Search results for: web based instruction
23058 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 20423057 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering
Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han
Abstract:
Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate
Procedia PDF Downloads 15123056 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini
Abstract:
In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor
Procedia PDF Downloads 6123055 Reservoir Fluids: Occurrence, Classification, and Modeling
Authors: Ahmed El-Banbi
Abstract:
Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.Keywords: PVT models, fluid types, PVT properties, fluids classification
Procedia PDF Downloads 7223054 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization
Authors: Wenqi Liu, Reginald Bailey
Abstract:
This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.Keywords: machine learning, XGBoost, regression, decision making framework, system engineering
Procedia PDF Downloads 1723053 Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array
Authors: Jiwon Lee, Yeong-Ju Go, Jong-Soo Choi
Abstract:
Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments.Keywords: acoustic sensing, direction of arrival, drone detection, microphone array
Procedia PDF Downloads 16023052 Villar Settlement Farm School for the Aetas: Assimilation through American Colonial Education in Zambales, Philippines
Authors: Julian E. Abuso, Alberto T. Paala Jr.
Abstract:
The creation of settlement farm schools at the outset of American colonization of the Philippines was not a matter of accident; rather, their establishment was a major component of a grand plan on public education based on the benevolent assimilation policy of the United States. This argument is illustrated by the case of Villar Settlement Farm School, a school for the Aetas as a non-Christian tribal community in 1907. The study aims to: (1) identify and describe the antecedents for the establishment of Settlement Farm School, (2) explicate the cultural conflicts encountered by Aetas in school, (3) appraise the consequences of education as acculturation among Aeta population. The study made use of the following: historical data based on primary and secondary sources and life histories from primary informants. The Settlement Farm School for the Aetas was borne out of the American’s change in policy from military to civilian authority, recognition of education as a tool for benevolent assimilation. The narratives of informants manifested resistance to certain aspects of the educational process.Keywords: settlement farm school Aetas, tribe, colonial education, Aeta, non-Christian tribal community
Procedia PDF Downloads 31923051 Using Variation Theory in a Design-based Approach to Improve Learning Outcomes of Teachers Use of Video and Live Experiments in Swedish Upper Secondary School
Authors: Andreas Johansson
Abstract:
Conceptual understanding needs to be grounded on observation of physical phenomena, experiences or metaphors. Observation of physical phenomena using demonstration experiments has a long tradition within physics education and students need to develop mental models to relate the observations to concepts from scientific theories. This study investigates how live and video experiments involving an acoustic trap to visualize particle-field interaction, field properties and particle properties can help develop students' mental models and how they can be used differently to realize their potential as teaching tools. Initially, they were treated as analogs and the lesson designs were kept identical. With a design-based approach, the experimental and video designs, as well as best practices for a respective teaching tool, were then developed in iterations. Variation theory was used as a theoretical framework to analyze the planned respective realized pattern of variation and invariance in order to explain learning outcomes as measured by a pre-posttest consisting of conceptual multiple-choice questions inspired by the Force Concept Inventory and the Force and Motion Conceptual Evaluation. Interviews with students and teachers were used to inform the design of experiments and videos in each iteration. The lesson designs and the live and video experiments has been developed to help teachers improve student learning and make school physics more interesting by involving experimental setups that usually are out of reach and to bridge the gap between what happens in classrooms and in science research. As students’ conceptual knowledge also rises their interest in physics the aim is to increase their chances of pursuing careers within science, technology, engineering or mathematics.Keywords: acoustic trap, design-based research, experiments, variation theory
Procedia PDF Downloads 8323050 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks
Authors: N. Nalini, Lokesh B. Bhajantri
Abstract:
In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology
Procedia PDF Downloads 45223049 Using Group Concept Mapping to Identify a Pharmacy-Based Trigger Tool to Detect Adverse Drug Events
Authors: Rodchares Hanrinth, Theerapong Srisil, Peeraya Sriphong, Pawich Paktipat
Abstract:
The trigger tool is the low-cost, low-tech method to detect adverse events through clues called triggers. The Institute for Healthcare Improvement (IHI) has developed the Global Trigger Tool for measuring and preventing adverse events. However, this tool is not specific for detecting adverse drug events. The pharmacy-based trigger tool is needed to detect adverse drug events (ADEs). Group concept mapping is an effective method for conceptualizing various ideas from diverse stakeholders. This technique was used to identify a pharmacy-based trigger to detect adverse drug events (ADEs). The aim of this study was to involve the pharmacists in conceptualizing, developing, and prioritizing a feasible trigger tool to detect adverse drug events in a provincial hospital, the northeastern part of Thailand. The study was conducted during the 6-month period between April 1 and September 30, 2017. Study participants involved 20 pharmacists (17 hospital pharmacists and 3 pharmacy lecturers) engaging in three concept mapping workshops. In this meeting, the concept mapping technique created by Trochim, a highly constructed qualitative group technic for idea generating and sharing, was used to produce and construct participants' views on what triggers were potential to detect ADEs. During the workshops, participants (n = 20) were asked to individually rate the feasibility and potentiality of each trigger and to group them into relevant categories to enable multidimensional scaling and hierarchical cluster analysis. The outputs of analysis included the trigger list, cluster list, point map, point rating map, cluster map, and cluster rating map. The three workshops together resulted in 21 different triggers that were structured in a framework forming 5 clusters: drug allergy, drugs induced diseases, dosage adjustment in renal diseases, potassium concerning, and drug overdose. The first cluster is drug allergy such as the doctor’s orders for dexamethasone injection combined with chlorpheniramine injection. Later, the diagnosis of drug-induced hepatitis in a patient taking anti-tuberculosis drugs is one trigger in the ‘drugs induced diseases’ cluster. Then, for the third cluster, the doctor’s orders for enalapril combined with ibuprofen in a patient with chronic kidney disease is the example of a trigger. The doctor’s orders for digoxin in a patient with hypokalemia is a trigger in a cluster. Finally, the doctor’s orders for naloxone with narcotic overdose was classified as a trigger in a cluster. This study generated triggers that are similar to some of IHI Global trigger tool, especially in the medication module such as drug allergy and drug overdose. However, there are some specific aspects of this tool, including drug-induced diseases, dosage adjustment in renal diseases, and potassium concerning which do not contain in any trigger tools. The pharmacy-based trigger tool is suitable for pharmacists in hospitals to detect potential adverse drug events using clues of triggers.Keywords: adverse drug events, concept mapping, hospital, pharmacy-based trigger tool
Procedia PDF Downloads 16323048 Student Perceptions of Defense Acquisition University Courses: An Explanatory Data Collection Approach
Authors: Melissa C. LaDuke
Abstract:
The overarching purpose of this study was to determine the relationship between the current format of online delivery for Defense Acquisition University (DAU) courses and Air Force Acquisition (AFA) personnel participation. AFA personnel (hereafter named “student”) were particularly of interest, as they have been mandated to take anywhere from 3 to 30 online courses to earn various DAU specialization certifications. Participants in this qualitative case study were AFA personnel who pursued DAU certifications in science and technology management, program/contract management, and other related fields. Air Force personnel were interviewed about their experiences with online courses. The data gathered were analyzed and grouped into 12 major themes. The themes tied into the theoretical framework and spoke to either teacher-centered or student-centered educational practices within Defense Acquisitions University. Based on the results of the data analysis, various factors contributed to student perceptions of DAU courses, including the online course construct and relevance to their job. The analysis also found students want to learn the information presented but would like to be able to apply the information learned in meaningful ways.Keywords: educational theory, computer-based training, interview, student perceptions, online course design, teacher positionality
Procedia PDF Downloads 10423047 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education
Authors: Yoko Yamada, Chizumi Yamada
Abstract:
Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.Keywords: illness narrative, mediation, psychology, model, medical education
Procedia PDF Downloads 40923046 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 6523045 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces
Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani
Abstract:
A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.Keywords: readiness, maturity, system, integration
Procedia PDF Downloads 9223044 The Univalence Principle: Equivalent Mathematical Structures Are Indistinguishable
Authors: Michael Shulman, Paige North, Benedikt Ahrens, Dmitris Tsementzis
Abstract:
The Univalence Principle is the statement that equivalent mathematical structures are indistinguishable. We prove a general version of this principle that applies to all set-based, categorical, and higher-categorical structures defined in a non-algebraic and space-based style, as well as models of higher-order theories such as topological spaces. In particular, we formulate a general definition of indiscernibility for objects of any such structure, and a corresponding univalence condition that generalizes Rezk’s completeness condition for Segal spaces and ensures that all equivalences of structures are levelwise equivalences. Our work builds on Makkai’s First-Order Logic with Dependent Sorts, but is expressed in Voevodsky’s Univalent Foundations (UF), extending previous work on the Structure Identity Principle and univalent categories in UF. This enables indistinguishability to be expressed simply as identification, and yields a formal theory that is interpretable in classical homotopy theory, but also in other higher topos models. It follows that Univalent Foundations is a fully equivalence-invariant foundation for higher-categorical mathematics, as intended by Voevodsky.Keywords: category theory, higher structures, inverse category, univalence
Procedia PDF Downloads 15123043 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics
Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis
Abstract:
We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics
Procedia PDF Downloads 37423042 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach
Authors: Munaf Rashid
Abstract:
For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook
Procedia PDF Downloads 47523041 Remote Criminal Proceedings as Implication to Rethink the Principles of Criminal Procedure
Authors: Inga Žukovaitė
Abstract:
This paper aims to present postdoc research on remote criminal proceedings in court. In this period, when most countries have introduced the possibility of remote criminal proceedings in their procedural laws, it is not only possible to identify the weaknesses and strengths of the legal regulation but also assess the effectiveness of the instrument used and to develop an approach to the process. The example of some countries (for example, Italy) shows, on the one hand, that criminal procedure, based on orality and immediacy, does not lend itself to easy modifications that pose even a slight threat of devaluation of these principles in a society with well-established traditions of this procedure. On the other hand, such strong opposition and criticism make us ask whether we are facing the possibility of rethinking the traditional ways to understand the safeguards in order to preserve their essence without devaluing their traditional package but looking for new components to replace or compensate for the so-called “loss” of safeguards. The reflection on technological progress in the field of criminal procedural law indicates the need to rethink, on the basis of fundamental procedural principles, the safeguards that can replace or compensate for those that are in crisis as a result of the intervention of technological progress. Discussions in academic doctrine on the impact of technological interventions on the proceedings as such or on the limits of such interventions refer to the principles of criminal procedure as to a point of reference. In the context of the inferiority of technology, scholarly debate still addresses the issue of whether the court will not gradually become a mere site for the exercise of penal power with the resultant consequences – the deformation of the procedure itself as a physical ritual. In this context, this work seeks to illustrate the relationship between remote criminal proceedings in court and the principle of immediacy, the concept of which is based on the application of different models of criminal procedure (inquisitorial and adversarial), the aim is to assess the challenges posed for legal regulation by the interaction of technological progress with the principles of criminal procedure. The main hypothesis to be tested is that the adoption of remote proceedings is directly linked to the prevailing model of criminal procedure, arguing that the more principles of the inquisitorial model are applied to the criminal process, the more remote criminal trial is acceptable, and conversely, the more the criminal process is based on an adversarial model, more the remote criminal process is seen as incompatible with the principle of immediacy. In order to achieve this goal, the following tasks are set: to identify whether there is a difference in assessing remote proceedings with the immediacy principle between the adversarial model and the inquisitorial model, to analyse the main aspects of the regulation of remote criminal proceedings based on the examples of different countries (for example Lithuania, Italy, etc.).Keywords: remote criminal proceedings, principle of orality, principle of immediacy, adversarial model inquisitorial model
Procedia PDF Downloads 6823040 Production of Poly-β-Hydroxybutyrate (PHB) by a Thermophilic Strain of Bacillus and Pseudomonas Species
Authors: Patience Orobosa Olajide
Abstract:
Five hydrocarbon degrading bacterial strains isolated from contaminated environment were investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Screening for bioplastic production was done on assay mineral salts agar medium containing 0.2% poly (3-hydroxybutyrate) as the sole carbon source. Two of the test bacteria were positive for PHB biosynthesis and were identified based on gram staining, biochemical tests, 16S rRNA gene sequence analysis as Pseudomonas aeruginosa and Bacillus licheniformis which grew at 37 and up to 65 °C respectively, thus suggesting the later to be thermotolerant. In this study, the effects of different carbon and nitrogen sources on PHB production in these strains were investigated. Maximum PHB production was obtained in 48 hr for the two strains and amounted to yields of 72.86 and 62.22 percentages for Bacillus licheniformis and Pseudomonas aeruginosa respectively. In these strains, glycine was the most efficient carbon sources for the production of PHB compared with other carbon (glucose, lactose, sucrose, Arabinose) and nitrogen (L- glycine, L-cysteine, DL-Tryptophan, and Potassium Nitrate) sources. The screening of microbial strains for industrial PHB production should be based on several factors including the cell’s capability to mineralize an inexpensive substrate, rate of growth and the extent of polymer accumulation.Keywords: bacteria, poly-3-hydroxybutyrate (PHB), hydrocarbon, thermotolerant
Procedia PDF Downloads 19823039 Two Component Source Apportionment Based on Absorption and Size Distribution Measurement
Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Gábor Szabó, Zoltán Bozóki
Abstract:
Beyond its climate and health related issues ambient light absorbing carbonaceous particulate matter (LAC) has also become a great scientific interest in terms of its regulations recently. It has been experimentally demonstrated in recent studies, that LAC is dominantly composed of traffic and wood burning aerosol particularly under wintertime urban conditions, when the photochemical and biological activities are negligible. Several methods have been introduced to quantitatively apportion aerosol fractions emitted by wood burning and traffic but most of them require costly and time consuming off-line chemical analysis. As opposed to chemical features, the microphysical properties of airborne particles such as optical absorption and size distribution can be easily measured on-line, with high accuracy and sensitivity, especially under highly polluted urban conditions. Recently a new method has been proposed for the apportionment of wood burning and traffic aerosols based on the spectral dependence of their absorption quantified by the Aerosol Angström Exponent (AAE). In this approach the absorption coefficient is deduced from transmission measurement on a filter accumulated aerosol sample and the conversion factor between the measured optical absorption and the corresponding mass concentration (the specific absorption cross section) are determined by on-site chemical analysis. The recently developed multi-wavelength photoacoustic instruments provide novel, in-situ approach towards the reliable and quantitative characterization of carbonaceous particulate matter. Therefore, it also opens up novel possibilities on the source apportionment through the measurement of light absorption. In this study, we demonstrate an in-situ spectral characterization method of the ambient carbon fraction based on light absorption and size distribution measurements using our state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS) and Single Mobility Particle Sizer (SMPS) The carbonaceous particulate selective source apportionment study was performed for ambient particulate matter in the city center of Szeged, Hungary where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. The proposed model is based on the parallel, in-situ measurement of optical absorption and size distribution. AAEff and AAEwb were deduced from the measured data using the defined correlation between the AOC(1064nm)/AOC(266nm) and N100/N20 ratios. σff(λ) and σwb(λ) were determined with the help of the independently measured temporal mass concentrations in the PM1 mode. Furthermore, the proposed optical source apportionment is based on the assumption that the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed here by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data. The results by the proposed novel optical absorption based source apportionment method prove its applicability whenever measurements are performed at an urban site where traffic and wood burning are the dominant carbonaceous sources of emission.Keywords: absorption, size distribution, source apportionment, wood burning, traffic aerosol
Procedia PDF Downloads 22823038 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model
Authors: Yolina A. Petrova, Georgi I. Petkov
Abstract:
The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.Keywords: analogy-making, categorization, category learning, cognitive modeling, role-governed categories
Procedia PDF Downloads 14323037 An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved
Authors: Tiexin Wang, Sebastien Truptil, Frederick Benaben
Abstract:
Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way.Keywords: automatic model transformation, granularity issue, model-driven engineering, semantic and syntactic comparisons
Procedia PDF Downloads 39523036 The Link Between Collaboration Interactions and Team Creativity Among Nursing Student Teams in Taiwan: A Moderated Mediation Model
Authors: Hsing Yuan Liu
Abstract:
Background: Considerable theoretical and empirical work has identified a relationship between collaboration interactions and creativity in an organizational context. The mechanisms underlying this link, however, are not well understood in healthcare education. Objectives: The aims of this study were to explore the impact of collaboration interactions on team creativity and its underlying mechanism and to verify a moderated mediation model. Design, setting, and participants: This study utilized a cross-sectional, quantitative, descriptive design. The survey data were collected from 177 nursing students who enrolled in 18-week capstone courses of small interdisciplinary groups collaborating to design healthcare products in Taiwan during 2018 and 2019. Methods: Questionnaires assessed the nursing students' perceptions about their teams' swift trust (of cognition- and affect-based), conflicts (of task, process, and relationship), interaction behaviors (constructive controversy, helping behaviors, and spontaneous communication), and creativity. This study used descriptive statistics to compare demographics, swift trust scores, conflict scores, interaction behavior scores, and creativity scores for interdisciplinary teams. Data were analyzed using Pearson’s correlation coefficient and simple and hierarchical multiple regression models. Results: Pearson’s correlation analysis showed the cognition-based team swift trust was positively correlated with team creativity. The mediation model indicated constructive controversy fully mediated the effect of cognition-based team swift trust on student teams’ creativity. The moderated mediation model indicated that task conflict negatively moderates the mediating effect of the constructive controversy on the link between cognition-based team swift trust and team creativity. Conclusion: Our findings suggest nursing student teams’ interaction behaviors and task conflict are crucial mediating and moderated mediation variables on the relationship between collaboration interactions and team creativity, respectively. The empirical data confirms the validity of our proposed moderated mediation models of team creativity. Therefore, this study's validated moderated mediation model could provide guidance for nursing educators to improve collaboration interaction outcomes and creativity on nursing student teams.Keywords: team swift trust, team conflict, team interaction behavior, moderated mediating effects, interdisciplinary education, nursing students
Procedia PDF Downloads 18723035 Modeling of the Mechanism of Ion Channel Opening of the Visual Receptor's Rod on the Light and Allosteric Effect of Rhodopsin in the Phosphorylation Process
Authors: N. S. Vassilieva-Vashakmadze, R. A. Gakhokidze, I. M. Khachatryan
Abstract:
In the first part of the paper it is shown that both the depolarization of the cytoplasmic membrane of rods observed in invertebrates and hyperpolarization characteristic of vertebrates on the light may activate the functioning of ion (Na+) channels of cytoplasmic membrane of rods and thus provide the emergence of nerve impulse and its transfer to the neighboring neuron etc. In the second part, using the quantum mechanical program for modeling of the molecular processes, we got a clear picture demonstrating the effect of charged phosphate groups on the protein components of α-helical subunits of the visual rhodopsin receptor. The analysis shows that the phosphorylation of terminal amino acid of seventh α-helical subunits of the visual rhodopsin causes a redistribution of electron density on the atoms, i.e. polarization of subunits, also the changing the configuration of the nuclear subsystem, which corresponds to the deformation process in the molecule. Based on the use of models it can be concluded that this system has an internal relationship between polarization and deformation processes that indicates on the allosteric effect. The allosteric effect is based on quantum-mechanical principle of the self-consistency of the molecules.Keywords: membrane potential, ion channels, visual rhodopsin, allosteric effect
Procedia PDF Downloads 27123034 Constructing the Joint Mean-Variance Regions for Univariate and Bivariate Normal Distributions: Approach Based on the Measure of Cumulative Distribution Functions
Authors: Valerii Dashuk
Abstract:
The usage of the confidence intervals in economics and econometrics is widespread. To be able to investigate a random variable more thoroughly, joint tests are applied. One of such examples is joint mean-variance test. A new approach for testing such hypotheses and constructing confidence sets is introduced. Exploring both the value of the random variable and its deviation with the help of this technique allows checking simultaneously the shift and the probability of that shift (i.e., portfolio risks). Another application is based on the normal distribution, which is fully defined by mean and variance, therefore could be tested using the introduced approach. This method is based on the difference of probability density functions. The starting point is two sets of normal distribution parameters that should be compared (whether they may be considered as identical with given significance level). Then the absolute difference in probabilities at each 'point' of the domain of these distributions is calculated. This measure is transformed to a function of cumulative distribution functions and compared to the critical values. Critical values table was designed from the simulations. The approach was compared with the other techniques for the univariate case. It differs qualitatively and quantitatively in easiness of implementation, computation speed, accuracy of the critical region (theoretical vs. real significance level). Stable results when working with outliers and non-normal distributions, as well as scaling possibilities, are also strong sides of the method. The main advantage of this approach is the possibility to extend it to infinite-dimension case, which was not possible in the most of the previous works. At the moment expansion to 2-dimensional state is done and it allows to test jointly up to 5 parameters. Therefore the derived technique is equivalent to classic tests in standard situations but gives more efficient alternatives in nonstandard problems and on big amounts of data.Keywords: confidence set, cumulative distribution function, hypotheses testing, normal distribution, probability density function
Procedia PDF Downloads 17623033 Influence of Age and Religion on Sexual Behaviours of Undergraduates in Southwest, Nigeria
Authors: Tosin Emmanuel Akinduyo, F. O. Ojewola
Abstract:
This study investigated the influence of age and religion on the sexual behaviours of undergraduates in southwest Nigeria. The aim of this study is to examine the sexual behaviour of undergraduates based on moderating variables of age and religion. The research design was a descriptive research design of the survey type. The sample for the study was 1,200 undergraduates selected through a multi-stage sampling procedure. A self-constructed questionnaire titled “Sexual Behaviours Questionnaire” (SBCUQ) with Pearson reliability (r) of 0.68 was used to elicit information from the respondents. Two research questions were answered using frequency count, percentage, means, and standard deviation. The two hypotheses were tested using t-test and ANOVA. Where the result of ANOVA showed a significant difference, the Scheffe Posthoc test was used to show where the significant difference (s) occurred. The findings of the study revealed that age and religion influenced undergraduates’ sexual behaviour. Based on the findings, the government at all tiers, in collaboration with the university management, should introduce sex education as a course to enlighten undergraduates and inform them of moderation needed as expected in their sexual expressions. Professional counsellors and religious organizations should always line up seminars and workshops for undergraduates on acceptable engagement in their sexual behaviours.Keywords: age, religion, sexual behaviuors, undergraduates
Procedia PDF Downloads 7323032 Road Maintenance Management Decision System Using Multi-Criteria and Geographical Information System for Takoradi Roads, Ghana
Authors: Eric Mensah, Carlos Mensah
Abstract:
The road maintenance backlogs created as a result of deferred maintenance especially in developing countries has caused considerable deterioration of many road assets. This is usually due to difficulties encountered in selecting and prioritising maintainable roads based on objective criteria rather than some political or other less important criteria. In order to ensure judicious use of limited resources for road maintenance, five factors were identified as the most important criteria for road management within the study area. This was based on the judgements of 40 experts. The results were further used to develop weightings using the Multi-Criteria Decision Process (MCDP) to analyse and select road alternatives according to maintenance goal. Using Geographical Information Systems (GIS), maintainable roads were grouped using the Jenk’s natural breaks to allow for further prioritised in order of importance for display on a dashboard of maps, charts, and tables. This reduces the problems of subjective maintenance and road selections, thereby reducing wastage of resources and easing the maintenance process through an object organised spatial decision support system.Keywords: decision support, geographical information systems, multi-criteria decision process, weighted sum
Procedia PDF Downloads 37623031 A Platform for Managing Residents' Carbon Trajectories Based on the City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xuerui, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
Climate change is a global problem facing humanity and this is now the consensus of the mainstream scientific community. In accordance with the carbon peak and carbon neutral targets and visions set out in the United Nations Framework Convention on Climate Change, the Kyoto Protocol and the Paris Agreement, this project uses the City Intelligent Model (CIM) and Artificial Intelligence Machine Vision (ICR) as the core technologies to accurately quantify low carbon behaviour into green corn, which is a means of guiding ecologically sustainable living patterns. Using individual communities as management units and blockchain as a guarantee of fairness in the whole cycle of green currency circulation, the project will form a modern resident carbon track management system based on the principle of enhancing the ecological resilience of communities and the cohesiveness of community residents, ultimately forming an ecologically sustainable smart village that can be self-organised and managed.Keywords: urban planning, urban governance, CIM, artificial Intelligence, sustainable development
Procedia PDF Downloads 8323030 Implementing a Structured, yet Flexible Tool for Critical Information Handover
Authors: Racheli Magnezi, Inbal Gazit, Michal Rassin, Joseph Barr, Orna Tal
Abstract:
An effective process for transmitting patient critical information is essential for patient safety and for improving communication among healthcare staff. Previous studies have discussed handover tools such as SBAR (Situation, Background, Assessment, Recommendation) or SOFI (Short Observational Framework for Inspection). Yet, these formats lack flexibility, and require special training. In addition, nurses and physicians have different procedures for handing over information. The objectives of this study were to establish a universal, structured tool for handover, for both physicians and nurses, based on parameters that were defined as ‘important’ and ‘appropriate’ by the medical team, and to implement this tool in various hospital departments, with flexibility for each ward. A questionnaire, based on established procedures and on the literature, was developed to assess attitudes towards the most important information for effective handover between shifts (Cronbach's alpha 0.78). It was distributed to 150 senior physicians and nurses in 62 departments. Among senior medical staff, 12 physicians and 66 nurses responded to the questionnaire (52% response rate). Based on the responses, a handover form suitable for all hospital departments was designed and implemented. Important information for all staff included: Patient demographics (full name and age); Health information (diagnosis or patient complaint, changes in hemodynamic status, new medical treatment or equipment required); and Social Information (suspicion of violence, mental or behavioral changes, and guardianship). Additional information relevant to each unit included treatment provided, laboratory or imaging required, and change in scheduled surgery in surgical departments. ICU required information on background illnesses, Pediatrics required information on diet and food provided and Obstetrics required the number of days after cesarean section. Based on the model described, a flexible tool was developed that enables handover of both common and unique information. In addition, it includes general logistic information that must be transmitted to the next shift, such as planned disruptions in service or operations, staff training, etc. Development of a simple, clear, comprehensive, universal, yet flexible tool designed for all medical staff for transmitting critical information between shifts was challenging. Physicians and nurses found it useful and it was widely implemented. Ongoing research is needed to examine the efficiency of this tool, and whether the enthusiasm that accompanied its initial use is maintained.Keywords: handover, nurses, hospital, critical information
Procedia PDF Downloads 24823029 A Web Service Based Sensor Data Management System
Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh
Abstract:
The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor
Procedia PDF Downloads 212