worldwide, during which the salivary glands are included within the radiation field or zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely because they become malnourished and experience a significant decrease in their quality of life. Accordingly, the development of an alternative treatment to restore or regenerate damaged salivary gland tissue is eagerly awaited. Likewise, the formulation of a radioprotection modality and early damage prevention strategy is also highly desirable. Objectives: To assess the pre-clinical radio-protective effect as well as the reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned in this experimental work for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs (in solution and powder formats), followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy (revised from our previous 15Gy model) was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: saliva, head and neck cancer, nanotechnology, controlled drug delivery, xerostomia, mucositis, biopolymers, innovation

Procedia PDF Downloads 75
949 Evaluation of the Efficacy of Surface Hydrophobisation and Properties of Composite Based on Lime Binder with Flax Fillers

Authors: Stanisław Fic, Danuta Barnat-Hunek, Przemysław Brzyski

Abstract:

The aim of the study was to evaluate the possibility of applying modified lime binder together with natural flax fibers and straw to the production of wall blocks to the usage in energy-efficient construction industry and the development of proposals for technological solutions. The following laboratory tests were performed: the analysis of the physical characteristics of the tested materials (bulk density, total porosity, and thermal conductivity), compressive strength, a water droplet absorption test, water absorption of samples, diffusion of water vapor, and analysis of the structure by using SEM. In addition, the process of surface hydrophobisation was analyzed. In the paper, there was examined the effectiveness of two formulations differing in the degree of hydrolytic polycondensation, viscosity and concentration, as these are the factors that determine the final impregnation effect. Four composites, differing in composition, were executed. Composites, as a result of the presence of flax straw and fibers showed low bulk density in the range from 0.44 to 1.29 kg/m3 and thermal conductivity between 0.13 W/mK and 0.22 W/mK. Compressive strength changed in the range from 0,45 MPa to 0,65 MPa. The analysis of results allowed observing the relationship between the formulas and the physical properties of the composites. The results of the effectiveness of hydrophobisation of composites after 2 days showed a decrease in water absorption. Depending on the formulation, after 2 days, the water absorption ratio WH of composites was from 15 to 92% (effectiveness of hydrophobization was suitably from 8 to 85%). In practice, preparations based on organic solvents often cause sealing of surface, hindering the diffusion of water vapor from materials but studies have shown good water vapor permeability by the hydrophobic silicone coating. The conducted pilot study demonstrated the possibility of applying flax composites. The article shows that the reduction of CO2 which is produced in the building process can be affected by using natural materials for the building components whose quality is not inferior as compared to the materials which are commonly used.

Keywords: ecological construction, flax fibers, hydrophobisation, lime

Procedia PDF Downloads 324
948 Correlation of Hematological Indices with Fasting Blood Glucose Level and Anthropometric Measurements in Geriatric Diabetes Mellitus Subjects in Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria

Authors: Dada. O.Akinola, Uche. I. Ebele, Bamiro .A.Rafatu, Akinbami A. Akinsegun, Dada O. Adeyemi, Adeyemi. O. Ibukun, Okunowo O.Bolanle, Abdulateef O. Kareem, Ibrahim.N. Ismaila, Dosu Rihanat

Abstract:

Background: Hyperglycaemia alters qualitatively and quantitatively all the full blood count parameters. The alterations among other factors are responsible for the macrovascular and microvascular complications associated with diabetes mellitus (DM). This study is aimed at correlating haematological parameters in DM subjects with their fasting blood glucose (FBG) and anthropometric parameters. Materials and Methods: This was a cross-sectional study of participants attending DM clinic of Lagos State University Teaching Hospital (LASUTH), Ikeja. The study recruited one hundred and two (102) DM subjects and one hundred (100) non-DM controls. Venous blood samples were collected for full blood count (FBC) assay while FBG was done, structured questionnaires were administered, and anthropometric measurements of all participants were done. Data were analyzed with Statistical Package for Social Science (SPSS) version 23. P was set at ≤0.05. Results: The mean age of DM patients was 64.32± 11.31 years. Using a haemoglobin concentration cut-off of 11g/dl, 39.2%, and 13% DM and control participants respectively had values lower than 11g/dl. A total of 22.5% and 3% of DM and controls respectively gave a history of previous blood transfusion.White blood cells count and platelet count means were (6.12±1.60 and 5.30±7.52,p=0.59) and (213.31±73.58 and 228.91±73.21,p = 0.26) *109/L in DM subjects and controls respectively. FBG and all the anthropometric data in DM subjects were significantly higher than in controls. Conclusions: The prevalence of anaemia in DM subjects was three times higher than in controls. The white blood cell count was higher but not statistically significant in DM compared with controls. But platelet count was higher but not statistically significant in controls compared with DM subjects.

Keywords: haematological profile, diabetes mellitus, anthropometric data, fasting blood glucose

Procedia PDF Downloads 72
947 Fabrication of Ligand Coated Lipid-Based Nanoparticles for Synergistic Treatment of Autoimmune Disease

Authors: Asiya Mahtab, Sushama Talegaonkar

Abstract:

The research is aimed at developing targeted lipid-based nanocarrier systems of chondroitin sulfate (CS) to deliver an antirheumatic drug to the inflammatory site in arthritic paw. Lipid-based nanoparticle (TEF-lipo) was prepared by using a thin-film hydration method. The coating of prepared drug-loaded nanoparticles was done by the ionic interaction mechanism. TEF-lipo and CS-coated lipid nanoparticle (CS-lipo) were characterized for mean droplet size, zeta potential, and surface morphology. TEF-lipo and CS-lipo were further subjected to in vitro cell line studies on RAW 264.7 murine macrophage, U937, and MG 63 cell lines. The pharmacodynamic study was performed to establish the effectiveness of the prepared lipid-based conventional and targeted nanoparticles in comparison to pure drugs. Droplet size and zeta potential of TEF-lipo were found to be 128. 92 ± 5.42 nm and +12.6 ± 1.2 mV. It was observed that after the coating of TEF-lipo with CS, particle size increased to 155.6± 2.12 nm and zeta potential changed to -10.2± 1.4mV. Transmission electron microscopic analysis revealed that the nanovesicles were uniformly dispersed and detached from each other. Formulations followed sustained release pattern up to 24 h. Results of cell line studies ind icated that CS-lipo formulation showed the highest cytotoxic potential, thereby proving its enhanced ability to kill the RAW 264.7 murine macrophage and U937 cells when compared with other formulations. It is clear from our in vivo pharmacodynamic results that targeted nanocarriers had a higher inhibitory effect on arthritis progression than nontargeted nanocarriers or free drugs. Results demonstrate that this approach will provide effective treatment for rheumatoid arthritis, and CS served as a potential prophylactic against the advancement of cartilage degeneration.

Keywords: adjuvant induced arthritis, chondroitin sulfate, rheumatoid arthritis, teriflunomide

Procedia PDF Downloads 127
946 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 173
945 Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array

Authors: S. S. Sree Sanker, K. N. Madhusoodanan

Abstract:

Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring.

Keywords: CST microwave studio, glucose sensor, photonic crystal, terahertz waves

Procedia PDF Downloads 269
944 Combination of Diane-35 and Metformin to Treat Early Endometrial Carcinoma in PCOS Women with Insulin Resistance

Authors: Xin Li, Yan-Rong Guo, Jin-Fang Lin, Yi Feng, Håkan Billig, Ruijin Shao

Abstract:

Background: Young women with polycystic ovary syndrome (PCOS) have a high risk of developing endometrial carcinoma. There is a need for the development of new medical therapies that can reduce the need for surgical intervention so as to preserve the fertility of these patients. The aim of the study was to describe and discuss cases of PCOS and insulin resistance (IR) women with early endometrial carcinoma while being co-treated with Diane-35 and metformin. Methods: Five PCOS-IR women who were scheduled for diagnosis and therapy for early endometrial carcinoma were recruited. The hospital records and endometrial pathology reports were reviewed. All patients were co-treated with Diane-35 and metformin for 6 months to reverse the endometrial carcinoma and preserve their fertility. Before, during, and after treatment, endometrial biopsies and blood samples were obtained and oral glucose tolerance tests were performed. Endometrial pathology was evaluated. Body weight (BW), body mass index (BMI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), sex hormone-binding globulin (SHBG), free androgen index (FAI), insulin area under curve (IAUC), and homeostasis model assessment of insulin resistance (HOMA-IR) were determined. Results: Clinical stage 1a, low grade endometrial carcinoma was confirmed before treatment. After 6 months of co-treatment, all patients showed normal epithelia. No evidence of atypical hyperplasia or endometrial carcinoma was found. Co-treatment resulted in significant decreases in BW, BMI, TT, FAI, IAUC, and HOMA-IR in parallel with a significant increase in SHBG. There were no differences in the FSH and LH levels after co-treatment. Conclusions: Combined treatment with Diane-35 and metformin has the potential to revert the endometrial carcinoma into normal endometrial cells in PCOS-IR women. The cellular and molecular mechanisms behind this effect merit further investigation.

Keywords: PCOS, progesterone resistance, insulin resistance, steroid hormone receptors, endometrial carcinoma

Procedia PDF Downloads 395
943 Identification of Analogues to EGCG for the Inhibition of HPV E7: A Fundamental Insights through Structural Dynamics Study

Authors: Murali Aarthy, Sanjeev Kumar Singh

Abstract:

High risk human papillomaviruses are highly associated with the carcinoma of the cervix and the other genital tumors. Cervical cancer develops through the multistep process in which increasingly severe premalignant dysplastic lesions called cervical intraepithelial neoplastic progress to invasive cancer. The oncoprotein E7 of human papillomavirus expressed in the lower epithelial layers drives the cells into S-phase creating an environment conducive for viral genome replication and cell proliferation. The replication of the virus occurs in the terminally differentiating epithelium and requires the activation of cellular DNA replication proteins. To date, no suitable drug molecule is available to treat HPV infection whereas identification of potential drug targets and development of novel anti-HPV chemotherapies with unique mode of actions are expected. Hence, our present study aimed to identify the potential inhibitors analogous to EGCG, a green tea molecule which is considered to be safe to use for mammalian systems. A 3D similarity search on the natural small molecule library from natural product database using EGCG identified 11 potential hits based on their similarity score. The structure based docking strategies were implemented in the potential hits and the key interacting residues of protein with compounds were identified through simulation studies and binding free energy calculations. The conformational changes between the apoprotein and the complex were analyzed with the simulation and the results demonstrated that the dynamical and structural effects observed in the protein were induced by the compounds and indicated the dominance to the oncoprotein. Overall, our study provides the basis for the structural insights of the identified potential hits and EGCG and hence, the analogous compounds identified can be potent inhibitors against the HPV 16 E7 oncoprotein.

Keywords: EGCG, oncoprotein, molecular dynamics simulation, analogues

Procedia PDF Downloads 116
942 Indigo Dye Wastewater Treatment by Fenton Oxidation

Authors: Anurak Khrueakham, Tassanee Chanphuthin

Abstract:

Indigo is a well-known natural blue dye that is used hither to even though synthetic ones are commercially available. The removal of indigo from effluents is difficult due to its resistance towards biodegradation which causes an aquatic environment effect. Fenton process is a reaction between hydrogen peroxide H2O2 and Fe2+ to generate •OH (highly reactive oxidant (E◦= 2.8 V)). Additionally, •OH is non-selective oxidant which is capable of destroying wide range of organic pollutants in water and wastewater. The aims of this research were to investigate the effect of H2O2, Fe2+ and pH on indigo wastewater oxidation by Fenton process. A liter reactor was operated in all experiments. The batch reactor was prepared by filling 1 liter of indigo wastewater. The pH was adjusted to the desired value; then, FeSO4 at predetermined amount was added. Finally, H2O2 was immediately added to start the Fenton’s reaction. The Fenton oxidation of indigo wastewater was operated for 60 minutes. Residual H2O2 was analyzed using titanium oxalate method. The Fe2+ concentration was determined by phenanthroline method. COD was determined using closed-reflux titrimetric method to indicate the removal efficiency. The results showed that at pH 2 increasing the initial ferrous concentration from 0.1 mM to 1 mM enhanced the indigo removal from 36% to 59%. Fenton reaction was rapidly due to the high generation rate of •OH. The degradation of indigo increased with increasing pH up to pH 3. This can be explained that the scavenging effect of the •OH by H+ in the condition of low pH is severe to form an oxonium ion, resulting in decrease the production of •OH and lower the decolorization efficiency of indigo. Increasing the initial H2O2 concentration from 5 mM to 20 mM could enhance the decolorization. The COD removal was increased from 35% to 65% with increasing H2O2 concentration from 5 mM to 20 mM. The generations of •OH were promoted by the increase of initial H2O2 concentration. However, the higher concentration of H2O2 resulted in the reduction of COD removal efficiency. The initial ferrous concentrations were studied in the range of 0.05-15.0 mM. The results found that the COD removals increased with increasing ferrous concentrations. The COD removals were increased from 32% to 65% when increase the ferrous concentration from 0.5 mM to 10.0 mM. However, the COD removal did not significantly change at higher 10.0 mM. This is because •OH yielding was lower level of oxidation, therefore, the COD removals were not improved. According to the studies, the Fenton’s reagents were important factors for COD removal by Fenton process. The optimum condition for COD removal of indigo dye wastewater was 10.0 mM of ferrous, 20 mM of H2O2 and at pH 3.

Keywords: indigo dye, fenton oxidation, wastewater treatment, advanced oxidation processes

Procedia PDF Downloads 384
941 Waste Water Treatment by Moringa oleifera Seed Powder in Historical Jalmahal Lake Located in Semi-Arid Monsoon Zone of India

Authors: Pomila Sharma

Abstract:

The rapid urbanization in India was not accompanied by the establishment of waste water treatment facility at similar and same pace. The inland fresh water ecosystem is increasingly subjected to great stress from various human activities. Jalmahal Lake is located in Jaipur city of Rajasthan state; the lake was constructed about 400 years ago and surrounded by hills. The lake was approximately 139 hectare in full spread and has catchment area of 23.5 sq. kilometer. Out of the total catchment area approximate 40% falls inside dense urban area of Jaipur city. During the showers, the treated and untreated waste waters and runoff waters get mixed and enter the lake through the various influx channels, and the lake water quality gets affected by the inflow of waste water. The main objective of this work was to use the Moringa oleifera seeds as a natural adsorbent for the treatment of wastewater in lake. Moringa oleifera is a tropical, multipurpose tree whose seeds contain high-quality edible oil 40% by weight and water soluble, non-toxic protein that act as an effective coagulant for the removal of organic matter in water and waste water treatment. Laboratory Jar test procedure had been used for coagulation studies; an experiment runs using lake water. Water extracts/powder of Moringa seed applied to treat polluted water of lake. In present study various doses of Moringa oleifera seed coagulant viz. 100 mg/L, 200 mg/L, and 400 mg/L were taken and checked for the efficiency dose on treated and untreated polluted water. Turbidity and color removal is one of the important steps in a waste water treatment processes. The results indicate significant reduction in turbidity and color. Standard plate count was significantly reduced fecal coliform levels too. All parameters were reduced with the increased dose of Moringa oleifera. It was clear from the study Moringa oleifera seed was shown to be a potential bio-coagulant, for treatment of sewage laden polluted water in the lake.

Keywords: coagulant, Moringa oleifera, plate count, turbidity, wastewater

Procedia PDF Downloads 393
940 Pathogenic Effects of IgG and IgM Apoptotic Cell-Reactive Monoclonal Auto-Antibodies on Innate and Adaptive Immunity in Lupus

Authors: Monika Malik, Pooja Arora, Ruchi Sachdeva, Vishnampettai G. Ramachandran, Rahul Pal

Abstract:

Apoptotic debris is believed to be the antigenic trigger in lupus. Whether such debris and autoantibodies induced in lupus-prone mice which specifically recognize its constituents can mediate differential effects on innate and humoral responses in such mice was assessed. The influence of apoptotic blebs and apoptotic cell-reactive monoclonal antibodies on phenotypic markers expressed on bone marrow-derived dendritic cells (BMDCs) and secreted cytokines were evaluated. Sera from lupus-prone and healthy mice immunized with the antibodies were analyzed for anti-self reactivity. Apoptotic blebs, as well as somatically-mutated IgG and non-mutated IgM apoptotic-cell reactive monoclonal antibodies, induced the preferential maturation of BMDCs derived from lupus-prone mice relative to BMDCs derived from healthy mice; antibody specificity and cell genotype both influenced the secretion of inflammatory cytokines. Immunization of lupus-prone mice with IgM and IgG antibodies led to hypergammaglobulinemia; elicited antibodies were self-reactive, and exhibited enhanced recognition of lupus-associated autoantigens (dsDNA, Ro60, RNP68, and Sm) in comparison with adjuvant-induced sera. While ‘natural’ IgM antibodies are believed to contribute to immune homeostasis, this study reveals that apoptotic cell-reactive IgM antibodies can promote inflammation and drive anti-self responses in lupus. Only in lupus-prone mice did immunization with IgG auto-antibodies enhance the kinetics of humoral anti-self responses, resulting in advanced-onset glomerulosclerosis. This study reveals that preferential innate and humoral recognition of the products of cell death in an autoimmune milieu influences the indices associated with lupus pathology.

Keywords: antigen spreading, apoptotic cell-reactive pathogenic IgG, and IgM autoantibodies, glomerulosclerosis, lupus

Procedia PDF Downloads 155
939 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar

Authors: H. Aljabiry, L. Bailey, S. Young

Abstract:

Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.

Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands

Procedia PDF Downloads 125
938 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil

Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas

Abstract:

This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.

Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils

Procedia PDF Downloads 129
937 Quantitative and Fourier Transform Infrared Analysis of Saponins from Three Kenyan Ruellia Species: Ruellia prostrata, Ruellia lineari-bracteolata and Ruellia bignoniiflora

Authors: Christine O. Wangia, Jennifer A. Orwa, Francis W. Muregi, Patrick G. Kareru, Kipyegon Cheruiyot, Eric Guantai

Abstract:

Ruellia (syn. Dipteracanthus) species are wild perennial creepers belonging to the Acanthaceae family. These species are reported to possess anti-inflammatory, analgesic, antioxidant, gastroprotective, anticancer, and immuno-stimulant properties. Phytochemical screening of both aqueous and methanolic extracts of Ruellia species revealed the presence of saponins. Saponins have been reported to possess anti-inflammatory, antioxidant, immuno-stimulant, antihepatotoxic, antibacterial, anticarcinogenic, and antiulcerogenic activities. The objective of this study was to quantify and analyze the Fourier transform infrared (FTIR) spectra of saponins in crude extracts of three Kenyan Ruellia species namely Ruellia prostrata (RPM), Ruellia lineari-bracteolata (RLB) and Ruellia bignoniiflora (RBK). Sequential organic extraction of the ground whole plant material was done using petroleum ether (PE), chloroform, ethyl acetate (EtOAc), and absolute methanol by cold maceration, while aqueous extraction was by hot maceration. The plant powders and extracts were mixed with spectroscopic grade KBr and compressed into a pellet. The infrared spectra were recorded using a Shimadzu FTIR spectrophotometer of 8000 series in the range of 3500 cm-1 - 500 cm-1. Quantitative determination of the saponins was done using standard procedures. Quantitative analysis of saponins showed that RPM had the highest quantity of crude saponins (2.05% ± 0.03), followed by RLB (1.4% ± 0.15) and RBK (1.25% ± 0.11), respectively. FTIR spectra revealed the spectral peaks characteristic for saponins in RPM, RLB, and RBK plant powders, aqueous and methanol extracts; O-H absorption (3265 - 3393 cm-1), C-H absorption ranging from 2851 to 2924 cm-1, C=C absorbance (1628 - 1655 cm-1), oligosaccharide linkage (C-O-C) absorption due to sapogenins (1036 - 1042 cm-1). The crude saponins from RPM, RLB and RBK showed similar peaks to their respective extracts. The presence of the saponins in extracts of RPM, RLB and RBK may be responsible for some of the biological activities reported in the Ruellia species.1

Keywords: Ruellia bignoniiflora, Ruellia linearibracteolata, Ruellia prostrata, Saponins

Procedia PDF Downloads 158
936 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant

Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter

Abstract:

Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.

Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis

Procedia PDF Downloads 487
935 Anaerobic Co-digestion of the Halophyte Salicornia Ramosissima and Pig Manure in Lab-Scale Batch and Semi-continuous Stirred Tank Reactors: Biomethane Production and Reactor Performance

Authors: Aadila Cayenne, Hinrich Uellendahl

Abstract:

Optimization of the anaerobic digestion (AD) process of halophytic plants is essential as the biomass contains a high salt content that can inhibit the AD process. Anaerobic co-digestion, together with manure, can resolve the inhibitory effects of saline biomass in order to dilute the salt concentration and establish favorable conditions for the microbial consortia of the AD process. The present laboratory study investigated the co-digestion of S. ramosissima (Sram), and pig manure (PM) in batch and semi-continuous stirred tank reactors (CSTR) under mesophilic (38oC) conditions. The 0.5L batch reactor experiments were in mono- and co-digestion of Sram: PM using different percent volatile solid (VS) based ratios (0:100, 15:85, 25:75, 35:65, 50:50, 100:0) with an inoculum to substate (I/R) ratio of 2. Two 5L CSTR systems (R1 and R2) were operated for 133 days with a feed of PM in a control reactor (R1) and with a co-digestion feed in an increasing Sram VS ratio of Sram: PM of 15:85, 25:75, 35:65 in reactor R2 at an organic loading rate (OLR) of 2 gVS/L/d and hydraulic retention time (HRT) of 20 days. After a start-up phase of 8 weeks for both reactors R1 and R2 with PM feed alone, the halophyte biomass Sram was added to the feed of R2 in an increasing ratio of 15 – 35 %VS Sram over an 11-week period. The process performance was monitored by pH, total solid (TS), VS, total nitrogen (TN), ammonium-nitrogen (NH4 – N), volatile fatty acids (VFA), and biomethane production. In the batch experiments, biomethane yields of 423, 418, 392, 365, 315, and 214 mL-CH4/gVS were achieved for mixtures of 0:100, 15:85, 25:75, 35:65, 50:50, 100:0 %VS Sram: PM, respectively. In the semi-continuous reactor processes, the average biomethane yields were 235, 387, and 365 mL-CH4/gVS for the phase of a co-digestion feed ratio in R2 of 15:85, 25:75, and 35:65 %VS Sram: PM, respectively. The methane yield of PM alone in R1 was in the corresponding phases on average 260, 388, and 446 mL-CH4/gVS. Accordingly, in the continuous AD process, the methane yield of the halophyte Sram was highest at 386 mL-CH4/gVS in the co-digestion ratio of 25:75%VS Sram: PM and significantly lower at 15:85 %VS Sram: PM (100 mL-CH4/gVS) and at 35:65 %VS Sram (214 mL-CH4/gVS). The co-digestion process showed no signs of inhibition at 2 – 4 g/L NH4 – N, 3.5 – 4.5 g/L TN, and total VFA of 0.45 – 2.6 g/L (based on Acetic, Propionic, Butyric and Valeric acid). This study demonstrates that a stable co-digestion process of S. ramosissima and pig manure can be achieved with a feed of 25%VS Sram at HRT of 20 d and OLR of 2 gVS/L/d.

Keywords: anaerobic co-digestion, biomethane production, halophytes, pig manure, salicornia ramosissima

Procedia PDF Downloads 133
934 Ocular Immunology: In Face of Immune Privilege the Eye Remains Vulnerable to Autoimmune and Inflammatory-Mediated Diseases

Authors: Husham Bayazed

Abstract:

Purpose of Presentation: The eye is one of a few sites in the body with immune privilege (IP). However, this IP is relatively easily bypassed in the face of sufficient strong local or systemic immunological responses. As immune responses are crucial elements of the repair response, the eye has developed distinct mechanisms to deliver immune responses to injury in the avascular regions of the eye. This presentation may cover and provide an overview of the mechanisms that dictate immune cell trafficking to the local ocular microenvironment in response to different autoimmune and inflammatory-mediated diseases. Recent Findings: Literature reviews declare that immune responses and inflammation play a key role in a diverse range of eye diseases. In recent years, our understanding of ocular immune responses has widely spread in ocular surface inflammation, uveitis, age-related macular degeneration (AMD), glaucoma, transplantation rejection, and other ocular diseases. It is becoming increasingly clear that multiple seemingly unrelated diseases involve immune responses with common themes in their ocular pathogenesis. Recent studies are focusing on elucidating the pathogenesis of ocular inflammatory disease to identify new targets for immunotherapy that will not only improve efficacy but also minimize adverse effects from traditional therapy. Summary: While IP was believed to protect the eye from day-to-day inflammatory insults, however, it is relatively easily breached in the face of different strong local or systemic immunological and inflammatory responses. Therefore, the ocular immune response encapsulates the full range of classical and non-classical immune responses and demonstrates many features which are reflected in other tissues, but eye tissues, by modifying these responses, may reveal unexpected and novel findings which are relevant to immune responses generally. This may have therapeutic potential for new targeting immunotherapy, restoring immune tolerance in ocular autoimmune and inflammatory diseases, and preventing rejection such as stem cells, currently being considered for treatment of worldwide blinding diseases such as AMD.

Keywords: ocular diseases, immunology, immune privilege, immunotherapy

Procedia PDF Downloads 69
933 Detection of Bcl2 Polymorphism in Patient with Hepatocellular carcinoma

Authors: Mohamed Abdel-Hamid, Olfat Gamil Shaker, Doha El-Sayed Ellakwa, Eman Fathy Abdel-Maksoud

Abstract:

Introduction: Despite advances in the knowledge of the molecular virology of hepatitis C virus (HCV), the mechanisms of hepatocellular injury in HCV infection are not completely understood. Hepatitis C viral infection (HCV) influences the susceptibility to apoptosis. This could lead to insufficient antiviral immune response and persistent viral infection. Aim of this study: was to examine whether BCL-2 gene polymorphism at codon 43 (+127G/A or Ala43Thr) has an impact on development of hepatocellular carcinoma caused by chronic hepatitis C Egyptian patients. Subjects and Methods: The study included three groups; group 1: composing of 30 patients with hepatocellular carcinoma (HCC), group 2 composing of 30 patients with HCV, group 3 composing of 30 healthy subjects matching the same age and socioeconomic status were taken as a control group. Gene polymorphism of BCL2 (Ala43Thr) were evaluated by PCR-RFLP technique and measured for all patients and controls. Results: The summed 43Thr genotype was more frequent and statistically significant in HCC patients as compared to control group. This genotype of BCL2 gene may inhibit the programmed cell death which leads to disturbance in tissue and cells homeostasis and reduction in immune regulation. This result leads to viral replication and HCV persistence. Moreover, virus produces variety of mechanisms to block genes participated in apoptosis. This mechanism proves that HCV patients who have 43Thr genotype are more susceptible to HCC. Conclusion: The data suggest for the first time that the BCL2 polymorphism is associated with the susceptibility to HCC in Egyptian populations and might be used as molecular markers for evaluating HCC risk. This study clearly demonstrated that Chronic HCV exhibit a deregulation of apoptosis with the disease progression. This provides an insight into the pathogenesis of chronic HCV infection, and may contribute to the therapy.

Keywords: BCL2 gene, Hepatitis C Virus, Hepatocellular carcinoma, sensitivity, specificity, apoptosis

Procedia PDF Downloads 495
932 Analysis of Expression of SP and NOS in the Porcine Nodose Ganglion (NG) Sensory Neurons Supplying Prepyloric Stomach Region after Intragastric Hydrochloric Acid Infusion

Authors: Liliana Rytel, Jarosław Całka

Abstract:

One of the diseases that are very common health problem of modern man is the stomach hyperacidity. It is well known that this pathological state, during which gastric glands secrete too much of hydrochloric acid can be caused due to various factors such as stress, eating habits, alcohol, smoking and some, especially anti-inflammatory drugs. Moreover, hyperacidity is recognized as one of factors leading to development of peptic ulcer disease. Therefore, we analyzed expression of substance P (SP) and neuronal isoform of nitric oxide synthase (nNOS) in the porcine nodose ganglion sensory neurons innervating prepyloric stomach region in physiological state and following intragastric infusion of hydrochloric acid. The study was performed on 8 immature gilts of the Large White Polish breed. All animals were injected retrograde marker Fast Blue (FB) into the anterior prepyloric stomach wall. After injections of FB, pigs were divided into two groups: control (group C; n = 4) and experimental (HCL group, n = 4) and after convalescence period of 23 days, animals of HCL group were subjected to renewed anaesthesia. Then, 0.25 M aqueous solution of hydrochloric acid with a dose of 5 ml/kg body weight was administered intragastrically with use of a stomach tube. On 28th day, all control and HCL pigs were euthanized and bilateral reght (rNG) and left (lNG) were collected. Cryostat sections were processed for double immunofluorescence using anibodies against SP and NOS. Immunofluorescence staining in the even-numbered ganglia nodes showed the presence of FB-positive cells expressing SP (45,9 ± 3,38% in rNG and 60,4 ± 1,71% in lNG), and nNOS (34,9 ± 6,83% in rNG and 49,9 ± 9,32% in lNG). In HCL group increased expression of both SP (54,8 ± 5,34% in rNG and 56,9 ± 3,28 % in lNG) as well as nNOS (54,9 ± 4,45% in rNG and 52,5 ± 2,17 % in lNG) in FB+ perikaria was found. The acquired results suggest that SP and nNOS are neurotransmitters and/ or neuromodulators participating in the sensory regulation of the prepyloric region of porcine stomach function as well as their potential role in development of the stomach inflamatory state.

Keywords: nNOS, nodose ganglion, pig, SP

Procedia PDF Downloads 291
931 Harmful Algal Blooming Micro-Algae in Kenya’s Coastal Waters

Authors: Nancy Awuor Oduor, Nils Moosdorf

Abstract:

Harmful Algal Blooms (HABs) are a threat to coastal water quality, marine biodiversity, and human health. The attention on HABs and associated phycotoxins is still very low in tropical coastal developing countries despite the high dependence of local communities on coastal and marine resources for food and livelihoods and the growing evidence of the global increase in HABs frequency, toxicity, and geographical expansion. Lack of HABs monitoring thus creates a high risk of exposure due to uncertainty. This study assessed the spatial and temporal variability and effects of potential HAB-forming species in Kenya’s coastal waters. The preliminary results from 463 sampled collected over a series of 10 coastal surveys conducted over 267 Km of Kenya’s coastline between August 2021 and July 2022 revealed the presence of 87 potential algal blooming species belonging to 47 genera dominated by species capable of producing toxins, causing physical harm and high biomass at 41, 31 and 21 % respectively. The taxonomic composition was also dominated by dinoflagellates at 47%, followed by diatoms, cyanobacteria, and silicoflagellates at 39, 12, and 2%, respectively. About 92 % of the toxin-producing species were established in the creek waters. However, there were no significant variations established in species richness between the dry and wet seasons. Paralytic Shellfish Poisoning (PSP) toxin-producing dinoflagellates Alexandrium spp., Aphanizomenon spp., Gonyaulax spp., Gymnodinium spp., and Brachydinium capitatum, and Amnesic Shellfish Poisoning (ASP) Toxin producing diatoms Amphora spp., Nitzschia spp. and Pseudo-nitzschia spp. Frequented the area in low cell densities ranging between 5 and 1500 cells/L. However, no domoic acid (DA) and saxitoxins (SXTs) were detected during the July surveys. This does not mean that the toxins are absent in the area, and longer studies are recommended.

Keywords: harmful algal blooms, phycotoxins, saxitoxin, domoic acid, Kenya

Procedia PDF Downloads 50
930 Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions

Authors: Violina Angelova, Galina Pevicharova

Abstract:

A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9).

Keywords: heavy metals, polluted soils, sweet potatoes, uptake

Procedia PDF Downloads 194
929 RNA-seq Analysis of Liver from NASH-HCC Model Mouse Treated with Streptozotocin-High Fat Diet

Authors: Bui Phuong Linh, Yuki Sakakibara, Ryuto Tanaka, Elizabeth H. Pigney, Taishi Hashiguchi

Abstract:

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease, often associated with type II diabetes, which sometimes progresses to more serious conditions such as liver fibrosis and hepatocellular carcinoma (HCC). NASH has become an important health problem worldwide, buttherapeutic agents for NASH have not yet been approved, and animal models with high clinical correlation are required. TheSTAM™ mouse shows the same pathological progression as human NASH patients and has been widely used for both drug efficacy and basic research, such as lipid profiling and gut microbiota research. In this study, we analyzed the RNA-seq data of STAM™mice at each pathological stage (steatosis, steatohepatitis, liver fibrosis, and HCC) and examined the clinical correlation at the genetic level. NASH was induced in male mice by a single subcutaneous injection of 200 µg streptozotocin solution 2 days after birth and feeding with high fat dietafter 4 weeks of age. The mice were sacrificed and livers collected at 6, 8, 10, 12, 16, and 20 weeks of age. For liver samples, the left lateral lobe was snap frozen in liquid nitrogen and stored at -80˚C for RNA-seq analysis. Total RNA of the cells was isolated using RNeasy mini kit. The gene expression of the canonical pathways in NASH progression from steatosis to hepatocellular carcinoma were analyzed, such as immune system process, oxidation-reduction process, lipid metabolic process. Moreover, since it has been reported that genetic traits are involved in the development of NASH-HCC, we next analyzed the genetic mutations in the STAM™mice. The number of individuals showing mutations in Mtorinvolved in Insulin signaling increases as the disease progresses, especially in the liver cancer phase. These results indicated a clinical correlation of gene profiles in the STAM™mouse.

Keywords: steatosis, non-alcoholic steatohepatitis, fibrosis, hepatocellular carcinoma, RNA-seq

Procedia PDF Downloads 144
928 AFM Probe Sensor Designed for Cellular Membrane Components

Authors: Sarmiza Stanca, Wolfgang Fritzsche, Christoph Krafft, Jürgen Popp

Abstract:

Independent of the cell type a thin layer of a few nanometers thickness surrounds the cell interior as the cellular membrane. The transport of ions and molecules through the membrane is achieved in a very precise way by pores. Understanding the process of opening and closing the pores due to an electrochemical gradient across the membrane requires knowledge of the pore constitutive proteins. Recent reports prove the access to the molecular level of the cellular membrane by atomic force microscopy (AFM). This technique also permits an electrochemical study in the immediate vicinity of the tip. Specific molecules can be electrochemically localized in the natural cellular membrane. Our work aims to recognize the protein domains of the pores using an AFM probe as a miniaturized amperometric sensor, and to follow the protein behavior while changing the applied potential. The intensity of the current produced between the surface and the AFM probe is amplified and detected simultaneously with the surface imaging. The AFM probe plays the role of the working electrode and the substrate, a conductive glass on which the cells are grown, represent the counter electrode. For a better control of the electric potential on the probe, a third electrode Ag/AgCl wire is mounted in the circuit as a reference electrode. The working potential is applied between the electrodes with a programmable source and the current intensity in the circuit is recorded with a multimeter. The applied potential considers the overpotential at the electrode surface and the potential drop due to the current flow through the system. The reported method permits a high resolved electrochemical study of the protein domains on the living cell membrane. The amperometric map identifies areas of different current intensities on the pore depending on the applied potential. The reproducibility of this method is limited by the tip shape, the uncontrollable capacitance, which occurs at the apex and a potential local charge separation.

Keywords: AFM, sensor, membrane, pores, proteins

Procedia PDF Downloads 298