Search results for: cooling methods
10570 Earth Tremors in Nigeria: A Precursor to Major Disaster?
Authors: Oluseyi Adunola Bamisaiye
Abstract:
The frequency of occurrence of earth tremor in Nigeria has increased tremendously in recent years. Slow earthquakes/ tremor have preceded some large earthquakes in some other regions of the world and the Nigerian case may not be an exception. Timely and careful investigation of these tremors may reveal their relation to large earthquakes and provides important clues to constrain the slip rates on tectonic faults. Thus making it imperative to keep under watch and also study carefully the tectonically active terrains within the country, in order to adequately forecast, prescribe mitigation measures and in order to avoid a major disaster. This report provides new evidence of a slow slip transient in a strongly locked seismogenic zone of the Okemesi fold belt. The aim of this research is to investigate the different methods of earth tremor monitoring using fault slip analysis and mapping of Okemesi hills, which has been the most recent epicenter to most of the recent tremors.Keywords: earth tremor, fault slip, intraplate activities, plate tectonics
Procedia PDF Downloads 15410569 Management of Intellectual Property Rights: Strategic Patenting
Authors: Waheed Oseni
Abstract:
This article reviews emergent global trends in intellectual property protection and identifies patenting as a strategic initiative. Recent developments in software and method of doing business patenting are fast transforming the e‐business landscape. The article discusses the emergent global regulatory framework concerning intellectual property rights and the strategic value of patenting. Important features of a corporate patenting portfolio are described. Superficially, the e‐commerce landscape appears to be dominated by dotcom start-ups or the “dotcomization” of existing brick and mortar companies. But, in reality, at its very bedrock is intellectual property (IP). In this connection, the recent avalanche of patenting of software and method‐of‐doing‐business (MDB) in the USA is a very significant development with regard to rules governing IP rights and, therefore, e‐commerce. Together with the World Trade Organization’s (WTO) IP rules, there is an emerging global regulatory framework for IP rights, an understanding of which is necessary for designing effective e‐commerce strategies.Keywords: intellectual property, patents, methods, computer software
Procedia PDF Downloads 52610568 Hard Water Softening by Chronoamperometry and Impedancemetry
Authors: Samira Ghizellaoui, Manel Boumagoura, Rayane Menzri
Abstract:
The ground water Hamma rich in calcium and bicarbonate likely to deposit the tartar and subsequently lead to the obstruction of the pipes and the seizing of the stopping devices in addition to the financial losses resulting there from. It is therefore necessary to optimise an antiscaling treatment in order to avoid the risk of formation of tartar deposits in the various installations and to protect the equipment in contact with this water. MgCl2 is the chemical inhibitor which was tested. To optimise the effective concentration of this product, we used two electrochemical methods (chronoamperometry and impedancemetry) to identify the best method for optimizing antiscaling treatment. IR, RX, Raman spectroscopy and SEM indicate that the raw waters of Hamma give precipitates in the form of calcite (the most stable form), with the presence of a small amount of magnesian calcite and aragonite. In the presence of the inhibitor (MgCl2), calcium carbonate changes morphology to other forms that do not exist in the deposit obtained from the raw water (vaterite and calcium carbonate monohydrate).Keywords: calcium carbonate, MgCl2, chronoamperometry, Impedancemetry
Procedia PDF Downloads 8810567 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor
Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta
Abstract:
In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.Keywords: modular robotics, terrain detection, terrain classification, neural network
Procedia PDF Downloads 14510566 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 14410565 From 'Segregation' to 'Integration': The Dynamic Mechanism of Residential Segregation and the Responsive Sustainable Regeneration Methods in China
Authors: Yang Chen
Abstract:
The property-led regeneration has played an important role in the process of rapid urbanization during the past twenty years in China, but it is also been criticized unsustainable as it always focuses on the economic aspect and overlooks the social issues, especially it has exacerbated the residential segregation in the inner city. Based on author’s studying the area around Nanjing railway station, this paper demonstrates that residential segregation indeed exists in the inner city through synthetic analysis on patterns of residents’ living, consumption and welfare, and to some extent, the segregation distribution characteristics represent in a concentric ring model. According to author’s further investigation on the property right and age of the dwelling buildings, the housing-commercialization-led regeneration is defined as the mainspring of the segregation. To solve these problems, the system of sustainable community should be established in both policy and practice, above all, well-designed public facilities including green infrastructure will be appropriate to promote the residential integration and sustainable development in contemporary China.Keywords: China, dynamic mechanism, residential segregation, sustainable regeneration
Procedia PDF Downloads 46010564 Handling Missing Data by Using Expectation-Maximization and Expectation-Maximization with Bootstrapping for Linear Functional Relationship Model
Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, A. H. M. R. Imon
Abstract:
Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in two types of LFRM namely the full model of LFRM and in LFRM when the slope is estimated using a nonparametric method. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators
Procedia PDF Downloads 45510563 Improvement of Monacolin K. and Decreasing of Citrinin Content in Korkor 6 (RD 6) Red Yeast Rice
Authors: Emon Chairote, Panatda Jannoey, Griangsak Chairote
Abstract:
A strain of Monascus purpureus CMU001 was used to prepared red yeast rice from Thai glutinous rice Korkor 6 (RD 6). Adding of different amounts of histidine (156, 312, 625, and 1250 mg in 100 g of rice grains)) under aerobic and air limitation (air-lock) condition were used in solid fermentation. Determination of the yield as well as monacolin K content was done. Citrinin content was also determined in order to confirm the safety use of prepared red yeast rice. It was found that under air-lock condition with 1250 mg of histidine addition gave the highest yield of 37.40 g of dried red yeast rice prepared from 100 g of rice. Highest 5.72 mg content of monacolin K was obtained under air-lock condition with 312 mg histidine addition. In the other hand, citrinin content was found to be less than 24462 ng/g of all dried red yeast rice samples under the experimental methods used in this work.Keywords: red yeast rice, Thai glutinous rice, monacolin K., citrinin
Procedia PDF Downloads 24710562 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation
Authors: Praveen Kumar, R. Uma, R. P. Sharma
Abstract:
This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation
Procedia PDF Downloads 7310561 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction
Authors: Zhengrong Wu, Haibo Yang
Abstract:
In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.Keywords: large language model, knowledge graph, disaster, deep learning
Procedia PDF Downloads 5610560 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)
Authors: Eric Pla Erra, Mariana Jimenez Martinez
Abstract:
While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)
Procedia PDF Downloads 10510559 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions
Authors: Nasibeh Azizi Khereshki
Abstract:
Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves
Procedia PDF Downloads 7710558 Information Exchange Process Analysis between Authoring Design Tools and Lighting Simulation Tools
Authors: Rudan Xue, Annika Moscati, Rehel Zeleke Kebede, Peter Johansson
Abstract:
Successful buildings’ simulation and analysis inevitably require information exchange between multiple building information modeling (BIM) software. The BIM infor-mation exchange based on IFC is widely used. However, Industry Foundation Classifi-cation (IFC) files are not always reliable and information can get lost when using dif-ferent software for modeling and simulations. In this research, interviews with lighting simulation experts and a case study provided by a company producing lighting devices have been the research methods used to identify the necessary steps and data for suc-cessful information exchange between lighting simulation tools and authoring design tools. Model creation, information exchange, and model simulation have been identi-fied as key aspects for the success of information exchange. The paper concludes with recommendations for improved information exchange and more reliable simulations that take all the needed parameters into consideration.Keywords: BIM, data exchange, interoperability issues, lighting simulations
Procedia PDF Downloads 23910557 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data
Authors: Kai Warsoenke, Maik Mackiewicz
Abstract:
To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.Keywords: automotive production, machine learning, process optimization, smart tolerancing
Procedia PDF Downloads 11610556 Women’s History: Perspectives and Challenges
Authors: Bennabhaktula Lavanya
Abstract:
The study of women, their societal roles, and their importance has been a subject of intense discussion and scholarly inquiry. Researchers have diligently endeavoured to understand the influence of women in the domains of society, economy, culture, and politics, as well as the broader ramifications for society. Women's history aims to improve existing historical accounts by analyzing political institutions, economic events, social frameworks, cultural trends, and primary sources that have historically underprivileged women. The extensive research undertaken has resulted in the formation and recognition of women's history as a valid and unique subject of study within history. The Present paper analyses the academic discipline of Women's History and investigates its changing patterns. Tries to address the challenge of transforming the prevailing historical tradition by using innovative methods and frameworks and analyses the interests, experiences, and achievements of women in order to recreate their perceptions and priorities. The paper also examines the principles of Women's History, Gender Studies, and Feminist History and varying perspectives on women.Keywords: history, perspectives, research, women
Procedia PDF Downloads 4610555 Distance Education: Using a Digital Platform to Improve Struggling University Students' Mathematical Skills
Authors: Robert Vanderburg, Nicholas Gibson
Abstract:
Objectives: There has been an increased focus in education students’ mathematics skills in the last two years. Universities have, specifically, had problems teaching students struggling with mathematics. This paper focuses on the ability of a digital platform to significantly improve mathematics skills for struggling students. Methods: 32 students who demonstrated low scores on a mathematics test were selected to take part in a one-month tutorial program using a digital mathematics portal. Students were provided feedback for questions posted on the portal and a fortnightly tutorial session. Results: A pre-test post-test design was analyzed using a one-way analysis of variance (ANOVA). The analysis suggested that students improved skills in algebra, geometry, statistics, probability, ratios, fractions, and probability. Conclusion: Distance university students can improve their mathematics skills using a digital platform.Keywords: digital education, distance education, higher education, mathematics education
Procedia PDF Downloads 18610554 Opinion Mining and Sentiment Analysis on DEFT
Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala
Abstract:
Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.Keywords: opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet
Procedia PDF Downloads 13810553 The Association of Estrogen Receptor Alpha Xbai Gg Genotype and Severe Preeclampsia
Authors: Saeedeh Salimi, Farzaneh Farajian- Mashhadi, Ehsan Tabatabaei, Mahnaz Shahrakipoor, Minoo Yaghmaei, Mojgan Mokhtari
Abstract:
Purpose: Estrogen receptor-α (ERα) plays an essential role in the adaptation of increased uterine blood flow during gestation. Therefore ERα gene could be a possible candidate for preeclampsia(PE) susceptibility. In the current study, we aimed to investigate the association of the ERα gene polymorphisms and PE in an Iranian population. Methods: One hundred ninety-two pregnant women with PE and 186 normotensive women were genotyped for ERα gene (PvuII and XbaI) polymorphisms by PCR-RFLP method. Results: The frequency of alleles and genotypes of ERα PvuII and XbaI polymorphisms were not different between PE and normotensive control women. However, higher frequency of GG genotype was observed in women with severe PE compared to mild PE (OR, 1.8 [95% CI, 1.1 to 3]; P = 0.02) and in severe PE compared to normotensive women [OR= 1.8(1.1-3), P=0.02] after adjusting for age, ethnicity and primiparity. Conclusions: The GG genotype of ERα XbaI polymorphism could be a genetic risk factor for PE predisposition.Keywords: estrogen receptor-α, polymorphism, gene, preeclampsia
Procedia PDF Downloads 30810552 Modelling Medieval Vaults: Digital Simulation of the North Transept Vault of St Mary, Nantwich, England
Authors: N. Webb, A. Buchanan
Abstract:
Digital and virtual heritage is often associated with the recreation of lost artefacts and architecture; however, we can also investigate works that were not completed, using digital tools and techniques. Here we explore physical evidence of a fourteenth-century Gothic vault located in the north transept of St Mary’s church in Nantwich, Cheshire, using existing springer stones that are built into the walls as a starting point. Digital surveying tools are used to document the architecture, followed by an analysis process to hypothesise and simulate possible design solutions, had the vault been completed. A number of options, both two-dimensionally and three-dimensionally, are discussed based on comparison with examples of other contemporary vaults, thus adding another specimen to the corpus of vault designs. Dissemination methods such as digital models and 3D prints are also explored as possible resources for demonstrating what the finished vault might have looked like for heritage interpretation and other purposes.Keywords: digital simulation, heritage interpretation, medieval vaults, virtual heritage, 3d scanning
Procedia PDF Downloads 34410551 Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks
Authors: Deepa Das, Susmita Das
Abstract:
Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability.Keywords: cognitive radio, spectrum sensing, soft decision fusion, GA, PSO, IWO, hybrid IWO/PSO
Procedia PDF Downloads 46710550 A Comprehensive Study on Quality Assurance in Game Development
Authors: Maria Komal, Zaineb Khalil, Mehreen Sirshar
Abstract:
Due to the recent technological advancements, Games have become one of the most demanding applications. Gaming industry is rapidly growing and the key to success in this industry is the development of good quality games, which is a highly competitive issue. The ultimate goal of game developers is to provide player’s satisfaction by developing high-quality games. This research is the comprehensive survey of techniques followed by game industries to ensure games quality. After analysis of various techniques, it has been found that quality simulation according to ISO standards and play test methods are used to ensure games quality. Because game development requires cross-disciplined team, an increasing trend towards distributed game development has been observed. This paper evaluates the strengths and weaknesses of current methodologies used in game industry and draws a conclusion. We have also proposed quality parameters which can be used as a heuristic framework to identify those attributes which have high testing priorities.Keywords: game development, computer games, video games, gaming industry, quality assurance, playability, user experience
Procedia PDF Downloads 53410549 A Lung Cancer Patients with Septic Shock Nursing Experience
Authors: Syue-Wen Lin
Abstract:
Objective: This article explores the nursing experience of an 84-year-old male lung cancer patient who underwent a thoracoscopic right lower lobectomy and treatment. The patient has multiple medical histories, including hypertension and diabetes. The nursing process involved cancer treatment, postoperative pain management, as well as wound care and healing. Methods: The nursing period is from February 10 to February 17, 2024. During the nursing process, pain management strategies are implemented, including morphine drugs and non-drug methods, and music therapy, essential oil massage, and extended reception time are used to make patients feel physically and mentally comfortable so as to reduce postoperative pain and encourage active participation in rehabilitation. Strict sterile wound dressing procedures and advanced wound care techniques are used to promote wound healing and prevent infection. Due to septic shock, dialysis is used to relieve worsening symptoms. Taking into account the patient's cancer status, the nursing team provides comprehensive cancer care based on the patient's physical and psychological needs. Given the complexity of the patient's condition, including advanced cancer, palliative care is also incorporated throughout the care process to relieve discomfort and provide psychological support. Results: Through comprehensive health assessment, the nursing team fully understood the patient's condition and developed a personalized care plan based on the patient's condition. The interprofessional critical care team provides respiratory therapy and lung expansion exercises to reduce muscle loss while addressing the patient's psychological status, pain management, and vital sign stabilization needs, resulting in a comprehensive approach to care. Lung expansion exercises and the use of a high-frequency chest wall oscillation vest successfully improved sputum drainage and facilitated weaning from mechanical ventilation. In addition, helping patients stabilize their vital signs and the integration of cancer care, pain management, wound care and palliative care helps the patient be fully supported throughout the recovery process, ultimately improving his quality of life. Conclusion: Lung cancer and septic shock present significant challenges to patients, and the nursing team not only provides critical care but also addresses the unique needs of patients through comprehensive infection control, cancer care, pain management, wound care, and palliative care interventions. These measures effectively improve patients' quality of life, promote recovery, and provide compassionate palliative care for terminally ill patients. Nursing staff work closely with family members to develop a comprehensive care plan to ensure that patients receive high-quality medical care as well as psychological support and a comfortable recovery environment.Keywords: septic shock, lung cancer, palliative care, nursing experience
Procedia PDF Downloads 2210548 How Whatsappization of the Chatbot Affects User Satisfaction, Trust, and Acceptance in a Drive-Sharing Task
Authors: Nirit Gavish, Rotem Halutz, Liad Neta
Abstract:
Nowadays, chatbots are gaining more and more attention due to the advent of large language models. One of the important considerations in chatbot design is how to create an interface to achieve high user satisfaction, trust, and acceptance. Since WhatsApp conversations sometimes substitute for face-to-face communication, we studied whether WhatsAppization of the chatbot -making the conversation resemble a WhatsApp conversation more- will improve user satisfaction, trust, and acceptance, or whether the opposite will occur due to the Uncanny Valley (UV) effect. The task was a drive-sharing task, in which participants communicated with a textual chatbot via WhatsApp and could decide whether to participate in a ride to college with a driver suggested by the chatbot. WhatsAppization of the chatbot was done in two ways: By a dialog-style conversation (Dialog versus No Dialog), and by adding WhatsApp indicators – “Last Seen”, “Connected”, “Read Receipts”, and “Typing…” (Indicators versus No Indicators). Our 120 participants were randomly assigned to one of the four 2 by 2 design groups, with 30 participants in each. They interacted with the WhatsApp chatbot and then filled out a questionnaire. The results demonstrated that, as expected from the manipulation, the interaction with the chatbot was longer for the dialog condition compared to the no dialog. This extra interaction, however, did not lead to higher acceptance -quite the opposite, since participants in the dialog condition were less willing to implement the decision made at the end of the conversation with the chatbot and continue the interaction with the driver they chose. The results are even more striking when considering the Indicators condition. Both for the satisfaction measures and the trust measures, participants’ ratings were lower in the Indicators condition compared to the No Indicators. Participants in the Indicators condition felt that the ride search process was harder to operate, and slower (even though the actual interaction time was similar). They were less convinced that the chatbot suggested real trips and they trusted the person offering the ride and referred to them by the chatbot less. These effects were more evident for participants who preferred to share their rides using WhatsApp compared to participants who preferred chatbots for that purpose. Considering our findings, we can say that the WhatsAppization of the chatbot was detrimental. This is true for the both chatbot WhatsAppization methods – by making the conversation more a dialog and adding WhatsApp indicators. For the chosen drive-sharing task, the results were, in addition to lower satisfaction, less trust in the chatbot’s suggestion and even in the driver suggested by the chatbot, and lower willingness to actually undertake the suggested ride. In addition, it seems that the most problematic WhatsAppization method was using WhatsApp’s indicators during the interaction with the chatbot. The current study suggests that a conversation with an artificial agent should also not imitate a WhatsApp conversation very closely. With the proliferation of WhatsApp use, the emotional and social aspect of face-to face commination are moving to WhatsApp communication. Based on the current study’s findings, it is possible that the UV effect also occurs in WhatsAppization, and not only in humanization, of the chatbot, with a similar feeling of eeriness, and is more pronounced for people who prefer to use WhatsApp over chatbots. The current research can serve as a starting point to study the very interesting and important topic of chatbots WhatsAppization. More methods of WhatsAppization and other tasks could be the focus of further studies.Keywords: chatbot, WhatsApp, humanization, Uncanny Valley, drive sharing
Procedia PDF Downloads 4810547 An Integrated Visualization Tool for Heat Map and Gene Ontology Graph
Authors: Somyung Oh, Jeonghyeon Ha, Kyungwon Lee, Sejong Oh
Abstract:
Microarray is a general scheme to find differentially expressed genes for target concept. The output is expressed by heat map, and biologists analyze related terms of gene ontology to find some characteristics of differentially expressed genes. In this paper, we propose integrated visualization tool for heat map and gene ontology graph. Previous two methods are used by static manner and separated way. Proposed visualization tool integrates them and users can interactively manage it. Users may easily find and confirm related terms of gene ontology for given differentially expressed genes. Proposed tool also visualize connections between genes on heat map and gene ontology graph. We expect biologists to find new meaningful topics by proposed tool.Keywords: heat map, gene ontology, microarray, differentially expressed gene
Procedia PDF Downloads 31610546 Detection of High Fructose Corn Syrup in Honey by Near Infrared Spectroscopy and Chemometrics
Authors: Mercedes Bertotto, Marcelo Bello, Hector Goicoechea, Veronica Fusca
Abstract:
The National Service of Agri-Food Health and Quality (SENASA), controls honey to detect contamination by synthetic or natural chemical substances and establishes and controls the traceability of the product. The utility of near-infrared spectroscopy for the detection of adulteration of honey with high fructose corn syrup (HFCS) was investigated. First of all, a mixture of different authentic artisanal Argentinian honey was prepared to cover as much heterogeneity as possible. Then, mixtures were prepared by adding different concentrations of high fructose corn syrup (HFCS) to samples of the honey pool. 237 samples were used, 108 of them were authentic honey and 129 samples corresponded to honey adulterated with HFCS between 1 and 10%. They were stored unrefrigerated from time of production until scanning and were not filtered after receipt in the laboratory. Immediately prior to spectral collection, honey was incubated at 40°C overnight to dissolve any crystalline material, manually stirred to achieve homogeneity and adjusted to a standard solids content (70° Brix) with distilled water. Adulterant solutions were also adjusted to 70° Brix. Samples were measured by NIR spectroscopy in the range of 650 to 7000 cm⁻¹. The technique of specular reflectance was used, with a lens aperture range of 150 mm. Pretreatment of the spectra was performed by Standard Normal Variate (SNV). The ant colony optimization genetic algorithm sample selection (ACOGASS) graphical interface was used, using MATLAB version 5.3, to select the variables with the greatest discriminating power. The data set was divided into a validation set and a calibration set, using the Kennard-Stone (KS) algorithm. A combined method of Potential Functions (PF) was chosen together with Partial Least Square Linear Discriminant Analysis (PLS-DA). Different estimators of the predictive capacity of the model were compared, which were obtained using a decreasing number of groups, which implies more demanding validation conditions. The optimal number of latent variables was selected as the number associated with the minimum error and the smallest number of unassigned samples. Once the optimal number of latent variables was defined, we proceeded to apply the model to the training samples. With the calibrated model for the training samples, we proceeded to study the validation samples. The calibrated model that combines the potential function methods and PLSDA can be considered reliable and stable since its performance in future samples is expected to be comparable to that achieved for the training samples. By use of Potential Functions (PF) and Partial Least Square Linear Discriminant Analysis (PLS-DA) classification, authentic honey and honey adulterated with HFCS could be identified with a correct classification rate of 97.9%. The results showed that NIR in combination with the PT and PLS-DS methods can be a simple, fast and low-cost technique for the detection of HFCS in honey with high sensitivity and power of discrimination.Keywords: adulteration, multivariate analysis, potential functions, regression
Procedia PDF Downloads 12510545 On the Optimality of Blocked Main Effects Plans
Authors: Rita SahaRay, Ganesh Dutta
Abstract:
In this article, experimental situations are considered where a main effects plan is to be used to study m two-level factors using n runs which are partitioned into b blocks, not necessarily of same size. Assuming the block sizes to be even for all blocks, for the case n ≡ 2 (mod 4), optimal designs are obtained with respect to type 1 and type 2 optimality criteria in the class of designs providing estimation of all main effects orthogonal to the block effects. In practice, such orthogonal estimation of main effects is often a desirable condition. In the wider class of all available m two level even sized blocked main effects plans, where the factors do not occur at high and low levels equally often in each block, E-optimal designs are also characterized. Simple construction methods based on Hadamard matrices and Kronecker product for these optimal designs are presented.Keywords: design matrix, Hadamard matrix, Kronecker product, type 1 criteria, type 2 criteria
Procedia PDF Downloads 36610544 Restoration and Conservation of Historical Textiles Using Covalently Immobilized Enzymes on Nanoparticles
Authors: Mohamed Elbehery
Abstract:
Historical textiles in the burial environment or in museums are exposed to many types of stains and dirt that are associated with historical textiles by multiple chemical bonds that cause damage to historical textiles. The cleaning process must be carried out with great care, with no irreversible damage, and sediments removed without affecting the original material of the surface being cleaned. Science and technology continue to provide innovative systems in the bio-cleaning process (using pure enzymes) of historical textiles and artistic surfaces. Lipase and α-amylase were immobilized on nanoparticles of alginate/κ-carrageenan nanoparticle complex and used in historical textiles cleaning. Preparation of nanoparticles, activation, and enzymes immobilization were characterized. Optimization of loading time and units of the two enzymes were done. It was found that, the optimum time and units of amylase were 4 hrs and 25U, respectively. While, the optimum time and units of lipase were 3 hrs and 15U, respectively. The methods used to examine the fibers using a scanning electron microscope equipped with an X-ray energy dispersal unit: SEM with EDX unit.Keywords: nanoparticles, enzymes, immobilization, textiles
Procedia PDF Downloads 9910543 Development and Analysis of Waste Human Hair Fiber Reinforced Composite
Authors: Tesfaye Worku
Abstract:
Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.Keywords: composite, human hair fiber, matrix, unsaturated polyester
Procedia PDF Downloads 6910542 The Factors Predicting Credibility of News in Social Media in Thailand
Authors: Ekapon Thienthaworn
Abstract:
This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.Keywords: credibility of news, behaviors and attitudes, social media, web board
Procedia PDF Downloads 46810541 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method
Procedia PDF Downloads 341