Search results for: thermal efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9601

Search results for: thermal efficiency

4021 Supply Chain Management in the Oil Industry: Challenges and Opportunities

Authors: Mehmood Faisal

Abstract:

In this globalization era, the supply chain management has acquired strategic importance in diverse business environments. In the current highly competitive business environment, the success of any business considerably depends on the efficiency of the supply chain. The importance of petroleum industry cannot be avoided in the global market; however, supply chain management in the petroleum industry is facing various challenges, particularly in the logistics area. These logistical challenges have a main influence on the cost of crude oil; therefore, the opportunities to save cost in logistics still do exist. The large oil producing companies are undertaking future contracts through 'swaps or options' practice that saves their millions of dollars. The objective of this paper is to throw light on the supply chain challenges and opportunities in the oil industry and on swap practices which are widely employed by large oil producing companies around the world, such as Chevron Corporation, Saudi Arabian Oil Company, BP and Exxon Mobil.

Keywords: logistics, oil industry, swap practice, supply chain management

Procedia PDF Downloads 163
4020 Review of Comparison of Subgrade Soil Stabilised with Natural, Synthetic, and Waste Fibers

Authors: Jacqueline Michella Anak Nathen

Abstract:

Subgrade soil is an essential component in the design of road structures as it provides lateral support to the pavement. One of the main reasons for the failure of the pavement is the settlement of the subgrade and the high susceptibility to moisture, which leads to a loss of strength of the subgrade. Construction over weak or soft subgrade affects the performance of the pavement and causes instability of the pavement. If the mechanical properties of the subgrade soils are lower than those required, the soil stabilisation method can be an option to improve the soil properties of the weak subgrade. Soil stabilisation is one of the most popular techniques for improving poor subgrade soils, resulting in a significant improvement in the subgrade soil’s tensile strength, shear strength, and bearing capacity. Soil stabilisation encompasses the various methods used to alter the properties of soil to improve its engineering properties. Soil stabilisation can be broadly divided into four types: thermal, electrical, mechanical, and chemical. The most common method of improving the physical and mechanical properties of soils is stabilisation using binders such as cement and lime. However, soil stabilisation with conventional methods using cement and lime has become uneconomical in recent years, so there is a need to look for an alternative, such as fiber. Although not a new technique, adding fiber is a very practical alternative to soil stabilisation. Various types of fibers, such as natural, synthetic, and waste fibers, have been used as stabilising agents to improve the strength and durability of subgrade soils. This review provides a comprehensive comparison of the effectiveness of natural, synthetic, and waste fibers in stabilising subgrade soils.

Keywords: subgrade, soil stabilisation, pavement, fiber, stabiliser

Procedia PDF Downloads 105
4019 Climate Change and Economic Performance in Selected Oil-Producing African Countries: A Trend Analysis Approach

Authors: Waheed O. Majekodunmi

Abstract:

Climate change is a real global phenomenon and an unquestionable threat to our quest for a healthy and livable planet. It is now regarded as potentially the most monumental environmental challenge people and the planet will be confronted with over the next centuries. Expectedly, climate change mitigation was one of the central themes of COP 28. Despite contributing the least to climate change, Africa is and remains the hardest hit by the negative consequences of climate change including poor growth performance. Currently, it is being hypothesized that the high level of vulnerability and exposure to climate-related disasters, low adaptive capacity against global warming and high mitigation costs of climate change across the continent could be linked to the recent abysmal economic performance of African countries, especially in oil-producing countries where greenhouse gas emissions, is potentially more prevalent. This paper examines the impact of climate change on the economic performance of selected oil-producing countries in Africa using evidence from Nigeria, Algeria and Angola. The objective of the study is to determine whether or not climate change influences the economic performance of oil-producing countries in Africa by examining the nexus between economic growth and climate-related variables. The study seeks to investigate the effect of climate change on the pace of economic growth in African oil-producing countries. To achieve the research objectives, this study utilizes a quantitative approach by using historical and current secondary data sets to determine the relationship between climate-related variables and economic growth variables in the selected countries. The study employed numbers, percentages, tables and trend graphs to explain the trends or common patterns between climate change, economic growth and determinants of economic growth: governance effectiveness, infrastructure, macroeconomic stability and regulatory efficiency. Results from the empirical analysis of data show that the trends of economic growth and climate-related variables in the selected oil-producing countries are in the opposite directions as the increasing share of renewable energy sources in total energy consumption and the reduction in greenhouse gas emissions per capita in the oil-producing countries did not translate to higher economic growth. Further findings show that annual surface temperatures in the selected countries do not share similar trends with the food imports ratio and GDP per capita annual growth rate suggesting that climate change does not impact significantly agricultural productivity and economic growth in oil-producing countries in Africa. Annual surface temperature was also found to not share a similar pattern with governance effectiveness, macroeconomic stability and regulatory efficiency reinforcing the claim that some economic growth variables are independent of climate change. The policy implication of this research is that oil-producing African countries need to focus more on improving the macroeconomic environment and streamlining governance and institutional processes to boost their economic performance before considering the adoption of climate change adaptation and mitigation strategies.

Keywords: climate change, climate vulnerability, economic growth, greenhouse gas emissions per capita, oil-producing countries, share of renewable energy in total energy consumption

Procedia PDF Downloads 57
4018 Research on Ice Fixed-Abrasive Polishing Mechanism and Technology for High-Definition Display Panel Glass

Authors: Y. L. Sun, L. Shao, Y. Zhao, H. X. Zhou, W. Z. Lu, J. Li, D. W. Zuo

Abstract:

This study introduces an ice fixed-abrasive polishing (IFAP) technology. Using silica solution IFAP pad and Al2O3 IFAP pad, orthogonal tests were performed on polishing high-definition display panel glass, respectively. The results show that the polishing efficiency and effect polished with silica solution IFAP pad are better than those polished with Al2O3 IFAP pad. The optimized silica solution IFAP parameters are: polishing pressure 0.1MPa, polishing time 40min, table velocity 80r/min, and the ratio of accelerator and slurry 1:10. Finally, the IFAP mechanism was studied and it suggests by complicated analysis that IFAP is comprehensive effect of mechanical removal and microchemical reaction, combined with fixed abrasive polishing and free abrasive polishing.

Keywords: ice fixed-abrasive polishing, high-definition display panel glass, material removal rate, surface roughness

Procedia PDF Downloads 391
4017 Microfluidic Manipulation for Biomedical and Biohealth Applications

Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj

Abstract:

Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.

Keywords: microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications

Procedia PDF Downloads 66
4016 Production and Characterization of Silver Doped Hydroxyapatite Thin Films for Biomedical Applications

Authors: C. L Popa, C.S. Ciobanu, S. L. Iconaru, P. Chapon, A. Costescu, P. Le Coustumer, D. Predoi

Abstract:

In this paper, the preparation and characterization of silver doped hydroxyapatite thin films and their antimicrobial activity characterized is reported. The resultant Ag: HAp films coated on commercially pure Si disks substrates were systematically characterized by Scanning Electron Microscopy (SEM) coupled with X-ray Energy Dispersive Spectroscopy detector (X-EDS), Glow Discharge Optical Emission Spectroscopy (GDOES) and Fourier Transform Infrared spectroscopy (FT-IR). GDOES measurements show that a substantial Ag content has been deposited in the films. The X-EDS and GDOES spectra revealed the presence of a material composed mainly of phosphate, calcium, oxygen, hydrogen and silver. The antimicrobial efficiency of Ag:HAp thin films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated. Ag:HAp thin films could lead to a decrease of infections especially in the case of bone and dental implants by surface modification of implantable medical devices.

Keywords: silver, hydroxyapatite, thin films, GDOES, SEM, FTIR, antimicrobial effect

Procedia PDF Downloads 431
4015 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow

Authors: Ruquan You, Haiwang Li, Zhi Tao

Abstract:

A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.

Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution

Procedia PDF Downloads 184
4014 Heat Recovery System from Air-Cooled Chillers in Iranian Hospitals

Authors: Saeed Vahidifar, Mohammad Nakhaee Sharif, Mohammad Ghaffari

Abstract:

Few people would dispute the fact that one of the most common applications of energy is creating comfort in buildings, so it is probably true to say that management of energy consumption is required due to the environmental issues and increasing the efficiency of mechanical systems. From the geographical point of view, Iran is located in a warm and semi-arid region; therefore, air-cooled chillers are usually used for cooling residential buildings, commercial buildings, medical buildings, etc. In this study, a heat exchanger was designed for providing laundry hot water by utilizing condenser heat lost base on analytical results of a 540-bed hospital in the city of Mashhad in Iran. In this paper, by using the analytical method, energy consumption reduces about 13%, and coefficient of performance increases a bit. Results show that this method can help in the management of energy consumption a lot.

Keywords: air cooled chiller, energy management, environmental issues, heat exchanger, hospital laundry system

Procedia PDF Downloads 165
4013 Tackling the Decontamination Challenge: Nanorecycling of Plastic Waste

Authors: Jocelyn Doucet, Jean-Philippe Laviolette, Ali Eslami

Abstract:

The end-of-life management and recycling of polymer wastes remains a key environment issue in on-going efforts to increase resource efficiency and attaining GHG emission reduction targets. Half of all the plastics ever produced were made in the last 13 years, and only about 16% of that plastic waste is collected for recycling, while 25% is incinerated, 40% is landfilled, and 19% is unmanaged and leaks in the environment and waterways. In addition to the plastic collection issue, the UN recently published a report on chemicals in plastics, which adds another layer of challenge when integrating recycled content containing toxic products into new products. To tackle these important issues, innovative solutions are required. Chemical recycling of plastics provides new complementary alternatives to the current recycled plastic market by converting waste material into a high value chemical commodity that can be reintegrated in a variety of applications, making the total market size of the output – virgin-like, high value products - larger than the market size of the input – plastic waste. Access to high-quality feedstock also remains a major obstacle, primarily due to material contamination issues. Pyrowave approaches this challenge with its innovative nano-recycling technology, which purifies polymers at the molecular level, removing undesirable contaminants and restoring the resin to its virgin state without having to depolymerise it. This breakthrough approach expands the range of plastics that can be effectively recycled, including mixed plastics with various contaminants such as lead, inorganic pigments, and flame retardants. The technology allows yields below 100ppm, and purity can be adjusted to an infinitesimal level depending on the customer's specifications. The separation of the polymer and contaminants in Pyrowave's nano-recycling process offers the unique ability to customize the solution on targeted additives and contaminants to be removed based on the difference in molecular size. This precise control enables the attainment of a final polymer purity equivalent to virgin resin. The patented process involves dissolving the contaminated material using a specially formulated solvent, purifying the mixture at the molecular level, and subsequently extracting the solvent to yield a purified polymer resin that can directly be reintegrated in new products without further treatment. Notably, this technology offers simplicity, effectiveness, and flexibility while minimizing environmental impact and preserving valuable resources in the manufacturing circuit. Pyrowave has successfully applied this nano-recycling technology to decontaminate polymers and supply purified, high-quality recycled plastics to critical industries, including food-contact compliance. The technology is low-carbon, electrified, and provides 100% traceable resins with properties identical to those of virgin resins. Additionally, the issue of low recycling rates and the limited market for traditionally hard-to-recycle plastic waste has fueled the need for new complementary alternatives. Chemical recycling, such as Pyrowave's microwave depolymerization, presents a sustainable and efficient solution by converting plastic waste into high-value commodities. By employing microwave catalytic depolymerization, Pyrowave enables a truly circular economy of plastics, particularly in treating polystyrene waste to produce virgin-like styrene monomers. This revolutionary approach boasts low energy consumption, high yields, and a reduced carbon footprint. Pyrowave offers a portfolio of sustainable, low-carbon, electric solutions to give plastic waste a second life and paves the way to the new circular economy of plastics. Here, particularly for polystyrene, we show that styrene monomer yields from Pyrowave’s polystyrene microwave depolymerization reactor is 2,2 to 1,5 times higher than that of the thermal conventional pyrolysis. In addition, we provide a detailed understanding of the microwave assisted depolymerization via analyzing the effects of microwave power, pyrolysis time, microwave receptor and temperature on the styrene product yields. Furthermore, we investigate life cycle environmental impact assessment of microwave assisted pyrolysis of polystyrene in commercial-scale production. Finally, it is worth pointing out that Pyrowave is able to treat several tons of polystyrene to produce virgin styrene monomers and manage waste/contaminated polymeric materials as well in a truly circular economy.

Keywords: nanorecycling, nanomaterials, plastic recycling, depolymerization

Procedia PDF Downloads 70
4012 Effect of Dietary Inclusion of Moringa oleifera Leaf Meal on Blood Biochemical Changes and Lipid Profile of Vanaraja Chicken in Tropics

Authors: Kaushalendra Kumar, Abhishek Kumar, Chandra Moni, Sanjay Kumar, P. K. Singh, Ajeet Kumar

Abstract:

Present study investigated the dietary inclusion of Moringa oleifera leaf meal (MOLM) on production efficiency, hemato-biochemical profile and economy of Vanaraja birds under tropical condition. Experiment was conducted for a period of 56 days on 300 Vanaraja birds randomly divided in to five different experimental groups including control of 60 birds each group replicated with 20 chicks in each replicate. T1, T2, T3, T4, and T5 were offered with 0, 5, 10, 15, and 20% Moringa oleifera leaf meal along with basal ration. All the standard managemental practices were followed during experimental period including vaccination schedule. Locally available Moringa oleifera leaves were harvested at mature stage and allowed to dry under shady and aerated conditions. Thereafter, dried leaves were milled to make a leaf meal and stored in the airtight nylon bags to avoid any possible contamination from foreign material and use for experiment. Production parameters were calculated based on the amount of feed consumed and weight gain every weeks. The body weight gain of T2 group was significantly (P < 0.05) higher side whereas T3 group was comparable with control. The feed conversion ratio for T2 group was found to be significantly (P < 0.05) lower than all other treatment groups, while none of the group was comparable with each other. At the end of the experiment blood samples were collected from birds for haematology study while serum biochemistry performed using spectrophotometer following statndard protocols. The haematological attributes were significantly (P > 0.05) not differed among the groups. However, serum biochemistry showed significant reduction (P < 0.05) of blood urea nitrogen, uric acid and creatinine level with higher level of MOLM diet, indicates better utilization of protein supplemented through MOLM. The total cholesterol and triglyceride level was declined significantly (P < 0.05) as compare to control group with increased level of MOLM in basal diet, decreasing trend of serum cholesterol noted. However, value of HDL for T3 group was highest and for T1 group was lowest but no significant difference (P < 0.05) found among the groups. It might be due to presence of β-sitosterol a bioactive compound present in MOLM which causes lowering of plasma concentration of LDL. During experiment total, LDL and VLDL level was found to be decreased significantly (P < 0.05) as compare to control group. It was observed that the production efficiency of birds significantly improved with 5% followed by 10% Moringa oleifera leaf meal among the treatment groups. However, the maximum profit per kg live weight was noted in 10 % level and least profit observed in 20% MOLM fed group. It was concluded that the dietary inclusion of MOLM improved overall performances without affecting metabolic status and effective in reducing cholesterol level reflects healthy chicken production for human consumption.

Keywords: hemato biochemistry, Moringa oleifera leaf meal, performance, Vanaraja birds

Procedia PDF Downloads 211
4011 A Comprehensive Study on CO₂ Capture and Storage: Advances in Technology and Environmental Impact Mitigation

Authors: Oussama Fertaq

Abstract:

This paper investigates the latest advancements in CO₂ capture and storage (CCS) technologies, which are vital for addressing the growing challenge of climate change. The study focuses on multiple techniques for CO₂ capture, including chemical absorption, membrane separation, and adsorption, analyzing their efficiency, scalability, and environmental impact. The research further explores geological storage options such as deep saline aquifers and depleted oil fields, providing insights into the challenges and opportunities presented by each method. This paper emphasizes the importance of integrating CCS with existing industrial processes to reduce greenhouse gas emissions effectively. It also discusses the economic and policy frameworks required to promote wider adoption of CCS technologies. The findings of this study offer a comprehensive view of the potential of CCS in achieving global climate goals, particularly in hard-to-abate sectors such as energy and manufacturing.

Keywords: CO₂ capture, carbon storage, climate change mitigation, carbon sequestration, environmental sustainability

Procedia PDF Downloads 20
4010 Atmospheric Dispersion Modeling for a Hypothetical Accidental Release from the 3 MW TRIGA Research Reactor of Bangladesh

Authors: G. R. Khan, Sadia Mahjabin, A. S. Mollah, M. R. Mawla

Abstract:

Atmospheric dispersion modeling is significant for any nuclear facilities in the country to predict the impact of radiological doses on environment as well as human health. That is why to ensure safety of workers and population at plant site; Atmospheric dispersion modeling and radiation dose calculations were carried out for a hypothetical accidental release of airborne radionuclide from the 3 MW TRIGA research reactor of Savar, Bangladesh. It is designed with reactor core which consists of 100 fuel elements(1.82245 cm in diameter and 38.1 cm in length), arranged in an annular corefor steady-state and square wave power level of 3 MW (thermal) and for pulsing with maximum power level of 860MWth.The fuel is in the form of a uniform mixture of 20% uranium and 80% zirconium hydride. Total effective doses (TEDs) to the public at various downwind distances were evaluated with a health physics computer code “HotSpot” developed by Lawrence Livermore National Laboratory, USA. The doses were estimated at different Pasquill stability classes (categories A-F) with site-specific averaged meteorological conditions. The meteorological data, such as, average wind speed, frequency distribution of wind direction, etc. have also been analyzed based on the data collected near the reactor site. The results of effective doses obtained remain within the recommended maximum effective dose.

Keywords: accidental release, dispersion modeling, total effective dose, TRIGA

Procedia PDF Downloads 139
4009 High Toughening Effects of Polybenzoxazine Filled with Ultrafine Fully Vulcanized Powder Natural Rubber Grafted with Varied Monomers

Authors: A. Pattulee, I. Lawan, N. Boonnao, R. Gholami, P. Rimdusit, S. Rimdusit

Abstract:

Varied types and content of ultrafine vulcanized powdered natural rubbers (UFPNR) as toughening fillers of polybenzoxazine composite are investigated in this work. Four types of UFPNR were prepared by graft polymerization of acrylonitrile monomer (AN), styrene monomer (ST), styrene-acrylonitrile copolymer (ST/AN), and styrene-methyl methacrylate copolymer (ST/MMA) onto deproteinized natural rubber (DPNR). The solid UFPNR powders with different types of grafting were finally obtained by electron beam vulcanization and a spray-drying technique. Additionally, effects of various UFPNR contents (0, 5, 10, 15, 20, and 25 wt%) on toughness of polybenzoxazine composites were studied. It was observed that the UFPNR grafted with the styrene-methyl methacrylate copolymer (UFPNR-g-(PS-co-PMMA)) exhibited the most effective toughening agent for polybenzoxazine, whereas the rubber powder content of 25 wt% was found to be the optimal filler loading in enhancing the toughness of the resulting composite. The experimental results revealed an increase of 86% in toughness and 56% in impact strength at the above UFPNR-g- (PS-co-PMMA powdered rubber content. Interestingly, the utilization of the UFPNR-g-(PS-co-PMMA as toughening agent was found to increase thermal stability (degradation temperature at 5wt.% (Td5) and glass transition temperature (Tg) of the composite i.e. an increase of 8°C and 6 °C has been observed for the Td5 and Tg, respectively.

Keywords: natural rubber, ultrafine fully vulcanized powder rubber, polybenzoxazine, polymer composite, toughening

Procedia PDF Downloads 16
4008 Dual-Polarized Multi-Antenna System for Massive MIMO Cellular Communications

Authors: Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell

Abstract:

In this paper, a multiple-input/multiple-output (MIMO) antenna design with polarization and radiation pattern diversity is presented for future smartphones. The configuration of the design consists of four double-fed circular-ring antenna elements located at different edges of the printed circuit board (PCB) with an FR-4 substrate and overall dimension of 75×150 mm2. The antenna elements are fed by 50-Ohm microstrip-lines and provide polarization and radiation pattern diversity function due to the orthogonal placement of their feed lines. A good impedance bandwidth (S11 ≤ -10 dB) of 3.4-3.8 GHz has been obtained for the smartphone antenna array. However, for S11 ≤ -6 dB, this value is 3.25-3.95 GHz. More than 3 dB realized gain and 80% total efficiency are achieved for the single-element radiator. The presented design not only provides the required radiation coverage but also generates the polarization diversity characteristic.

Keywords: cellular communications, multiple-input/multiple-output systems, mobile-phone antenna, polarization diversity

Procedia PDF Downloads 144
4007 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment

Authors: Qurbanov Huseyn Nuraddin

Abstract:

The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.

Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals

Procedia PDF Downloads 76
4006 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 110
4005 Analysis of the Fair Distribution of Urban Facilities in Kabul City by Population Modeling

Authors: Ansari Mohammad Reza, Hiroko Ono

Abstract:

In this study, we investigated how much of the urban facilities are fairly distributing in the city of Kabul based on the factor of population. To find the answer to this question we simulated a fair model for the distribution of investigated facilities in the city which is proposed based on the consideration of two factors; the number of users for each facility and the average distance of reach of each facility. Then the model was evaluated to make sure about its efficiency. And finally, the two—the existing pattern and the simulation model—were compared to find the degree of bias in the existing pattern of distribution of facilities in the city. The result of the study clearly clarified that the facilities are not fairly distributed in Kabul city based on the factor of population. Our analysis also revealed that the education services and the parks are the most and the worst fair distributed facilities in this regard.

Keywords: Afghanistan, ArcGIS Software, Kabul City, fair distribution, urban facilities

Procedia PDF Downloads 184
4004 Investigating Trophic Relationships in Moroccan Marine Ecosystems: A Study of the Mediterranean and Atlantic Using Ecopath

Authors: Salma Aboussalam, Karima Khalil, Khalid Elkalay

Abstract:

An Ecopath model was employed to investigate the trophic structure, function, and current state of the Moroccan Mediterranean Sea ecosystem. The model incorporated 31 functional groups, including 21 fish species, 7 invertebrates, 2 primary producers, and a detritus group. The trophic interactions among these groups were analyzed, revealing an average trophic transfer efficiency of 23%. The results indicated that the ecosystem produced more energy than it consumed, with high respiration and consumption rates. Indicators of stability and development were low for the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), indicating a disturbed ecosystem with a linear trophic structure. Keystone species were identified through the use of the keystone index and mixed trophic impact analysis, with demersal invertebrates, zooplankton, and cephalopods found to have a significant impact on other groups.

Keywords: Ecopath, food web, trophic flux, Moroccan Mediterranean Sea

Procedia PDF Downloads 108
4003 Determine the Optimal Path of Content Adaptation Services with Max Heap Tree

Authors: Shilan Rahmani Azr, Siavash Emtiyaz

Abstract:

Recent development in computing and communicative technologies leads to much easier mobile accessibility to the information. Users can access to the information in different places using various deceives in which the care variety of abilities. Meanwhile, the format and details of electronic documents are changing each day. In these cases, a mismatch is created between content and client’s abilities. Recently the service-oriented content adaption has been developed which the adapting tasks are dedicated to some extended services. In this method, the main problem is to choose the best appropriate service among accessible and distributed services. In this paper, a method for determining the optimal path to the best services, based on the quality control parameters and user preferences, is proposed using max heap tree. The efficiency of this method in contrast to the other previous methods of the content adaptation is related to the determining the optimal path of the best services which are measured. The results show the advantages and progresses of this method in compare of the others.

Keywords: service-oriented content adaption, QoS, max heap tree, web services

Procedia PDF Downloads 263
4002 Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel

Authors: Arvind Mittal, Rajesh Gupta

Abstract:

Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs.

Keywords: microstructure, mechanical properties, shield metal arc welded, duplex stainless steel

Procedia PDF Downloads 283
4001 Critical Success Factors (CSFS) in ERP Implementation at the PP Company: Management and Technology Perspectives

Authors: Eko Ganis Sukoharsono, Meivida Medyastanti

Abstract:

This study explores the Critical Success Factors (CSFs) for successful ERP implementation at the PP Company, a leading state-owned construction company in Indonesia. The study uses a qualitative - Postmodernist approach through an imaginary dialogue between a CEO and a Technologist to analyze ERP implementation from both managerial and technological perspectives. Key CSFs identified include strong support from top management, clear project scope and objectives, effective change management, employee engagement, data accuracy, and robust IT infrastructure. The study’s findings are synthesized into a CSF model that highlights the importance of aligning ERP systems with business objectives and emphasizes the need for continuous post-implementation support. This model provides a strategic framework that can guide other companies, particularly state-owned enterprises, in navigating ERP implementation, ensuring optimal return on investment, and enhancing organizational efficiency.

Keywords: ERP, critical success factors, PT. PP, postmodernist paradigm, management, technology

Procedia PDF Downloads 14
4000 A Study on How to Improve PMBOK (Project Management Body of Knowledge) Guidelines Performance by Simulation

Authors: Fatemeh Jaferi, Moslem Parsa, Seyed Mehdi Sajadi

Abstract:

The project-oriented organizations are more appropriate for sustainable environments. Any effective project-oriented organization should institutionalize its project management processes in such a manner to yield the greatest possible profits. The aim of this paper is to study the relationship between the project management PMBOK guideline (Project Management Body of Knowledge) and simulation technology in project-oriented organizations. The methodology involves using five steps for applying these two tools aimed at enhancing project management processes in the Lorestan Gas Corporation, as one of the project-oriented organization. Results show the implementation of such management approach leads to a 5% performance improvement and using PMBOK can be instrumental in effective delay management. The implementation of the aforementioned improvement package was effective in improving the efficiency of organizational processes; in terms of optimizing the resource utilization that has manifested itself in resource losses and cost reductions.

Keywords: project-orientation, processes, PMBOK, optimization, organization, management

Procedia PDF Downloads 408
3999 Studying the Impact of Architectural Styles on Student Satisfaction in University of Energy and Natural Resources, Sunyani

Authors: Frimpong Gyamfi Marious

Abstract:

At the University of Energy and Natural Resources (UENR) in Sunyani, Ghana, this study investigates the connection between architectural styles and student satisfaction. The study investigates how various architectural components, such as building layout, lighting, ventilation, and aesthetics, affect students' comfort, educational experience, and general contentment with campus amenities. Data was gathered using a mixed-methods approach that included physical inspections of school facilities, in-depth interviews with students, working and none working staff. According to the results, modern designs that incorporate flexible learning areas, sufficient natural lighting, and appropriate ventilation greatly raise student satisfaction. Nonetheless, it was discovered that certain traditional architectural features included in campus structures enhanced students' feelings of cultural kinship. The study also identifies key architectural challenges affecting student comfort, including inadequate thermal control and limited social interaction spaces. Based on these findings, the research proposes design recommendations for future campus development that balance modern functionality with cultural sensitivity. This study contributes to the growing body of knowledge on educational architecture and provides practical insights for improving campus design to enhance student experience in tropical climates.

Keywords: architecture, architectural styles, impact of architectural styles, impacts of architectural styles on students satisfaction

Procedia PDF Downloads 16
3998 Effects of Education on Farmers’ Productivity Outputs in Rural Nigeria

Authors: Thomas Ogilegwu Orohu

Abstract:

This paper highlights the effect of education on farmers’ productivity in rural Nigeria which includes potential to obtain paid employment or generate income through self-help employment using skills learnt in school. The paper emphasizes that education help farmers’ in agro-processing units in production to reduce post harvest wastage. It highlights the benefits of schooling for farmers’ productivity, particularly in terms of efficiency gains and increased farm productivity. As technological innovation spread more widely within the country, the importance of formal education in farm production ought to become more apparent. Education help farmers to improve attitudes, beliefs and habits that may lead to greater willingness to accept risk, adopts innovation, save investment and generally to embrace productive practices. Finally factors affecting farmers’ education and appropriate recommendation were given with the hope that if resolutely implemented would bring the attainment of desired farm education to farmers to improve farm productivity outputs.

Keywords: benefit, education, effect, productivity

Procedia PDF Downloads 322
3997 The Investigation of Relationship between Accounting Information and the Value of Companies

Authors: Golamhassan Ghahramani Aghdam, Pedram Bavili Tabrizi

Abstract:

The aim of this research is to investigate the relationship between accounting information and the value of the companies accepted in Tehran Exchange Market. The dependent variable in this research is the value of a company that is measured by price coefficients, and the independent variables are balance sheet information, profit and loss information, cash flow state information, and profit quality characteristics. The profit quality characteristic index is to be related and to be on-time. This research is an application research, and the research population includes all companies that are active in Tehran exchange market. The number of 194 companies was selected by the systematic method as the statistics sample in the period of 2018-2019. The multi-variable linear regression model was used for the hypotheses test. The results show that there is no relationship between accounting information and companies’ value (stock value) that can be due to the lack of efficiency of the investment market and the inability to use the accounting information by investment market activists.

Keywords: accounting information, company value, profit quality characteristics, price coefficient

Procedia PDF Downloads 141
3996 Preliminary Treatment in Wastewater Treatment Plants: Operation and Maintenance Aspects

Authors: Priscila M. Lima, Corine A. P. de Almeida, Muriele R. de Lima, Fernando J. C. Magalhães Filho

Abstract:

This work characterized the preliminary treatment in WWTPs in the state of Mato Grosso Do Sul (Brazil) and analyzed aspects of operation and maintenance of solid waste retained, and was evaluated the interference of this step in treatment efficiency beyond the relationship between solid waste generation with rainfall and seasonality in the region of each WTPs. The results shown that the standard setting in the preliminary treatment consists of grid along with Sand Trap, followed by Parshall that is used in 94.12% of WWTPs analyzed, and in 5.88% of WWTPs it was added the air-lift to the Sand Trap. Was concluded that the influence of rainfall, flow and seasonality associated with the rate of waste generation in the preliminary treatment, had little relation to the operation and maintenance of the primary treatment. But in some cases, precipitation data showed increased rainfall converging with increased flow and solid waste generation.

Keywords: pretreatment, sewage, solid waste, wastewater

Procedia PDF Downloads 475
3995 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys

Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes

Abstract:

This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.

Keywords: precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments

Procedia PDF Downloads 161
3994 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 85
3993 Effect of Different Contact Rollers on the Surface Texture during the Belt Grinding Process

Authors: Amine Hamdi, Sidi Mohammed Merghache, Brahim Fernini

Abstract:

During abrasive machining of hard steels by belt grinding, the finished surface texture is influenced by the pressure between the abrasive belt and the workpiece; this pressure is the force applied by the contact roller on the workpiece. Therefore, the contact roller has an important role and has a direct impact on process efficiency. The objective of this article is to study and compare the influence of different contact rollers on the belt ground surface texture. The quality of the surface texture is characterized by eight roughness parameters (Ra, Rz, Rp, Rv, Rsk, Rku, Rsm, and Rdq) and five parameters of the bearing area curve (Rpk, Rk, Rvk, Mr1, and Mr2). The results of the experimental tests indicate a better surface texture obtained by the PA 6 polyamide roller (hardness 60 Shore D) compared to that obtained with other rollers of the same hardness or of different hardness. Simultaneously, optimum medium pressure between the belt and the workpiece allows chip removal without fracturing the abrasive grains. This generates a good surface texture.

Keywords: belt grinding, contact roller, pressure, abrasive belt, surface texture

Procedia PDF Downloads 186
3992 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 349