Search results for: data access
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27200

Search results for: data access

21620 Detection of Selected Heavy Metals in Raw Milk: Lahore, Pakistan

Authors: Huma Naeem, Saif-Ur-Rehman Kashif, Muhammad Nawaz Chaudhry

Abstract:

Milk plays a significant role in the dietary requirements of human beings as it is a single source that provides various essential nutrients. A study was conducted to evaluate the heavy metal concentration in the raw milk marketed in Data Gunj Baksh Town of Lahore. A total of 180 samples of raw milk were collected in pre-monsoon, monsoon and post-monsoon season from five colonies of Data Gunj Baksh Town, Lahore. The milk samples were subjected to heavy metal analysis (Cr, Cu) by atomic absorption spectrophotometer. Results indicated high levels of Cr and Cu in post-monsoon seasons. Heavy metals were detected in milk in all samples under study and exceeded the standards given by FAO.

Keywords: atomic absorption spectrophotometer, chromium, copper, heavy metal

Procedia PDF Downloads 438
21619 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks

Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu

Abstract:

The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).

Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding

Procedia PDF Downloads 96
21618 Education Management and Planning with Manual Based

Authors: Purna Bahadur Lamichhane

Abstract:

Education planning and management are foundational pillars for developing effective educational systems. However, in many educational contexts, especially in developing nations, technology-enabled management is still emerging. In such settings, manual-based systems, where instructions and guidelines are physically documented, remain central to educational planning and management. This paper examines the effectiveness, challenges, and potential of manual-based education planning systems in fostering structured, reliable, and adaptable management frameworks. The objective of this study is to explore how a manual-based approach can successfully guide administrators, educators, and policymakers in delivering high-quality education. By using structured, accessible instructions, this approach serves as a blueprint for educational governance, offering clear, actionable steps to achieve institutional goals. Through an analysis of case studies from various regions, the paper identifies key strategies for planning school schedules, managing resources, and monitoring academic and administrative performance without relying on automated systems. The findings underscore the significance of organized documentation, standard operating procedures, and comprehensive manuals that establish uniformity and maintain educational standards across institutions. With a manual-based approach, management can remain flexible, responsive, and user-friendly, especially in environments where internet access and digital literacy are limited. Moreover, it allows for localization, where instructions can be tailored to the unique cultural and socio-economic contexts of the community, thereby increasing relevancy and ownership among local stakeholders. This paper also highlights several challenges associated with manual-based education management. Manual systems often require significant time and human resources for maintenance and updating, potentially leading to inefficiencies and inconsistencies over time. Furthermore, manual records can be susceptible to loss, damage, and limited accessibility, which may affect decision-making and institutional memory. There is also the risk of siloed information, where crucial data resides with specific individuals rather than being accessible across the organization. However, with proper training and regular oversight, many of these limitations can be mitigated. The study further explores the potential for hybrid approaches, combining manual planning with selected digital tools for record-keeping, reporting, and analytics. This transitional strategy can enable schools and educational institutions to gradually embrace digital solutions without discarding the familiarity and reliability of manual instructions. In conclusion, this paper advocates for a balanced, context-sensitive approach to education planning and management. While digital systems hold the potential to streamline processes, manual-based systems offer resilience, inclusivity, and adaptability for institutions where technology adoption may be constrained. Ultimately, by reinforcing the importance of structured, detailed manuals and instructional guides, educational institutions can build robust management frameworks that facilitate both short-term successes and long-term growth in their educational mission. This research aims to provide a reference for policymakers, educators, and administrators seeking practical, low-cost, and adaptable solutions for sustainable educational planning and management.

Keywords: educatoin, planning, management, manual

Procedia PDF Downloads 24
21617 Design of a Real Time Closed Loop Simulation Test Bed on a General Purpose Operating System: Practical Approaches

Authors: Pratibha Srivastava, Chithra V. J., Sudhakar S., Nitin K. D.

Abstract:

A closed-loop system comprises of a controller, a response system, and an actuating system. The controller, which is the system under test for us, excites the actuators based on feedback from the sensors in a periodic manner. The sensors should provide the feedback to the System Under Test (SUT) within a deterministic time post excitation of the actuators. Any delay or miss in the generation of response or acquisition of excitation pulses may lead to control loop controller computation errors, which can be catastrophic in certain cases. Such systems categorised as hard real-time systems that need special strategies. The real-time operating systems available in the market may be the best solutions for such kind of simulations, but they pose limitations like the availability of the X Windows system, graphical interfaces, other user tools. In this paper, we present strategies that can be used on a general purpose operating system (Bare Linux Kernel) to achieve a deterministic deadline and hence have the added advantages of a GPOS with real-time features. Techniques shall be discussed how to make the time-critical application run with the highest priority in an uninterrupted manner, reduced network latency for distributed architecture, real-time data acquisition, data storage, and retrieval, user interactions, etc.

Keywords: real time data acquisition, real time kernel preemption, scheduling, network latency

Procedia PDF Downloads 151
21616 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance

Procedia PDF Downloads 156
21615 Analyzing of the Urban Landscape Configurations and Expansion of Dire Dawa City, Ethiopia Using Satellite Data and Landscape Metrics Approaches

Authors: Berhanu Keno Terfa

Abstract:

To realize the consequences of urbanization, accurate, and up-to-date representation of the urban landscape patterns is critical for urban planners and policymakers. Thus, the study quantitatively characterized the spatiotemporal composition and configuration of the urban landscape and urban expansion process in Dire Dawa City, Ethiopia, form the year 2006 to 2018. The integrated approaches of various sensors satellite data, Spot (2006) and Sentinel 2 (2018) combined with landscape metrics analysis was employed to explore the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 62% between 2006 and 2018, at an average annual increment of 3.6%, while the other land covers were lost significantly due to urban expansion. The highest urban expansion has occurred in the northwest direction, whereas the most fragmented landscape pattern was recorded in the west direction. Overall, the analysis showed that Dire Dawa City experienced accelerated urban expansion with a fragmented and complicated spatiotemporal urban landscape patterns, suggesting a strong tendency towards sprawl over the past 12 years. The findings in the study could help planners and policy developers to insight the historical dynamics of the urban region for sustainable development.

Keywords: zonal metrics, multi-temporal, multi-resolution, urban growth, remote sensing data

Procedia PDF Downloads 205
21614 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 413
21613 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 431
21612 The Unspoken Learning Landscape of Indigenous Peoples (IP) Learners: A Process Documentation and Analysis

Authors: Ailene B. Anonuevo

Abstract:

The aim of the study was to evaluate the quality of life presently available for the IP students in selected schools in the Division of Panabo City. This further explores their future dreams and current status in classes and examines some implications relative to their studies. The study adopted the mixed methodology and used a survey research design as the operational framework for data gathering. Data were collected by self-administered questionnaires and interviews with sixty students from three schools in Panabo City. In addition, this study describes the learners’ background and school climate as variables that might influence their performance in school. The study revealed that an IP student needs extra attention due to their unfavorable learning environment. The study also found out that like any other students, IP learners yearns for a brighter future with the support of our government.

Keywords: IP learners, learning landscape, school climate, quality of life

Procedia PDF Downloads 227
21611 The Interactive Effects among Supervisor Support, Academic Emotion, and Positive Mental Health: An Evidence Based on Longitudinal Cross-Lagged Panel Data Analysis on Postgraduates in China

Authors: Jianzhou Ni, Hua Fan

Abstract:

It has been determined that supervisor support has a major influence on postgraduate students' academic emotions and is considered a method of successfully anticipating postgraduates' good psychological well-being levels. As a result, by assessing the mediating influence upon academic emotions for contemporary postgraduates in China, this study investigated the tight reciprocal relationship between psychological empowerment and positive mental well-being among postgraduates. To that end, a help enables a theoretical analysis of role clarity, academic emotion, and positive psychological health was developed, and its validity and reliability were demonstrated for the first time using the normalized postgrad relationship with supervisor scale, academic emotion scale, and positive mental scale, as well as questionnaire data from Chinese postgraduate students. This study used the cross-lagged (ARCL) panel model data to longitudinally measure 798 valid data from two survey questions polls taken in 2019 (T1) and 2021 (T2) to investigate the link between supervisor support and positive graduate student mental well-being in a bidirectional relationship of influence. The study discovered that mentor assistance could have a considerable beneficial impact on graduate students' academic emotions and, as a result, indirectly help learners attain positive mental health development. This verifies the theoretical premise that academic emotions partially mediate the effect of mentor support on positive mental health development and argues for the coexistence of the two. The outcomes of this study can help researchers gain a better knowledge of the dynamic interplay among three different research variables: supervisor support, academic emotions, and positive mental health, as well as fill gaps in previous research. In this regard, the study indicated that mentor assistance directly stimulates students' academic drive and assists graduate students in developing good academic emotions, which contributes to the development of positive mental health. However, given the restricted measurement time in this study's cross-lagged panel data and the potential effect of moderating effects other than academic mood on graduate students' good mental health, the results of this study need to be more fully understood and validated.

Keywords: supervisor support, academic emotions, positive mental health, interaction effects, longitudinal cross-lagged measurements

Procedia PDF Downloads 92
21610 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics

Procedia PDF Downloads 499
21609 Finding Data Envelopment Analysis Target Using the Multiple Objective Linear Programming Structure in Full Fuzzy Case

Authors: Raziyeh Shamsi

Abstract:

In this paper, we present a multiple objective linear programming (MOLP) problem in full fuzzy case and find Data Envelopment Analysis(DEA) targets. In the presented model, we are seeking the least inputs and the most outputs in the production possibility set (PPS) with the variable return to scale (VRS) assumption, so that the efficiency projection is obtained for all decision making units (DMUs). Then, we provide an algorithm for finding DEA targets interactively in the full fuzzy case, which solves the full fuzzy problem without defuzzification. Owing to the use of interactive methods, the targets obtained by our algorithm are more applicable, more realistic, and they are according to the wish of the decision maker. Finally, an application of the algorithm in 21 educational institutions is provided.

Keywords: DEA, MOLP, full fuzzy, target

Procedia PDF Downloads 306
21608 Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation

Authors: S. Jalilzadeh, S. M. Mohseni Bonab

Abstract:

Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance.

Keywords: photovoltaic array (PV), DC/DC Boost converter, battery converter, inverters control

Procedia PDF Downloads 489
21607 Critical Success Factors Quality Requirement Change Management

Authors: Jamshed Ahmad, Abdul Wahid Khan, Javed Ali Khan

Abstract:

Managing software quality requirements change management is a difficult task in the field of software engineering. Avoiding incoming changes result in user dissatisfaction while accommodating to many requirement changes may delay product delivery. Poor requirements management is solely considered the primary cause of the software failure. It becomes more challenging in global software outsourcing. Addressing success factors in quality requirement change management is desired today due to the frequent change requests from the end-users. In this research study, success factors are recognized and scrutinized with the help of a systematic literature review (SLR). In total, 16 success factors were identified, which significantly impacted software quality requirement change management. The findings show that Proper Requirement Change Management, Rapid Delivery, Quality Software Product, Access to Market, Project Management, Skills and Methodologies, Low Cost/Effort Estimation, Clear Plan and Road Map, Agile Processes, Low Labor Cost, User Satisfaction, Communication/Close Coordination, Proper Scheduling and Time Constraints, Frequent Technological Changes, Robust Model, Geographical distribution/Cultural differences are the key factors that influence software quality requirement change. The recognized success factors and validated with the help of various research methods, i.e., case studies, interviews, surveys and experiments. These factors are then scrutinized in continents, database, company size and period of time. Based on these findings, requirement change will be implemented in a better way.

Keywords: global software development, requirement engineering, systematic literature review, success factors

Procedia PDF Downloads 203
21606 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes

Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng

Abstract:

To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.

Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation

Procedia PDF Downloads 63
21605 Artificial Neural Network in FIRST Robotics Team-Based Prediction System

Authors: Cedric Leong, Parth Desai, Parth Patel

Abstract:

The purpose of this project was to develop a neural network based on qualitative team data to predict alliance scores to determine winners of matches in the FIRST Robotics Competition (FRC). The game for the competition changes every year with different objectives and game objects, however the idea was to create a prediction system which can be reused year by year using some of the statistics that are constant through different games, making our system adaptable to future games as well. Aerial Assist is the FRC game for 2014, and is played in alliances of 3 teams going against one another, namely the Red and Blue alliances. This application takes any 6 teams paired into 2 alliances of 3 teams and generates the prediction for the final score between them.

Keywords: artifical neural network, prediction system, qualitative team data, FIRST Robotics Competition (FRC)

Procedia PDF Downloads 518
21604 Retrospective Data Analysis of Penetrating Injuries Admitted to Jigme Dorji Wangchuck National Referral Hospital (JDWNRH), Thimphu, Bhutan, Due to Traditional Sports over a Period of 3 Years

Authors: Sonam Kelzang

Abstract:

Background: Penetrating injuries as a result of traditional sports (Archery and Khuru) are commonly seen in Bhutan. To our knowledge, there is no study carried out looking into the data of penetrating injuries due to traditional sports. Aim: This is a retrospective analysis of cases of penetrating injuries as a result of traditional sports admitted to JDWNRH over the last 3 years to draw an inference on the pattern of injury and associated morbidity and mortality. Method: Data on penetrating injuries related to traditional sports (Archery and Khuru) were collected and reviewed over the period of 3 years. Assault cases were excluded. For each year we analysed age, sex, parts of the body affected, agent of injury and whether admission was required or not. Results: Out of the total 44 victims of penetrating injury by traditional sports (Archery and Khuru) between 2013 and 2015 (average of 15 cases of penetrating injuries per year). Eighty-five percent were male and 15% were female. Their age ranged from 4 yrs to 62 years. Sixty-one percent of the victims were in the working age group of 19-58 years; 30% of the victims were referred from various district hospitals; 38% of the victims needed admission; 42 % of the victims suffered injury to the head; and 54% of the injuries were caused by Khuru. Conclusion: Penetrating injuries due to traditional sports admitted to JDWNRH, Thimphu, remained same over the three years period despite safety regulations in place. Although there were no deaths during the last three years, morbidity still remains high.

Keywords: archery, Bhutan, Khuru, darts

Procedia PDF Downloads 167
21603 Comprehensive Analysis of Power Allocation Algorithms for OFDM Based Communication Systems

Authors: Rakesh Dubey, Vaishali Bahl, Dalveer Kaur

Abstract:

The spiralling urge for high rate data transmission over wireless mediums needs intelligent use of electromagnetic resources considering restrictions like power ingestion, spectrum competence, robustness against multipath propagation and implementation intricacy. Orthogonal frequency division multiplexing (OFDM) is a capable technique for next generation wireless communication systems. For such high rate data transfers there is requirement of proper allocation of resources like power and capacity amongst the sub channels. This paper illustrates various available methods of allocating power and the capacity requirement with the constraint of Shannon limit.

Keywords: Additive White Gaussian Noise, Multi-Carrier Modulation, Orthogonal Frequency Division Multiplexing (OFDM), Signal to Noise Ratio (SNR), Water Filling

Procedia PDF Downloads 557
21602 Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models

Authors: Sofia M. Karadimitriou, Kostas Triantafyllopoulos, Timothy Heaton

Abstract:

Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data.

Keywords: multidimensional Laplace prior, particle filtering, spatio-temporal modelling, wavelets

Procedia PDF Downloads 431
21601 Satisfaction of the Training at ASEAN Camp: E-Learning Knowledge and Application at Chantanaburi Province, Thailand

Authors: Sinchai Poolklai

Abstract:

The purpose of this research paper was aimed to examine the level of satisfaction of the faculty members who participated in the ASEAN camp, Chantaburi, Thailand. The population of this study included all the faculty members of Suan Sunandha Rajabhat University who participated in the training and activities of the ASEAN camp during March, 2014. Among a total of 200 faculty members who answered the questionnaire, the data was complied by using SPSS program. Percentage, mean and standard deviation were utilized in analyzing the data. The findings revealed that the average mean of satisfaction was 4.37, and standard deviation was 0.7810. Moreover, the mean average can be used to rank the level of satisfaction from each of the following factors: lower cost, less time consuming, faster delivery, more effective learning, and lower environment impact.

Keywords: ASEAN camp, e-learning, satisfaction, application

Procedia PDF Downloads 392
21600 Reduction of Defects Using Seven Quality Control Tools for Productivity Improvement at Automobile Company

Authors: Abdul Sattar Jamali, Imdad Ali Memon, Maqsood Ahmed Memon

Abstract:

Quality of production near to zero defects is an objective of every manufacturing and service organization. In order to maintain and improve the quality by reduction in defects, Statistical tools are being used by any organizations. There are many statistical tools are available to assess the quality. Keeping in view the importance of many statistical tools, traditional 7QC tools has been used in any manufacturing and automobile Industry. Therefore, the 7QC tools have been successfully applied at one of the Automobile Company Pakistan. Preliminary survey has been done for the implementation of 7QC tool in the assembly line of Automobile Industry. During preliminary survey two inspection points were decided to collect the data, which are Chassis line and trim line. The data for defects at Chassis line and trim line were collected for reduction in defects which ultimately improve productivity. Every 7QC tools has its benefits observed from the results. The flow charts developed for better understanding about inspection point for data collection. The check sheets developed for helps for defects data collection. Histogram represents the severity level of defects. Pareto charts show the cumulative effect of defects. The Cause and Effect diagrams developed for finding the root causes of each defects. Scatter diagram developed the relation of defects increasing or decreasing. The P-Control charts developed for showing out of control points beyond the limits for corrective actions. The successful implementation of 7QC tools at the inspection points at Automobile Industry concluded that the considerable amount of reduction on defects level, as in Chassis line from 132 defects to 13 defects. The total 90% defects were reduced in Chassis Line. In Trim line defects were reduced from 157 defects to 28 defects. The total 82% defects were reduced in Trim Line. As the Automobile Company exercised only few of the 7 QC tools, not fully getting the fruits by the application of 7 QC tools. Therefore, it is suggested the company may need to manage a mechanism for the application of 7 QC tools at every section.

Keywords: check sheet, cause and effect diagram, control chart, histogram

Procedia PDF Downloads 330
21599 Applied Transdisciplinary Undergraduate Research in Costa Rica: Five Weeks Faculty-Led Study Abroad Model

Authors: Sara Shuger Fox, Oscar Reynaga

Abstract:

This session explains the process and lessons learned as Central College (USA) faculty and staff developed undergraduate research opportunities within the model of a short-term faculty-led study abroad program in Costa Rica. The program in Costa Rica increases access to research opportunities across the disciplines and was developed by faculty from English, Biology, and Exercise Science. Session attendees will benefit from learning how faculty and staff navigated the program proposal process at a small liberal arts college and, in particular, how the program was built to be inclusive of departments with lower enrollment, like those currently seen in the humanities. Vital to this last point, presenters will explain how they negotiated issues of research supervision and disciplinary authority in such a way that the program is open to students from multiple disciplines without forcing the program budget to absorb costs for multiple faculty supervisors traveling and living in-country. Additionally, session attendees will learn how scouting laid the groundwork for mutually beneficial relationships between the program and the communities with which it collaborates. Presenters will explain how they built a coalition of students, faculty advisors, study abroad staff and local research hosts to support the development of research questions that are of value not just to the students, but to the community in which the research will take place. This program also incorporates principles of fair-trade learning by intentionally reporting research findings to local community members, as well as encouraging students to proactively share their research as a way to connect with local people.

Keywords: Costa Rica, research, sustainability, transdisciplinary

Procedia PDF Downloads 1065
21598 WormHex: Evidence Retrieval Tool of Social Media from Volatile Memory

Authors: Norah Almubairik, Wadha Almattar, Amani Alqarni

Abstract:

Social media applications are increasingly being used in our everyday communications. These applications utilise end-to-end encryption mechanisms, which make them suitable tools for criminals to exchange messages. These messages are preserved in the volatile memory until the device is restarted. Therefore, volatile forensics has become an important branch of digital forensics. In this study, the WormHex tool was developed to inspect the memory dump files of Windows and Mac-based workstations. The tool supports digital investigators to extract valuable data written in Arabic and English through web-based WhatsApp and Twitter applications. The results verify that social media applications write their data into the memory regardless of the operating system running the application, with there being no major differences between Windows and Mac.

Keywords: volatile memory, REGEX, digital forensics, memory acquisition

Procedia PDF Downloads 196
21597 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed

Authors: Marion G. Ben-Jacob, David Wang

Abstract:

There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.

Keywords: emporium model, mathematics, pedagogy, STEM

Procedia PDF Downloads 78
21596 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: classifier ensemble, breast cancer survivability, data mining, SEER

Procedia PDF Downloads 334
21595 Pre-Service Teachers’ Opinions on Disabled People

Authors: Sinem Toraman, Aysun Öztuna Kaplan, Hatice Mertoğlu, Esra Macaroğlu Akgül

Abstract:

This study aims to examine pre-service teachers’ opinions on disabled people taking into consideration various variables. The participants of the study are composed of 170 pre-service teachers being 1st year students of different branches at Education Department of Yıldız Technical, Yeditepe, Marmara and Sakarya Universities. Data of the research was collected in 2013-2014 fall term. This study was designed as a phenomenological study appropriately qualitative research paradigm. Pre-service teachers’ opinions about disabled people were examined in this study, open ended question form which was prepared by researcher and focus group interview techniques were used as data collection tool. The study presents pre-service teachers’ opinions about disabled people which were mentioned, and suggestions about teacher education.

Keywords: pre-service teachers, disabled people, teacher education, teachers' opinions

Procedia PDF Downloads 464
21594 Dietary Habit and Anthropometric Status in Hypertensive Patients Compared to Normotensive Participants in the North of Iran

Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahbobeh Gholipour

Abstract:

Hypertension is one of the important reasons of morbidity and mortality in countries, including Iran. It has been shown that hypertension is a consequence of the interaction of genetics and environment. Nutrients have important roles in the controlling of blood pressure. We assessed dietary habit and anthropometric status in patients with hypertension in the north of Iran, and that have special dietary habit and according to their culture. This study was conducted on 127 patients with newly recognized hypertension and the 120 normotensive participants. Anthropometric status was measured and demographic characteristics, and medical condition were collected by valid questionnaires and dietary habit assessment was assessed with 3-day food recall (two weekdays and one weekend). The mean age of participants was 58 ± 6.7 years. The mean level of energy intake, saturated fat, vitamin D, potassium, zinc, dietary fiber, vitamin C, calcium, phosphorus, copper and magnesium was significantly lower in the hypertensive group compared to the control (p < 0.05). After adjusting for energy intake, positive association was observe between hypertension and some dietary nutrients including; Cholesterol [OR: 1.1, P: 0.001, B: 0.06], fiber [OR: 1.6, P: 0.001, B: 1.8], vitamin D [OR: 2.6, P: 0.006, B: 0.9] and zinc [OR: 1.4, P: 0.006, B: 0.3] intake. Logistic regression analysis showed that there was not significant association between hypertension, weight and waist circumference. In our study, the mean intake of some nutrients was lower in the hypertensive individuals compared to the normotensive individual. Health training about suitable dietary habits and easier access to vitamin D supplementation in patients with hypertension are cost-effective tools to improve outcomes in Iran.

Keywords: hypertension, north of Iran, dietary intake, weight

Procedia PDF Downloads 185
21593 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation

Authors: Serge B. Provost, Yishan Zhang

Abstract:

A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.

Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation

Procedia PDF Downloads 165
21592 Rabies Surveillance Data Analysis in Addis Ababa, Ethiopia during 2012/13: Retrospective Cross Sectional Study

Authors: Fantu Lombamo Untiso, Sylvia Murphy, Emily Pieracci

Abstract:

Background: Rabies is a highly fatal viral disease of all warm-blooded animals including human globally. However, effective rabies control program still remains to be a reality and needs to be strengthened. Objective: Reviewing of recorded data and analyzing it to generate information on the status of rabies in Addis Ababa in the year 2012/13. Methods: A retrospective data were used from the Ethiopian Public Health Institute rabies case record book registered in the year 2012/13. Results: Among 1357 suspected rabid animals clinically examined; only 8.84% were positive for rabies. Out of 216 animal brains investigated in the laboratory with Fluorescent Antibody Technique, 55.5% were confirmed rabies positive. Among the laboratory confirmed positive rabies cases, high percentage of the animals came from Yeka (20%) and lower number from Kirkos subcity (3.3%). Out of 1149 humans who came to the institute seeking anti-rabies post-exposure prophylaxis, 85.65% and 7.87% of them were exposed to suspected dogs and cats respectively. 3 human deaths due to rabies were reported in the year after exposure to dog bite of unknown vaccination status. Conclusion: The principal vector of rabies in Addis Ababa is dog. Effective rabies management and control based on confirmed cases and mass-immunization and control of stray dog populations is recommended.

Keywords: Addis Ababa, exposure, rabies, surveillance

Procedia PDF Downloads 186
21591 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant

Authors: M. Wigwe, J. G Akpa, E. N Wami

Abstract:

Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.

Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol

Procedia PDF Downloads 504