Search results for: online learning activities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14375

Search results for: online learning activities

8855 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 92
8854 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 330
8853 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 311
8852 Human Capital Divergence and Team Performance: A Study of Major League Baseball Teams

Authors: Yu-Chen Wei

Abstract:

The relationship between organizational human capital and organizational effectiveness have been a common topic of interest to organization researchers. Much of this research has concluded that higher human capital can predict greater organizational outcomes. Whereas human capital research has traditionally focused on organizations, the current study turns to the team level human capital. In addition, there are no known empirical studies assessing the effect of human capital divergence on team performance. Team human capital refers to the sum of knowledge, ability, and experience embedded in team members. Team human capital divergence is defined as the variation of human capital within a team. This study is among the first to assess the role of human capital divergence as a moderator of the effect of team human capital on team performance. From the traditional perspective, team human capital represents the collective ability to solve problems and reducing operational risk of all team members. Hence, the higher team human capital, the higher the team performance. This study further employs social learning theory to explain the relationship between team human capital and team performance. According to this theory, the individuals will look for progress by way of learning from teammates in their teams. They expect to have upper human capital, in turn, to achieve high productivity, obtain great rewards and career success eventually. Therefore, the individual can have more chances to improve his or her capability by learning from peers of the team if the team members have higher average human capital. As a consequence, all team members can develop a quick and effective learning path in their work environment, and in turn enhance their knowledge, skill, and experience, leads to higher team performance. This is the first argument of this study. Furthermore, the current study argues that human capital divergence is negative to a team development. For the individuals with lower human capital in the team, they always feel the pressure from their outstanding colleagues. Under the pressure, they cannot give full play to their own jobs and lose more and more confidence. For the smart guys in the team, they are reluctant to be colleagues with the teammates who are not as intelligent as them. Besides, they may have lower motivation to move forward because they are prominent enough compared with their teammates. Therefore, human capital divergence will moderate the relationship between team human capital and team performance. These two arguments were tested in 510 team-seasons drawn from major league baseball (1998–2014). Results demonstrate that there is a positive relationship between team human capital and team performance which is consistent with previous research. In addition, the variation of human capital within a team weakens the above relationships. That is to say, an individual working with teammates who are comparable to them can produce better performance than working with people who are either too smart or too stupid to them.

Keywords: human capital divergence, team human capital, team performance, team level research

Procedia PDF Downloads 243
8851 Infusion of Skills for Undergraduate Scholarship into Teacher Education: Two Case Studies in New York and Florida

Authors: Tunde Szecsi, Janka Szilagyi

Abstract:

Students majoring in education are underrepresented in undergraduate scholarship. To enable and encourage teacher candidates to engage in scholarly activities, it is essential to infuse skills such as problem-solving, critical thinking, oral and written communication, collaboration and the utilization of information literacy, into courses in teacher preparation programs. In this empirical study, we examined two teacher education programs – one in New York State and one in Florida – in terms of the approaches of the course-based infusion of skills for undergraduate research, and the effectiveness of this infusion. First, course-related documents such as syllabi, assignment descriptions, and course activities were reviewed and analyzed. The goal of the document analysis was to identify and describe the targeted skills, and the pedagogical approaches and strategies for promoting research skills in teacher candidates. Next, a selection of teacher candidates’ scholarly products from the institution in Florida was used as a data set to examine teacher candidates’ skill development in the context of the identified assignments. This dataset was analyzed both quantitatively and qualitatively to describe the changes that occurred in teacher candidates’ critical thinking, communication, and information literacy skills, and to uncover patterns in the skill development at the two institutions. Descriptive statistics were calculated to explore the changes in these skills of teacher candidates over a period of three years. The findings based on data from the teacher education program in Florida indicated a steady gain in written communication and critical thinking and a modest increase in informational literacy. At the institution in New York, candidates’ submission and success rates on the edTPA, a New York State Teacher Certification exam, was used as a measure of scholarly skills. Overall, although different approaches were used for infusing the development of scholarly skills in the courses, the results suggest that a holistic and well-orchestrated infusion of the skills into most courses in the teacher education program might result in steadily developing scholarly skills. These results offered essential implications for teacher education programs in terms of further improvements in teacher candidates’ skills for engaging in undergraduate research and scholarship. In this presentation, our purpose is to showcase two approaches developed by two teacher education programs to demonstrate how diverse approaches toward the promotion of undergraduate scholarship activities are responsive to the context of the teacher preparation programs.

Keywords: critical thinking, pedagogical strategies, teacher education, undergraduate student research

Procedia PDF Downloads 166
8850 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 80
8849 Diversity, Biochemical and Genomic Assessment of Selected Benthic Species of Two Tropical Lagoons, Southwest Nigeria

Authors: G. F. Okunade, M. O. Lawal, R. E. Uwadiae, D. Portnoy

Abstract:

The diversity, physico-chemical, biochemical and genomics assessment of Macrofauna species of Ologe and Badagry Lagoons were carried out between August 2016 and July 2018. The concentrations of Fe, Zn, Mn, Cd, Cr, and Pb in water were determined by Atomic Absorption Spectrophotometer (AAS). Particle size distribution was determined with wet-sieving and sedimentation using hydrometer method. Genomics analyses were carried using 25 P. fusca (quadriseriata) and 25 P.fusca from each lagoon due to abundance in both lagoons all through the two years of collection. DNA was isolated from each sample using the Mag-Bind Blood and Tissue DNA HD 96 kit; a method designed to isolate high quality. The biochemical characteristics were analysed in the dominanat species (P.aurita and T. fuscatus) using ELISA kits. Physico-chemical parameters such as pH, total dissolved solids, dissolved oxygen, conductivity and TDS were analysed using APHA standard protocols. The Physico-chemical parameters of the water quality recorded with mean values of 32.46 ± 0.66mg/L and 41.93 ± 0.65 for COD, 27.28 ± 0.97 and 34.82 ± 0.1 mg/L for BOD, 0.04 ± 4.71 mg/L for DO, 6.65 and 6.58 for pH in Ologe and Badagry lagoons with significant variations (p ≤ 0.05) across seasons. The mean and standard deviation of salinity for Ologe and Badagry Lagoons ranged from 0.43 ± 0.30 to 0.27 ± 0.09. A total of 4210 species belonging to a phylum, two classes, four families and a total of 2008 species in Ologe lagoon while a phylum, two classes, 5 families and a total of 2202 species in Badagry lagoon. The percentage composition of the classes at Ologe lagoon had 99% gastropod and 1% bivalve, while Gastropod contributed 98.91% and bivalve 1.09% in Badagry lagoon. Particle size was distributed in 0.002mm to 2.00mm, particle size distribution in Ologe lagoon recorded 0.83% gravels, 97.83% sand, and 1.33% silt particles while Badagry lagoon recorded 7.43% sand, 24.71% silt, and 67.86% clay particles hence, the excessive dredging activities going on in the lagoon. Maximum percentage of sand (100%) was seen in station 6 in Ologe lagoon while the minimum (96%) was found in station 1. P. aurita (Ologe Lagoon) and T. fuscastus (Badagry Lagoon) were the most abundant benthic species in which both contributed 61.05% and 64.35%, respectively. The enzymatic activities of P. aurita observed with mean values of 21.03 mg/dl for AST, 10.33 mg/dl for ALP, 82.16 mg/dl for ALT and 73.06 mg/dl for CHO in Ologe Lagoon While T. fuscatus observed mean values of Badagry Lagoon) recorded mean values 29.76 mg/dl, ALP with 11.69mg/L, ALT with 140.58 mg/dl and CHO with 45.98 mg/dl. There were significant variations (P < 0.05) in AST and CHO levels of activities in the muscles of the species.

Keywords: benthos, biochemical responses, genomics, metals, particle size

Procedia PDF Downloads 130
8848 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 79
8847 Evaluation of Chemical Compositions and Biological Activities of Five Essential Oils

Authors: G. Ozturk, B. Demirci

Abstract:

It is well known that essential oils used for therapeutic purposes for many years. In this study, five different Pharmacopoeia grade essential oils (Achillea millefolium L., Pimpinella anisum L., Matricaria recutita L., Eucalyptus globulus L., Salvia officinalis L.) which obtained from commercial sources were evaluated for chemical compositions, synergistic antimicrobial activities, and lipoxygenase enzyme inhibitions. Volatile components were determined by gas chromatography/flame ionization detector and gas chromatography/mass spectrometer, simultaneously. The potential antimicrobial activity of essential oils was tested against oral pathogenic standard strains such as Streptococcus mutans, Streptococcus sanguinis, Staphylococcus aureus, Corynebacterium striatum, Candida albicans and Candida krusei by broth microdilution methods. Ciprofloxacin and ketoconazole were used positive controls. It has been observed that the essential oils tested have average inhibitory antimicrobial activity against oral pathogens with a Minimum Inhibition Concentration of 20-0.625 mg/mL. The active essential oils have been combined with antibiotics and synergistic effects have been evaluated by Checkerboard method. ƩFIC values were determined. In combination with antibiotics M. recutita essential oil has been shown to have a synergistic effect against S. aureus in combination with tetracycline (ƩFIC 0.46). In addition, 5-LOX inhibitory activity was measured by modifying the spectrophotometric method developed by Baylac and Racine. As a result, 5-LOX % inhibition of S. officinalis, E. globulus and M. recutita were calculated as 34.0 ± 6.66, 72.7 ± 2.78 and 27.7 ± 0.60, respectively.

Keywords: antimicrobial activity, essential oils, synergistic activity, 5-lipoxygenase inhibition

Procedia PDF Downloads 109
8846 Fear of Gender-Based Crime and Women Empowerment: An Empirical Study among the Urban Residents of Bangladesh

Authors: Mohammad Ashraful Alam, Biro Judit

Abstract:

Fear of gender-based crime and fear of crime victimization for women is a major concern in the urban areas of Bangladesh. Based on the recent data from various human rights organizations and international literature the study found that gender-based crime especially sexual assault and rape are increasing in Bangladesh at a significant rate in comparison to other countries. The major focus of the study was to identify the relationship between fear of gender-based crime and women empowerment. To explore the fact the study followed the mixed methodological approach comprising with quantitative and qualitative methods and used secondary information from national and international sources. Corresponding global pictures the present study found that gender, age, complexion, social position, and ethnicity were more common factors of sexual assault and victimization in Bangladesh which lead to women become more fearful about crime victimization than men. Fear of gender-based crime traumatizes women which leads to withdrawal of their non-essential everyday works and some time from the essential works based on their social position, financial status, and social honor in the society. The increasing crime rate also increases the propensity to fear of criminal victimization, traumatization, and feeling of helplessness which make them vulnerable. The patriarchal culture and practices in Bangladesh based on religious culture and established social norms women always feel defenseless therefore they withdraw themselves from various social activities and own interest. Women who have already victimized feel more fear and become traumatized, and who do not victimize yet but know the severity of victimization from the media and others’ have the feeling of fear of crime. Women who find themselves as weak bonding and low networks with their neighbors and living for a short duration have a feeling of more fear and avoid visiting a certain place in a certain time and avoid some social activities. The study found the young women have more possibilities to become victimized through the feeling of fear of crime is higher among elderly women than young. Though women feel fear of all kinds of crime but usually all aged women are more fearful of sexual assault and rape than other violent crimes. Therefore, elderly women and another person in the family does not allow younger girls to go and involve outside activities to secure their family status. On the other hand, fear of crime in public transport is more common to all aged women at a higher level and sometimes they compromise their freedom, independence, financial opportunities, the job only to avoid the perceived threat, and save their social and cultural honor. The study also explores that fear of crime does not always depend on crime rate but the crime news, the severity of the crime, delay justice, the ineffectiveness of police, bail of criminals, corruption and political favoritism, etc. Finally, the study shows that the fear of gender-based crime and violence is working as a potential barrier to ensuring women's empowerment in Bangladesh.

Keywords: compromise personal freedom, fear of crime, fear of gender-based crime, fear of violent crime victimization, rape, sexual assaults, withdrawal from regular activities, women empowerment

Procedia PDF Downloads 144
8845 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing

Authors: Paramvir Singh

Abstract:

The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.

Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles

Procedia PDF Downloads 96
8844 Corporate Social Responsibility and Firm Performance: The Mediating Role of Reputation

Authors: Yosra Makni, Mariam Dammak, Dhouha Abed

Abstract:

Purpose: This paper investigates the mediating role of corporate reputation on the relationship between corporate social responsibility and financial performance. Design/Methodology/Approach: Based on a sample of 4329 drawn from 33 developed and developing countries and over a period of eight-year ranging from 2009 to 2016, we apply an Ordinary Least Squares regression (OLS) regressions to test our hypotheses. Findings: The authors find that there is a positive association between Corporate Social Responsibility (CSR) engagement and the financial performance of a company. They also document that there is a positive association between CSR engagement and a company's reputation and the company's reputation mediates the relationship between engagement in CSR activities and financial performance. Originality Value: This study contributes to the literature in the following ways. First, our research advances the understanding of the link between corporate social responsibility and financial performance by responding to the requests of several researchers to study the mechanisms of mediation between these two concepts given the scarcity relative to currently available research. So we include the most important predicted advantage of CSR, namely reputation, by developing and testing a more complex relationship. Secondly, these relationships have been investigated using an international sample drawn from a large number of countries with a high reputation. Using Judy and Kenny's method, we have confirmed that the company's reputation can play the role of a mediating variable on the relationship between CSR's commitment to operations and the financial performance of the company. More specifically, the more the company is engaged in the activities of CSR, the more it can have a good reputation, more than it has a good financial performance.

Keywords: corporate social responsibility, company's reputation, financial performance, mediating variable

Procedia PDF Downloads 175
8843 The Task-Centered Instructional Strategy to Prepare Teachers for Integrating Robotics Activities in Science Education

Authors: Doaa Saad, Igor Verner, Rinat B. Rosenberg-Kima

Abstract:

This case study demonstrates how the Task-Centered Instructional Strategy can be used to develop robotics competencies in middle-school science teachers without programming knowledge, thereby reducing their anxiety about robotics. Sixteen middle school science teachers participated in a teachers’ professional development program. The strategy combines the progression of real-world tasks with explicit instruction that serves as the backbone of instruction. The designed progression includes three tasks that integrate building and programming robots, pedagogy, and science knowledge, with an increasing level of complexity and decreasing level of support. We used EV3 LEGO kits and programming blocks, a new technology for most of the participating teachers. Pre-post questionnaires were used to examine teachers’ anxiety in performing robotics tasks before the program began and after the program ended. In addition, post-program questionnaires were used to obtain teachers’ feedback on the program’s overall quality. The case study results showed that teachers were less anxious about performing robotics tasks after the program and were highly satisfied with the professional development program. Overall, our research findings indicate a positive effect of the Task-Centered Instructional Strategy for preparing in-service science teachers to integrate robotics activities into their science classes.

Keywords: competencies, educational robotics, task-centered instructional strategy, teachers’ professional development

Procedia PDF Downloads 91
8842 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadiractha Indica) Leaf Extract and Investigate Its Antibacterial Activities

Authors: Elmineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have attracted huge attention due to catalytic, optical, photonic, and antibacterial activity. Zinc oxide nanoparticles were successfully synthesized via a fast, non-toxic, cost-effective, and eco-friendly method by biologically reducing Zn(NO3)2.6H2O solution with Neem (Azadirachta indica) leaf extract under optimum conditions (pH = 9). The presence of active flavonoids, phenolic groups, alkaloids, terpenoids, and tannins, which were in the biomass of the Neem leaf extract before and after reduction, was identified using qualitative screening methods (observing the color changes) and FT-IR Spectroscopy. The formation of ZnO NPs was visually indicated by the color changes from colorless to light yellow color. Biosynthesized nanoparticles were also characterized by UV-visible, FT-IR, and XRD spectroscopies. The reduction process was simple and convenient to handle and was monitored by UV-visible spectroscopy that showed surface plasmon resonance (SPR) of the ZnO NPs at 321 nm. This result clearly revealed the formation of ZnO NPs. X-ray diffraction was used to investigate the crystal structure. The average particle size of ZnO powder and around 20 nm using the line width of the plane, and the refraction peak using Scherrer’s equation. The synthesized zinc oxide nanoparticles were evaluated for antimicrobial activities against Gram-positive and Gram-negative bacteria. Zinc nanoparticles exhibited the maximum zone of inhibition against Escherichia coli (15 mm), while the least activity was seen against Staphylococcus aureus.

Keywords: antimicrobial activity, azadirachta indica, green synthesis, ZnO NPs

Procedia PDF Downloads 119
8841 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment

Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman

Abstract:

Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.

Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands

Procedia PDF Downloads 70
8840 Experimental Architectural Pedagogy: Discipline Space and Its Role in the Modern Teaching Identity

Authors: Matthew Armitt

Abstract:

The revolutionary school of architectural teaching – VKhUTEAMAS (1923-1926) was a new approach for a new society bringing architectural education to the masses and masses to the growing industrial production. The school's pedagogical contribution of the 1920s made it an important school of the modernist movement, engaging pedagogy as a mode of experimentation. The teachers and students saw design education not just as a process of knowledge transfer but as a vehicle for design innovation developing an approach without precedent. This process of teaching and learning served as a vehicle for venturing into the unknown through a discipline of architectural teaching called “Space” developed by the Soviet architect Nikolai Ladovskii (1881-1941). The creation of “Space” was paramount not only for its innovative pedagogy but also as an experimental laboratory for developing new architectural language. This paper discusses whether the historical teaching of “Space” can function in the construction of the modern teaching identity today to promote value, richness, quality, and diversity inherent in architectural design education. The history of “Space” teaching remains unknown within academic circles and separate from the current architectural teaching debate. Using VKhUTEMAS and the teaching of “Space” as a pedagogical lens and drawing upon research carried out in the Russian Federation, America, Canada, Germany, and the UK, this paper discusses how historically different models of teaching and learning can intersect through examining historical based educational research by exploring different design studio initiatives; pedagogical methodologies; teaching and learning theories and problem-based projects. There are strong arguments and desire for pedagogical change and this paper will promote new historical and educational research to widen the current academic debate by exposing new approaches to architectural teaching today.

Keywords: VKhUTEMAS, discipline space, modernist pedagogy, teaching identity

Procedia PDF Downloads 130
8839 Role of English Language Teachers in Fostering the Culture of Peace in ELT Contexts: A Literature Review

Authors: Maliheh Rezaei

Abstract:

As demand for learning English as the global language remains high, scholars are increasingly encouraged to explore the potential of this medium for creating hegemony and positive changes in human communities. This makes English Language teachers the potential agents of positive change who play a major role in fostering the culture of peace in their classes. The purpose of this literature review was thus evaluating the implementation of peace pedagogies by English language teachers. More specifically, it addressed a) the role and characteristics of English language teachers as peace agents and b) the pedagogies that they used to construct the culture of peace. Literature review was used, and several inclusion criteria were applied. Only papers published in English, which contained the keywords of English language teaching (ELT) and other related terms and acronyms such as teaching English to speakers of other languages, and teaching English as a second/foreign language as well as peace, peace education, and similar derivatives such ‘peacebuilding’ in their title and/or abstract were included in this review. Moreover, only papers that dealt with the actual implementation of peace education theories were investigated. Findings highlighted that most English language teachers relied on pedagogies adopted from social justice, global citizenship, and positive psychology. They specifically aimed to foster positive human traits such as resilience, empathy, and reflection that were also believed to play an important role in peacebuilding efforts. Nevertheless, the role of English language teachers in educating for peace was found to be peripheral. The main challenge to incorporate the tenets of peace education was the shortage of English language teachers who were skilled and qualified enough to incorporate and promote the culture of peace in their classes. This literature review presents the body of research that has linked peace education to ELT; therefore, it informs language teachers about the potential roles they have in creating a peaceful and sustainable future. It also presents them with more effective pedagogies and practices to successfully integrate peace-related activities in their classes.

Keywords: English language teachers, English language teaching, culture of peace, peace pedagogies

Procedia PDF Downloads 185
8838 Effects of Fermentation Techniques on the Quality of Cocoa Beans

Authors: Monday O. Ale, Adebukola A. Akintade, Olasunbo O. Orungbemi

Abstract:

Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers.

Keywords: fermentation, effects, fermentation materials, period, quality

Procedia PDF Downloads 212
8837 A Framework for Blockchain Vulnerability Detection and Cybersecurity Education

Authors: Hongmei Chi

Abstract:

The Blockchain has become a necessity for many different societal industries and ordinary lives including cryptocurrency technology, supply chain, health care, public safety, education, etc. Therefore, training our future blockchain developers to know blockchain programming vulnerability and I.T. students' cyber security is in high demand. In this work, we propose a framework including learning modules and hands-on labs to guide future I.T. professionals towards developing secure blockchain programming habits and mitigating source code vulnerabilities at the early stages of the software development lifecycle following the concept of Secure Software Development Life Cycle (SSDLC). In this research, our goal is to make blockchain programmers and I.T. students aware of the vulnerabilities of blockchains. In summary, we develop a framework that will (1) improve students' skills and awareness of blockchain source code vulnerabilities, detection tools, and mitigation techniques (2) integrate concepts of blockchain vulnerabilities for IT students, (3) improve future IT workers’ ability to master the concepts of blockchain attacks.

Keywords: software vulnerability detection, hands-on lab, static analysis tools, vulnerabilities, blockchain, active learning

Procedia PDF Downloads 104
8836 A Review of Strategies for Enhancing the Quality of Engineering Education in Zimbabwean Universities

Authors: Bhekisisa Nyoni, Nomakhosi Ndiweni, Annatoria Chinyama

Abstract:

The aim of this paper was to explore ways to enhance the quality of higher education with a bias towards engineering education in Zimbabwe universities. A search through relevant literature was conducted looking at both international and local scholars. It also involved reviewing the Dakar Framework for Action and Incheon Declaration and Framework for Action plans for education for sustainable development. Goals were set for 2030 as a standard for quality to be adopted by all countries in improving access as well as the quality of education from early childhood and through to adult learning. Despite the definition of quality being difficult to express due to diverse expectations from different stakeholders, the view of quality adopted is based on the World Education Forum’s propositions on quality education going beyond the classroom experience. It considers factors such as learning environment, governance and management, and teacher caliber. The study concludes by illustrating that the quality of engineering education in Zimbabwe has come a long way. It has made strides in increasing access and variety to education though at the expense of quality in its totality. To improve the quality of engineering education, programs have been introduced to promote the professionalism of lecturers, such as industrial secondment and professional development courses.

Keywords: engineering education, quality of education, professional development, industrial secondment

Procedia PDF Downloads 193
8835 Virtual Learning during the Period of COVID-19 Pandemic at a Saudi University

Authors: Ahmed Mohammed Omer Alghamdi

Abstract:

Since the COVID-19 pandemic started, a rapid, unexpected transition from face-to-face to virtual classroom (VC) teaching has involved several challenges and obstacles. However, there are also opportunities and thoughts that need to be examined and discussed. In addition, the entire world is witnessing that the teaching system and, more particularly, higher education institutes have been interrupted. To maintain the learning and teaching practices as usual, countries were forced to transition from traditional to virtual classes using various technology-based devices. In this regard, the Kingdom of Saudi Arabia (KSA) is no exception. Focusing on how the current situation has forced many higher education institutes to change to virtual classes may possibly provide a clear insight into adopted practices and implications. The main purpose of this study, therefore, was to investigate how both Saudi English as a foreign language (EFL) teachers and students perceived the implementation of virtual classes as a key factor for useful language teaching and learning process during the COVID-19 pandemic period at a Saudi university. The impetus for the research was, therefore, the need to find ways of identifying the deficiencies in this application and to suggest possible solutions that might rectify those deficiencies. This study seeks to answer the following overarching research question: “How do Saudi EFL instructors and students perceive the use of virtual classes during the COVID-19 pandemic period in their language teaching and learning context?” The following sub-questions are also used to guide the design of the study to answer the main research question: (1) To what extent are virtual classes important intra-pandemic from Saudi EFL instructors’ and students’ perspectives? (2) How effective are virtual classes for fostering English language students’ achievement? (3) What are the challenges and obstacles that instructors and students may face during the implementation of virtual teaching? A mixed method approach was employed in this study; the questionnaire data collection represented the quantitative method approach for this study, whereas the transcripts of recorded interviews represented the qualitative method approach. The participants included EFL teachers (N = 4) and male and female EFL students (N = 36). Based on the findings of this study, various aspects from teachers' and students’ perspectives were examined to determine the use of the virtual classroom applications in terms of fulfilling the students’ English language learning needs. The major findings of the study revealed that the virtual classroom applications during the current pandemic situation encountered three major challenges, among which the existence of the following essential aspects, namely lack of technology and an internet connection, having a large number of students in a virtual classroom and lack of students’ and teachers’ interactions during the virtual classroom applications. Finally, the findings indicated that although Saudi EFL students and teachers view the virtual classrooms in a positive light during the pandemic period, they reported that for long and post-pandemic period, they preferred the traditional face-to-face teaching procedure.

Keywords: virtual classes, English as a foreign language, COVID-19, Internet, pandemic

Procedia PDF Downloads 88
8834 Synthesis, Characterization and Antibacterial Activity of Metalloporphyrins: Role of Central Metal Ion

Authors: Belete B. Beyene, Ayenew M. Mihirteu, Misganaw T. Ayana, Amogne W. Yibeltal

Abstract:

Modification of synthetic porphyrins is one of the promising strategies in an attempt to get molecules with desired properties and applications. Here in, we report synthesis, photophysical characterization and antibacterial activity of 5, 10, 15, 20-tetrakis-(4- methoxy carbonyl phenyl) porphyrin M(II); where M = Co, Fe, Ni, Zn. Metallation of the ligand was confirmed by using UV–Vis spectroscopy and ESI-Ms measurement, in which the number of Q bands in absorption spectra of the ligand decreased from four to one or two as a result of metal insertion to the porphyrin core. The antibacterial activity study of the complexes toward two Gram-positive (Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (s. pyogenes)) and two Gram-negative (Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)) bacteria by disc diffusion method showed a promising inhibitory activity. The complexes exhibited highest activities at highest concentration and were better than the activity of free base ligand, the salts, and blank solution. This could be explained on the basis of Overton's concept of cell permeability and Tweed's Chelation theory. An increased lipo-solubility enhances the penetration of the complexes into the lipid membrane and interferes with the normal activities of the bacteria. Our study, therefore, showed that the growth inhibitory effect of these metalloporphyrins is generally in order of ZnTPPCOOMe > NiTPPCOOMe > CoTPPCOOMe> FeTPPCOOMe, which may be attributed to the better lipophilicity and binding of the complex with the cellular components.

Keywords: porphyrins, metalloporphyrins, spectral property, antibacterial activity, synthesis

Procedia PDF Downloads 79
8833 Developing an Online Library for Faster Retrieval of Mold Base and Standard Parts of Injection Molding

Authors: Alan C. Lin, Ricky N. Joevan

Abstract:

This paper focuses on developing a system to transfer mold base plates and standard parts faster during the stage of injection mold design. This system not only provides a way to compare the file version, but also it utilizes Siemens NX 10 to isolate the updated information into a single executable file (.dll), and then, the file can be transferred without the need of transferring the whole file. By this way, the system can help the user to download only necessary mold base plates and standard parts, and those parts downloaded are only the updated portions.

Keywords: CAD, injection molding, mold base, data retrieval

Procedia PDF Downloads 304
8832 Domain Adaptive Dense Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then, the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. We also explore contrastive learning as a method for training domain-adapted dense retrievers and show that it leads to strong performance in various retrieval settings. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, contrastive learning, unsupervised training

Procedia PDF Downloads 114
8831 An Anthropometric and Postural Risk Assessment of Students in Computer Laboratories of a State University

Authors: Sarah Louise Cruz, Jemille Venturina

Abstract:

Ergonomics considers the capabilities and limitations of a person as they interact with tools, equipment, facilities and tasks in their work environment. Workplace is one example of physical work environment, be it a workbench or a desk. In school laboratories, sitting is the most common working posture of the students. Students maintain static sitting posture as they perform different computer-aided activities. The College of Engineering and College of Information and Communication Technology of a State University consist of twenty-two computer laboratories. Normally, students aren’t usually aware of the importance of sustaining proper sitting posture while doing their long hour computer laboratory activities. The study evaluates the perceived discomfort and working postures of students as they are exposed on current workplace design of computer laboratories. The current study utilizes Rapid Upper Limb Assessment (RULA), Body Discomfort Chart using Borg’s CR-10 Scale Rating and Quick Exposure Checklist in order to assess the posture and the current working condition. The result of the study may possibly minimize the body discomfort experienced by the students. The researchers redesign the individual workstations which includes working desk, sitting stool and other workplace design components. Also, the economic variability of each alternative was considered given that the study focused on improvement of facilities of a state university.

Keywords: computer workstation, ergonomics, posture, students, workplace

Procedia PDF Downloads 316
8830 Teachers’ Personal and Professional Characteristics: How They Relate to Teacher-Student Relationships and Students’ Behavior

Authors: Maria Poulou

Abstract:

The study investigated how teachers’ self-rated Emotional Intelligence (EI), competence in implementing Social and Emotional Learning (SEL) skills and teaching efficacy relate to teacher-student relationships and students’ emotional and behavioral difficulties. Participants were 98 elementary teachers from public schools in central Greece. They completed the Self-Rated Emotional Intelligence Scale (SREIS), the Teacher SEL Beliefs Scale, the Teachers’ Sense of Efficacy Scale (TSES), the Student-Teacher Relationships Scale-Short Form (STRS-SF) and the Strengths and Difficulties Questionnaire (SDQ) for 617 of their students, aged 6-11 years old. Structural equation modeling was used to examine an exploratory model of the variables. It was demonstrated that teachers’ emotional intelligence, SEL beliefs and teaching efficacy were significantly related to teacher-student relationships, but they were not related to students’ emotional and behavioral difficulties. Rather, teachers’ perceptions of teacher-students relationships were significantly related to these difficulties. These findings and their implications for research and practice are discussed.

Keywords: emotional intelligence, social and emotional learning, teacher-student relationships, teaching efficacy

Procedia PDF Downloads 443
8829 Developing Pavement Maintenance Management System (PMMS) for Small Cities, Aswan City Case Study

Authors: Ayman Othman, Tallat Ali

Abstract:

A pavement maintenance management system (PMMS) was developed for the city of Aswan as a model of a small city to provide the road maintenance department in Aswan city with the capabilities for comprehensive planning of the maintenance activities needed to put the internal pavement network into desired physical condition in view of maintenance budget constraints. The developed system consists of three main stages. First is the inventory & condition survey stage where the internal pavement network of Aswan city was inventoried and its actual conditions were rated in segments of 100 meters length. Second is the analysis stage where pavement condition index (PCI) was calculated and the most appropriate maintenance actions were assigned for each segment. The total maintenance budget was also estimated and a parameter based ranking criteria were developed to prioritize maintenance activities when the available maintenance budget is not sufficient. Finally comes the packaging stage where approved maintenance budget is packed into maintenance projects for field implementation. System results indicate that, the system output maintenance budget is very reasonable and the system output maintenance programs agree to a great extent with the actual maintenance needs of the network. Condition survey of Aswan city road network showed that roughness is the most dominate distress. In general, the road network can be considered in a fairly reasonable condition, however, the developed PMMS needs to be officially adapted to maintain the road network in a desirable condition and to prevent further deterioration.

Keywords: pavement, maintenance, management, system, distresses, survey, ranking

Procedia PDF Downloads 252
8828 The Missing Link in Holistic Health Care: Value-Based Medicine in Entrustable Professional Activities for Doctor-Patient Relationship

Authors: Ling-Lang Huang

Abstract:

Background: The holistic health care should ideally cover physical, mental, spiritual, and social aspects of a patient. With very constrained time in current clinical practice system, medical decisions often tip the balance in favor of evidence-based medicine (EBM) in comparison to patient's personal values. Even in the era of competence-based medical education (CBME), when scrutinizing the items of entrustable professional activities (EPAs), we found that EPAs of establishing doctor-patient relationship remained incomplete or even missing. This phenomenon prompted us to raise this project aiming at advocating value-based medicine (VBM), which emphasizes the importance of patient’s values in medical decisions. A true and effective doctor-patient communication and relationship should be a well-balanced harmony of EBM and VBM. By constructing VBM into current EPAs, we can further promote genuine shared decision making (SDM) and fix the missing link in holistic health care. Methods: In this project, we are going to find out EPA elements crucial for establishing an ideal doctor-patient relationship through three distinct pairs of doctor-patient relationships: patients with pulmonary arterial hypertension (relatively young but with grave disease), patients undergoing surgery (facing critical medical decisions), and patients with terminal diseases (facing forthcoming death). We’ll search for important EPA elements through the following steps: 1. Narrative approach to delineate patients’ values among 2. distinct groups. 3.Hermeneutics-based interview: semi-structured interview will be conducted for both patients and physicians, followed by qualitative analysis of collected information by compiling, disassembling, reassembling, interpreting, and concluding. 4. Preliminarily construct those VBM elements into EPAs for doctor-patient relationships in 3 groups. Expected Outcomes: The results of this project are going to give us invaluable information regarding the impact of patients’ values, while facing different medical situations, on the final medical decision. The competence of well-blending and -balanced both values from patients and evidence from clinical sciences is the missing link in holistic health care and should be established in future EPAs to enhance an effective SDM.

Keywords: value-based medicine, shared decision making, entrustable professional activities, holistic health care

Procedia PDF Downloads 125
8827 Understanding the Influence of Social Media on Individual’s Quality of Life Perceptions

Authors: Biljana Marković

Abstract:

Social networks are an integral part of our everyday lives, becoming an indispensable medium for communication in personal and business environments. New forms and ways of communication change the general mindset and significantly affect the quality of life of individuals. Quality of life is perceived as an abstract term, but often people are not aware that they directly affect the quality of their own lives, making minor but significant everyday choices and decisions. Quality of life can be defined broadly, but in the widest sense, it involves a subjective sense of satisfaction with one's life. Scientific knowledge about the impact of social networks on self-assessment of the quality of life of individuals is only just beginning to be researched. Available research indicates potential benefits as well as a number of disadvantages. In the context of the previous claims, the focus of the study conducted by the authors of this paper focuses on analyzing the impact of social networks on individual’s self-assessment of quality of life and the correlation between time spent on social networks, and the choice of content that individuals choose to share to present themselves. Moreover, it is aimed to explain how much and in what ways they critically judge the lives of others online. The research aspires to show the positive as well as negative aspects that social networks, primarily Facebook and Instagram, have on creating a picture of individuals and how they compare themselves with others. The topic of this paper is based on quantitative research conducted on a representative sample. An analysis of the results of the survey conducted online has elaborated a hypothesis which claims that content shared by individuals on social networks influences the image they create about themselves. A comparative analysis of the results obtained with the results of similar research has led to the conclusion about the synergistic influence of social networks on the feeling of the quality of life of respondents. The originality of this work is reflected in the approach of conducting research by examining attitudes about an individual's life satisfaction, the way he or she creates a picture of himself/herself through social networks, the extent to which he/she compares herself/himself with others, and what social media applications he/she uses. At the cognitive level, scientific contributions were made through the development of information concepts on quality of life, and at the methodological level through the development of an original methodology for qualitative alignment of respondents' attitudes using statistical analysis. Furthermore, at the practical level through the application of concepts in assessing the creation of self-image and the image of others through social networks.

Keywords: quality of life, social media, self image, influence of social media

Procedia PDF Downloads 131
8826 Exploring Academic Writing Challenges of First Year English as an Additional Language Students at an ODeL Institution in South Africa

Authors: Tumelo Jaquiline Ntsopi

Abstract:

This study explored the academic writing challenges of first-year students who use English as an Additional Language (EAL) registered in the EAW101 module at an ODeL institution. Research shows that academic writing is a challenge for EAL teaching and learning contexts across the globe in higher education institutions (HEIs). Academic writing is an important aspect of academic literacy in any institution of higher learning, more so in an ODeL institution. This has probed research that shows that academic writing is and continues to pose challenges for EAL teaching and learning contexts in higher education institutions. This study stems from the researcher’s experience in teaching academic writing to first-year students in the EAW101 module. The motivation for this study emerged from the fact that EAW101 is a writing module that has a high number of students in the Department of English Studies with an average of between 50-80 percent pass rate. These statistics elaborate on the argument that most students registered in this module struggle with academic writing, and they need intervention to assist and support them in achieving competence in the module. This study is underpinned by Community of Inquiry (CoI) framework and Transactional distance theory. This study adopted a qualitative research methodology and utilised a case study approach as a research design. Furthermore, the study gathered data from first year students and the EAW101 module’s student support initiatives. To collect data, focus group discussions, structured open-ended evaluation questions, and an observation schedule were used to gather data. The study is vital towards exploring academic writing challenges that first-year students in EAW101 encounter so that lecturers in the module may consider re-evaluating their methods of teaching to improve EAL students’ academic writing skills. This study may help lecturers towards enhancing academic writing in a ODeL context by assisting first year students through using student support interventions.

Keywords: academic writing, academic writing challenge, ODeL, EAL

Procedia PDF Downloads 110