Search results for: inorganic perovskite solar cell materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11533

Search results for: inorganic perovskite solar cell materials

6043 A Method of Manufacturing Low Cost Utility Robots and Vehicles

Authors: Gregory E. Ofili

Abstract:

Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools.

Keywords: automation, robotics, utility robot, small-hold farm, robot operating system

Procedia PDF Downloads 71
6042 An Integrated Approach for Risk Management of Transportation of HAZMAT: Use of Quality Function Deployment and Risk Assessment

Authors: Guldana Zhigerbayeva, Ming Yang

Abstract:

Transportation of hazardous materials (HAZMAT) is inevitable in the process industries. The statistics show a significant number of accidents has occurred during the transportation of HAZMAT. This makes risk management of HAZMAT transportation an important topic. The tree-based methods including fault-trees, event-trees and cause-consequence analysis, and Bayesian network, have been applied to risk management of HAZMAT transportation. However, there is limited work on the development of a systematic approach. The existing approaches fail to build up the linkages between the regulatory requirements and the safety measures development. The analysis of historical data from the past accidents’ report databases would limit our focus on the specific incidents and their specific causes. Thus, we may overlook some essential elements in risk management, including regulatory compliance, field expert opinions, and suggestions. A systematic approach is needed to translate the regulatory requirements of HAZMAT transportation into specified safety measures (both technical and administrative) to support the risk management process. This study aims to first adapt the House of Quality (HoQ) to House of Safety (HoS) and proposes a new approach- Safety Function Deployment (SFD). The results of SFD will be used in a multi-criteria decision-support system to develop find an optimal route for HazMats transportation. The proposed approach will be demonstrated through a hypothetical transportation case in Kazakhstan.

Keywords: hazardous materials, risk assessment, risk management, quality function deployment

Procedia PDF Downloads 142
6041 The Effect of Endurance Training on Serum VCAM-1 in Overweight Women

Authors: Soheily Shahram, Banaeifar Abdolali, Yadegari Elham

Abstract:

Vascular adhesion molecules-1 (VCAM-1) is one of the factors associating obesity and inflammatory lesions like atherosclerosis. The purpose of the present study was to investigate the effects of endurance training on serum concentration of VCAM-1 in overweight women. Thirty female overweight (BMI ≥ 25) voluntarily participated in our study. Subjects were randomly assigned to one of two groups: Endurance training or control group. Training group exercised for 12 weeks, three sessions a week with definite intensity and distance. Pre and post 12 weeks of endurance training blood samples were taken (5cc) in fasting state from all subjects. Data was analyzed via independent t test (p≤0.05). The results showed that endurance training had significant effect on VCAM, body weight, fat percentage, BMI and maximum oxygen consumption (p ≤ 0.05). This study demonstrates that endurance training caused a decrease in the adhesion molecules level and decreasing inflammation, endurance training may perhaps play an effective role in atherosclerosis.

Keywords: endurance training, vascular cell adhesion molecules, overweight women, serum concentration

Procedia PDF Downloads 413
6040 Aerofloral Studies and Allergenicity Potentials of Dominant Atmospheric Pollen Types at Some Locations in Northwestern Nigeria

Authors: Olugbenga S. Alebiosu, Olusola H. Adekanmbi, Oluwatoyin T. Ogundipe

Abstract:

Pollen and spores have been identified as major airborne bio-particles inducing respiratory disorders such as asthma, allergic rhinitis and atopic dermatitis among hypersensitive individuals. An aeropalynological study was conducted within a one year sampling period with a view to investigating the monthly depositional rate of atmospheric pollen and spores; influence of the immediate vegetation on airborne pollen distribution; allergenic potentials of dominant atmospheric pollen types at selected study locations in Bauchi and Taraba states, Northwestern Nigeria. A tauber-like pollen trap was employed in aerosampling with the sampler positioned at a height of 5 feet above the ground, followed by a monthly collection of the recipient solution for the sampling period. The collected samples were subjected to acetolysis treatment, examined microscopically with the identification of pollen grains and spores using reference materials and published photomicrographs. Plants within the surrounding vegetation were enumerated. Crude protein contents extracted from pollen types found to be commonly dominant at both study locations; Senna siamea, Terminalia cattapa, Panicum maximum and Zea mays were used to sensitize Musmusculus. Histopathological studies of bronchi and lung sections from certain dead M.musculus in the test groups was conducted. Blood samples were collected from the pre-orbital vein of M.musculus and processed for serological and haematological (differential and total white blood cell counts) studies. ELISA was used in determining the levels of serological parameters: IgE and cytokines (TNF-, IL-5, and IL-13). Statistical significance was observed in the correlation between the levels of serological and haematological parameters elicited by each test group, differences between the levels of serological and haematological parameters elicited by each test group and those of the control, as well as at varying sensitization periods. The results from this study revealed dominant airborne pollen types across the study locations; Syzygiumguineense, Tridaxprocumbens, Elaeisguineensis, Mimosa sp., Borreria sp., Terminalia sp., Senna sp. and Poaceae. Nephrolepis sp., Pteris sp. and a trilete fern also produced spores. This study also revealed that some of the airborne pollen types were produced by local plants at the study locations. Bronchi sections of M.musculus after first and second sensitizations, as well as lung section after first sensitization with Senna siamea, showed areas of necrosis. Statistical significance was recorded in the correlation between the levels of some serological and haematological parameters produced by each test group and those of the control, as well as at certain sensitization periods. The study revealed some candidate pollen allergens at the study locations allergy sufferers and also established a complexity of interaction between immune cells, IgE and cytokines at varied periods of mice sensitization and forming a paradigm of human immune response to different pollen allergens. However, it is expedient that further studies should be conducted on these candidate pollen allergens for their allergenicity potential in humans within their immediate environment.

Keywords: airborne, hypersensitive, mus musculus, pollen allergens, respiratory, tauber-like

Procedia PDF Downloads 134
6039 Exploring Spin Reorientation Transition and Berry Curvature Driven Anomalous Hall Effect in Quasi-2D vdW Ferromagnet Fe4GeTe2

Authors: Satyabrata Bera, Mintu Mondal

Abstract:

Two-dimensional (2D) ferromagnetic materials have garnered significant attention due to their potential to host intriguing scientific phenomena such as the anomalous Hall effect, anomalous Nernst effect, and high transport spin polarization. This study focuses on the investigation of air-stable van der Waals(vdW) ferromagnets, FeGeTe₂ (FₙGT with n = 3, 4, and 5). Particular emphasis is placed on the Fe4GeTe2 (F4GT) compound, which exhibits a complex and fascinating magnetic behavior characterized by two distinct transitions: (i) paramagnetic (PM) to ferromagnetic (FM) around T C ∼ 270 K, and (ii) another spins reorientation transition (SRT) at T SRT ∼ 100 K . Scaling analysis of magnetocaloric effect confirms the second-order character of the ferromagnetic transition, while the same analysis at T SRT suggests that SRT is first-order phase transition. Moreover, the F4GT exhibits a large anomalous Hall conductivity (AHC), ∼ 490 S/cm at 2 K . The near-quadratic behavior of the anomalous Hall resistivity with the longitudinal resistivity suggests that a dominant AHC contribution arises from an intrinsic Berry curvature (BC) mechanism. Electronic structure calculations reveal a significant BC resulting from SOC-induced gapped nodal lines around the Fermi level, thereby giving rise to large AHC. Additionally, we reported exceptionally large anomalous Hall angle (≃ 10.6%) and Hall factor (≃ 0.22 V −1 ) values, the largest observed within this vdW family. The findings presented here, provide valuable insights into the fascinating magnetic and transport properties of 2D ferromagnetic materials, in particular, FₙGT family.

Keywords: 2D vdW ferromagnet, spin reorientation transition, anomalous hall effect, berry curvature

Procedia PDF Downloads 86
6038 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests

Authors: R. S. Giraddi, C. M. Poleshi

Abstract:

Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture.  Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control.  The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.

Keywords: humic acid, azadirachtin, vermicompost, insect-pest

Procedia PDF Downloads 277
6037 Assessment of Social Vulnerability of Urban Population to Floods – a Case Study of Mumbai

Authors: Sherly M. A., Varsha Vijaykumar, Subhankar Karmakar, Terence Chan, Christian Rau

Abstract:

This study aims at proposing an indicator-based framework for assessing social vulnerability of any coastal megacity to floods. The final set of indicators of social vulnerability are chosen from a set of feasible and available indicators which are prepared using a Geographic Information System (GIS) framework on a smaller scale considering 1-km grid cell to provide an insight into the spatial variability of vulnerability. The optimal weight for each individual indicator is assigned using data envelopment analysis (DEA) as it avoids subjective weights and improves the confidence on the results obtained. In order to de-correlate and reduce the dimension of multivariate data, principal component analysis (PCA) has been applied. The proposed methodology is demonstrated on twenty four wards of Mumbai under the jurisdiction of Municipal Corporation of Greater Mumbai (MCGM). This framework of vulnerability assessment is not limited to the present study area, and may be applied to other urban damage centers.

Keywords: urban floods, vulnerability, data envelopment analysis, principal component analysis

Procedia PDF Downloads 361
6036 Harmonic Distortion Analysis in Low Voltage Grid with Grid-Connected Photovoltaic

Authors: Hedi Dghim, Ahmed El-Naggar, Istvan Erlich

Abstract:

Power electronic converters are being introduced in low voltage (LV) grids at an increasingly rapid rate due to the growing adoption of power electronic-based home appliances in residential grid. Photovoltaic (PV) systems are considered one of the potential installed renewable energy sources in distribution power systems. This trend has led to high distortion in the supply voltage which consequently produces harmonic currents in the network and causes an inherent voltage unbalance. In order to investigate the effect of harmonic distortions, a case study of a typical LV grid configuration with high penetration of 3-phase and 1-phase rooftop mounted PV from southern Germany was first considered. Electromagnetic transient (EMT) simulations were then carried out under the MATLAB/Simulink environment which contain detailed models for power electronic-based loads, ohmic-based loads as well as 1- and 3-phase PV. Note that, the switching patterns of the power electronic circuits were considered in this study. Measurements were eventually performed to analyze the distortion levels when PV operating under different solar irradiance. The characteristics of the load-side harmonic impedances were analyzed, and their harmonic contributions were evaluated for different distortion levels. The effect of the high penetration of PV on the harmonic distortion of both positive and negative sequences was also investigated. The simulation results are presented based on case studies. The current distortion levels are in agreement with relevant standards, otherwise the Total Harmonic Distortion (THD) increases under low PV power generation due to its inverse relation with the fundamental current.

Keywords: harmonic distortion analysis, power quality, PV systems, residential distribution system

Procedia PDF Downloads 268
6035 Component Test of Martensitic/Ferritic Steels and Nickel-Based Alloys and Their Welded Joints under Creep and Thermo-Mechanical Fatigue Loading

Authors: Daniel Osorio, Andreas Klenk, Stefan Weihe, Andreas Kopp, Frank Rödiger

Abstract:

Future power plants currently face high design requirements due to worsening climate change and environmental restrictions, which demand high operational flexibility, superior thermal performance, minimal emissions, and higher cyclic capability. The aim of the paper is, therefore, to investigate the creep and thermo-mechanical material behavior of improved materials experimentally and welded joints at component scale under near-to-service operating conditions, which are promising for application in highly efficient and flexible future power plants. These materials promise an increase in flexibility and a reduction in manufacturing costs by providing enhanced creep strength and, therefore, the possibility for wall thickness reduction. At the temperature range between 550°C and 625°C, the investigation focuses on the in-phase thermo-mechanical fatigue behavior of dissimilar welded joints of conventional materials (ferritic and martensitic material T24 and T92) to nickel-based alloys (A617B and HR6W) by means of membrane test panels. The temperature and external load are varied in phase during the test, while the internal pressure remains constant. At the temperature range between 650°C and 750°C, it focuses on the creep behavior under multiaxial stress loading of similar and dissimilar welded joints of high temperature resistant nickel-based alloys (A740H, A617B, and HR6W) by means of a thick-walled-component test. In this case, the temperature, the external axial load, and the internal pressure remain constant during testing. Numerical simulations are used for the estimation of the axial component load in order to induce a meaningful damage evolution without causing a total component failure. Metallographic investigations after testing will provide support for understanding the damage mechanism and the influence of the thermo-mechanical load and multiaxiality on the microstructure change and on the creep and TMF- strength.

Keywords: creep, creep-fatigue, component behaviour, weld joints, high temperature material behaviour, nickel-alloys, high temperature resistant steels

Procedia PDF Downloads 119
6034 Critical Behaviour and Filed Dependence of Magnetic Entropy Change in K Doped Manganites Pr₀.₈Na₀.₂−ₓKₓMnO₃ (X = .10 And .15)

Authors: H. Ben Khlifa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou

Abstract:

The orthorhombic Pr₀.₈Na₀.₂−ₓKₓMnO₃ (x = 0.10 and 0.15) manganites are prepared by using the solid-state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC ~ 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC ~ 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which shows power-law dependence ΔSmax ≈ a(μ0 H)n at the transition temperature. The values of n obey the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follows a master curve behavior. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples.

Keywords: manganites, critical exponents, magnetization, magnetocaloric, master curve

Procedia PDF Downloads 164
6033 Photoluminescence of Barium and Lithium Silicate Glasses and Glass Ceramics Doped with Rare Earth Ions

Authors: Augustas Vaitkevicius, Mikhail Korjik, Eugene Tretyak, Ekaterina Trusova, Gintautas Tamulaitis

Abstract:

Silicate materials are widely used as luminescent materials in amorphous and crystalline phase. Lithium silicate glass is popular for making neutron sensitive scintillation glasses. Cerium-doped single crystalline silicates of rare earth elements and yttrium have been demonstrated to be good scintillation materials. Due to their high thermal and photo-stability, silicate glass ceramics are supposed to be suitable materials for producing light converters for high power white light emitting diodes. In this report, the influence of glass composition and crystallization on photoluminescence (PL) of different silicate glasses was studied. Barium (BaO-2SiO₂) and lithium (Li₂O-2SiO₂) glasses were under study. Cerium, dysprosium, erbium and europium ions as well as their combinations were used for doping. The influence of crystallization was studied after transforming the doped glasses into glass ceramics by heat treatment in the temperature range of 550-850 degrees Celsius for 1 hour. The study was carried out by comparing the photoluminescence (PL) spectra, spatial distributions of PL parameters and quantum efficiency in the samples under study. The PL spectra and spatial distributions of their parameters were obtained by using confocal PL microscopy. A WITec Alpha300 S confocal microscope coupled with an air cooled CCD camera was used. A CW laser diode emitting at 405 nm was exploited for excitation. The spatial resolution was in sub-micrometer domain in plane and ~1 micrometer perpendicularly to the sample surface. An integrating sphere with a xenon lamp coupled with a monochromator was used to measure the external quantum efficiency. All measurements were performed at room temperature. Chromatic properties of the light emission from the glasses and glass ceramics have been evaluated. We observed that the quantum efficiency of the glass ceramics is higher than that of the corresponding glass. The investigation of spatial distributions of PL parameters revealed that heat treatment of the glasses leads to a decrease in sample homogeneity. In the case of BaO-2SiO₂: Eu, 10 micrometer long needle-like objects are formed, when transforming the glass into glass ceramics. The comparison of PL spectra from within and outside the needle-like structure reveals that the ratio between intensities of PL bands associated with Eu²⁺ and Eu³⁺ ions is larger in the bright needle-like structures. This indicates a higher degree of crystallinity in the needle-like objects. We observed that the spectral positions of the PL bands are the same in the background and the needle-like areas, indicating that heat treatment imposes no significant change to the valence state of the europium ions. The evaluation of chromatic properties confirms applicability of the glasses under study for fabrication of white light sources with high thermal stability. The ability to combine barium and lithium glass matrixes and doping by Eu, Ce, Dy, and Tb enables optimization of chromatic properties.

Keywords: glass ceramics, luminescence, phosphor, silicate

Procedia PDF Downloads 317
6032 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 388
6031 Digital Musical Organology: The Audio Games: The Question of “A-Musicological” Interfaces

Authors: Hervé Zénouda

Abstract:

This article seeks to shed light on an emerging creative field: "Audio games," at the crossroads between video games and computer music. Indeed, many applications, which propose entertaining audio-visual experiences with the objective of musical creation, are available today for different supports (game consoles, computers, cell phones). The originality of this field is the use of the gameplay of video games applied to music composition. Thus, composing music using interfaces but also cognitive logics that we qualify as "a-musicological" seem to us particularly interesting from the perspective of musical digital organology. This field raises questions about the representation of sound and musical structures and develops new instrumental gestures and strategies of musical composition. We will try in this article to define the characteristics of this field by highlighting some historical milestones (abstract cinema, game theory in music, actions, and graphic scores) as well as the novelties brought by digital technologies.

Keywords: audio-games, video games, computer generated music, gameplay, interactivity, synesthesia, sound interfaces, relationships image/sound, audiovisual music

Procedia PDF Downloads 112
6030 Study of the Hydraulic Concrete Physical-Mechanical Properties by Using Admixtures

Authors: Natia Tabatadze

Abstract:

The research aim is to study the physical - mechanical characteristics of structural materials, in particular, hydraulic concrete in the surface active environment and receiving of high strength concrete, low-deformable, resistant to aggressive environment concrete due application of nano technologies. The obtained concrete with additives will by possible to apply in hydraulic structures. We used cement (compressive strength R28=39,42 mPa), sand (0- 5 mm), gravel (5-10 mm, 10-20 mm), admixture CHRYSO® Fuge B 1,5% dosage of cement. CHRYSO® Fuge B renders mortar and concrete highly resistant to capillary action and reduces, or even eliminates infiltration of water under pressure. The fine particles that CHRYSO® Fuge B contains combine with the lime in the cement to form water repellent particles. These obstruct the capillary action within concrete. CHRYSO® Fuge B does not significantly modify the characteristics of the fresh concrete and mortar, nor the compressive strength. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa), as well as the mass water absorption (W=3,37 % of admixture instead of W=1,41 %), volume water absorption (W=1,41 % of admixture instead of W=0,59 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: structural materials, hydraulic concrete, low-deformable, water absorption for mass, water absorption for volume

Procedia PDF Downloads 320
6029 Study of Heat Conduction in Multicore Chips

Authors: K. N. Seetharamu, Naveen Teggi, Kiranakumar Dhavalagi, Narayana Kamath

Abstract:

A method of temperature calculations is developed to study the conditions leading to hot spot occurrence on multicore chips. A physical model which has salient features of multicore chips is incorporated for the analysis. The model consists of active and background cell laid out in a checkered pattern, and this pattern repeats itself in each fine grain active cells. The die has three layers i) body ii) buried oxide layer iii) wiring layer, stacked one above the other with heat source placed at the interface between wiring and buried oxide layer. With this model we propose analytical method to calculate the target hotspot temperature, heat flow to top and bottom layers of the die and thermal resistance components at each granularity level, assuming appropriate values of die dimensions and parameters. Finally we attempt to find an easier method for the calculation of the target hotspot temperature using graph.

Keywords: checkered pattern, granularity level, heat conduction, multicore chips, target hotspot temperature

Procedia PDF Downloads 466
6028 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite

Authors: Muhammad Shahid, Muhammad Mansoor

Abstract:

Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.

Keywords: carbon nanotubes, induction melting, strengthening mechanism, nanocomposite

Procedia PDF Downloads 369
6027 An Approach for Estimating Open Education Resources Textbook Savings: A Case Study

Authors: Anna Ching-Yu Wong

Abstract:

Introduction: Textbooks play a sizable portion of the overall cost of higher education students. It is a board consent that open education resources (OER) reduce the te4xtbook costs and provide students a way to receive high-quality learning materials at little or no cost to them. However, there is less agreement over exactly how much. This study presents an approach for calculating OER savings by using SUNY Canton NON-OER courses (N=233) to estimate the potentially textbook savings for one semester – Fall 2022. The purpose in collecting data is to understand how much potentially saved from using OER materials and to have a record for future further studies. Literature Reviews: In the past years, researchers identified the rising cost of textbooks disproportionately harm students in higher education institutions and how much an average cost of a textbook. For example, Nyamweya (2018) found that on average students save $116.94 per course when OER adopted in place of traditional commercial textbooks by using a simple formula. Student PIRGs (2015) used reports of per-course savings when transforming a course from using a commercial textbook to OER to reach an estimate of $100 average cost savings per course. Allen and Wiley (2016) presented at the 2016 Open Education Conference on multiple cost-savings studies and concluded $100 was reasonable per-course savings estimates. Ruth (2018) calculated an average cost of a textbook was $79.37 per-course. Hilton, et al (2014) conducted a study with seven community colleges across the nation and found the average textbook cost to be $90.61. There is less agreement over exactly how much would be saved by adopting an OER course. This study used SUNY Canton as a case study to create an approach for estimating OER savings. Methodology: Step one: Identify NON-OER courses from UcanWeb Class Schedule. Step two: View textbook lists for the classes (Campus bookstore prices). Step three: Calculate the average textbook prices by averaging the new book and used book prices. Step four: Multiply the average textbook prices with the number of students in the course. Findings: The result of this calculation was straightforward. The average of a traditional textbooks is $132.45. Students potentially saved $1,091,879.94. Conclusion: (1) The result confirms what we have known: Adopting OER in place of traditional textbooks and materials achieves significant savings for students, as well as the parents and taxpayers who support them through grants and loans. (2) The average textbook savings for adopting an OER course is variable depending on the size of the college and as well as the number of enrollment students.

Keywords: textbook savings, open textbooks, textbook costs assessment, open access

Procedia PDF Downloads 75
6026 Defective Autophagy Leads to the Resistance to PP2 in ATG5 Knockout Cells Generated by CRISPR-Cas9 Endonuclease

Authors: Sung-Hee Hwang, Michael Lee

Abstract:

Upregulated Src activity has been implicated in a variety of cancers. Thus, Src family tyrosine kinase (SFK) inhibitors are often effective cancer treatments. Here, we investigate the role of autophagy in ATG5 knockout cell lines generated by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas mediated genome editing. The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA–DNA complementarity to identify target sites for sequence specific double-stranded DNA (dsDNA) cleavage. Interestingly, ATG5 KO cells clearly showed a greater proliferation rate than WT NIH 3T3 cells, implying that autophagy induction is cytotoxic. Also, the clonogenic survival of ATG5 KO cells was greater than WT cells. The MTT assay revealed that the cytotoxic effect of PP2 was weaker on ATG5 knockout cells than that WT cells. The conversion of non-autophagic LC3-I to autophagic LC3-II and RT-PCR confirmed the functional gene knockout. Furthermore, Cyto-ID autophagy assay also revealed that PP2 failed to induce autophagy in ATG5 knockout cells. Together, our findings suggest that the resistance to PP2 in ATG5 knockout cells is associated with defective autophagy.

Keywords: ATG5 knockout, Autophagy, CRISPR/Cas9, PP2

Procedia PDF Downloads 347
6025 Antimicrobial Agents Produced by Yeasts

Authors: T. Büyüksırıt, H. Kuleaşan

Abstract:

Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action.

Keywords: antimicrobial agents, yeast, toxic protein, glycoprotein

Procedia PDF Downloads 363
6024 Modeling of an Insulin Mircopump

Authors: Ahmed Slami, Med El Amine Brixi Nigassa, Nassima Labdelli, Sofiane Soulimane, Arnaud Pothier

Abstract:

Many people suffer from diabetes, a disease marked by abnormal levels of sugar in the blood; 285 million people have diabetes, 6.6% of the world adult population (in 2010), according to the International Diabetes Federation. Insulin medicament is invented to be injected into the body. Generally, the injection requires the patient to do it manually. However, in many cases he will be unable to inject the drug, saw that among the side effects of hyperglycemia is the weakness of the whole body. The researchers designed a medical device that injects insulin too autonomously by using micro-pumps. Many micro-pumps of concepts have been investigated during the last two decades for injecting molecules in blood or in the body. However, all these micro-pumps are intended for slow infusion of drug (injection of few microliters by minute). Now, the challenge is to develop micro-pumps for fast injections (1 microliter in 10 seconds) with accuracy of the order of microliter. Recently, studies have shown that only piezoelectric actuators can achieve this performance, knowing that few systems at the microscopic level were presented. These reasons lead us to design new smart microsystems injection drugs. Therefore, many technological advances are still to achieve the improvement of materials to their uses, while going through their characterization and modeling action mechanisms themselves. Moreover, it remains to study the integration of the piezoelectric micro-pump in the microfluidic platform features to explore and evaluate the performance of these new micro devices. In this work, we propose a new micro-pump model based on piezoelectric actuation with a new design. Here, we use a finite element model with Comsol software. Our device is composed of two pumping chambers, two diaphragms and two actuators (piezoelectric disks). The latter parts will apply a mechanical force on the membrane in a periodic manner. The membrane deformation allows the fluid pumping, the suction and discharge of the liquid. In this study, we present the modeling results as function as device geometry properties, films thickness, and materials properties. Here, we demonstrate that we can achieve fast injection. The results of these simulations will provide quantitative performance of our micro-pumps. Concern the spatial actuation, fluid rate and allows optimization of the fabrication process in terms of materials and integration steps.

Keywords: COMSOL software, piezoelectric, micro-pump, microfluidic

Procedia PDF Downloads 342
6023 Integrated Information Approach to Inbound Logistics in Indian Steel Sector

Authors: N. Jena, Nitin Seth

Abstract:

Globalization and free trade has forced the organizations to continuously rethink and rework on the increasing cost of logistics. World wide, it is visualized that on one side the steel sector is witnessing rapid growth and on the other side it is facing huge challenges in terms of availability of raw materials for uninterrupted production. Inbound logistics also gains significant importance for ensuring the timely availability of raw materials. It is seen that in Indian steel sector logistic cost is still very large and challenging. Effectively managing the inbound logistics in steel decides the profitability and serviceability of the organization. Effective management of inbound logistics also has a major role on the inventory of the organization. Since, the logistics for the steel industry in India is evolving rapidly and it is the interplay of infrastructure, technology and new types of service providers that will define whether the industry is able to help its customers to reduce their logistics costs. Integration of Logistics has been treated as one of the most potential area for the companies to provide a base for cost reduction. In spite of the proven area for benefits for the industry, it is very surprising that none of the researchers have explored this area. Although, many researchers explored the subject of logistics in steel industry, but their perspective varied from exploring and understanding the associated cost and finding out the relations between them. Visualizing a potential gap, the present research is under taken to explore the integration opportunities in inbound logistics for steel sector. Typically in Indian steel sector where in most of the manufacturers depend on imported materials for processing the logistics is very challenging and accounts for transactions at supplier – who is situated in different country, shipper- who is transporting the material to the host country, regulators in both countries-that include customs and various clearing agents, local logistics service providers and local transporters/handlers. It is seen that In bound logistics cost in the steel sector is very high and accounts for about 15-16% of the turn over, integration of information across different channels provides and opportunity for improvements and growth of the organization. In the present paper, a case of leading steel manufacturer has been taken and the potentials for integration of information across various partners have been identified. The paper provides the identification of grey area in steel sector for major improvements in cycle time and lowering the inventories by integration of information. Finally, based on integration of information, the paper presents a business information framework for steel sector.

Keywords: integration, steel sectors, suppliers, shippers, customs and cargo agents, transporters

Procedia PDF Downloads 341
6022 Different Formula of Mixed Bacteria as a Bio-Treatment for Sewage Wastewater

Authors: E. Marei, A. Hammad, S. Ismail, A. El-Gindy

Abstract:

This study aims to investigate the ability of different formula of mixed bacteria as a biological treatments of wastewater after primary treatment as a bio-treatment and bio-removal and bio-adsorbent of different heavy metals in natural circumstances. The wastewater was collected from Sarpium forest site-Ismailia Governorate, Egypt. These treatments were mixture of free cells and mixture of immobilized cells of different bacteria. These different formulas of mixed bacteria were prepared under Lab. condition. The obtained data indicated that, as a result of wastewater bio-treatment, the removal rate was found to be 76.92 and 76.70% for biological oxygen demand, 79.78 and 71.07% for chemical oxygen demand, 32.45 and 36.84 % for ammonia nitrogen as well as 91.67 and 50.0% for phosphate after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. Moreover, the bio-removals of different heavy metals were found to reach 90.0 and 50. 0% for Cu ion, 98.0 and 98.5% for Fe ion, 97.0 and 99.3% for Mn ion, 90.0 and 90.0% Pb, 80.0% and 75.0% for Zn ion after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. The results indicated that 13.86 and 17.43% of removal efficiency and reduction of total dissolved solids were achieved after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively.

Keywords: wastewater bio-treatment , bio-sorption heavy metals, biological desalination, immobilized bacteria, free cell bacteria

Procedia PDF Downloads 202
6021 A Prospective Study on the Efficacy of Mesenchymal Stem Cells in Intervertebral Disc Regeneration

Authors: Prabhu Thangaraju, Manoj Deepak, A. Sivakumar

Abstract:

Removal of inter vertebral disc along with spinal fusion has many disadvantages such as causing stress fractures. If it is possible regenerate the spine it would be possible avoid the complications of the surgery and achieve better results. Our study involves the use of mesenchymal stem cells in regenerating the discs. Our study involved 10 patients who presented with degenerative disc disease between 2008-2011 in our hospital. After adequate pre-operative check prepared mesenchymal stem cells were injected into the disc spaces. These patients were subjected to conservative therapy for a minimum of six weeks before they were accepted into the study. They were followed up regularly for a minimum of 2years with serial radiographs and MRI. 8 out of the 10 patients had completed reduction in the pain. The T2 weighted MRI images in 9 out of the 10 patients showed a bright signal compared the previous Images which indicated that there was improvement in the hydration levels. From the case study of 10 patients who were subjected to mesenchymal cell therapy in our hospital, we can conclude that the use of mesenchymal cells in treatment of intervertebral disc degeneration in a safe and effective option.

Keywords: mesenchymal stem cells, intervertebral disc, the spine, disc degeneration

Procedia PDF Downloads 372
6020 Towards Printed Green Time-Temperature Indicator

Authors: Mariia Zhuldybina, Ahmed Moulay, Mirko Torres, Mike Rozel, Ngoc-Duc Trinh, Chloé Bois

Abstract:

To reduce the global waste of perishable goods, a solution for monitoring and traceability of their environmental conditions is needed. Temperature is the most controllable environmental parameter determining the kinetics of physical, chemical, and microbial spoilage in food products. To store the time-temperature information, time-temperature indicator (TTI) is a promising solution. Printed electronics (PE) has shown a great potential to produce customized electronic devices using flexible substrates and inks with different functionalities. We propose to fabricate a hybrid printed TTI using environmentally friendly materials. The real-time TTI profile can be stored and transmitted to the smartphone via Near Field Communication (NFC). To ensure environmental performance, Canadian Green Electronics NSERC Network is developing green materials for the ink formulation with different functionalities. In terms of substrate, paper-based electronics has gained the great interest for utilization in a wide area of electronic systems because of their low costs in setup and methodology, as well as their eco-friendly fabrication technologies. The main objective is to deliver a prototype of TTI using small-scale printed techniques under typical printing conditions. All sub-components of the smart labels, including a memristor, a battery, an antenna compatible with NFC protocol, and a circuit compatible with integration performed by an offsite supplier will be fully printed with flexography or flat-bed screen printing.

Keywords: NFC, printed electronics, time-temperature indicator, hybrid electronics

Procedia PDF Downloads 163
6019 Dirty Martini vs Martini: The Contrasting Duality Between Big Bang and BTS Public Image and Their Latest MVs Analysis

Authors: Patricia Portugal Marques de Carvalho Lourenco

Abstract:

Big Bang is like a dirty martini embroiled in a stew of personal individual scandals that have rocked the group’s image and perception, from G-Dragon’s and T.O.P. marijuana episodes in 2011 and 2016, respectively, to Daesung’s building illicit entertainment activities in 2018to the Burning Sun shebang that led to the Titanic sink of Big Bang’s youngest member Seungri in 2019 and the positive sentiment migration to the antithetical side. BTS, on the other hand, are like a martini, clear, clean, attracting as many crowds to their performances and online content as the Pope attracts believers to Sunday Mass in the Vatican, as exemplified by their latest MVs. Big Bang’s 2022 Still Life achieved 16.4 million views on Youtube in 24hours, whilst BTS Permission to Dance achieved 68.5 million in the same period of time. The difference is significant when added Big Bang’s and BTS overall award wins, a total of 117 in contrast to 460. Both groups are uniquely talented and exceptional performers that have been contributing greatly to the dissemination of Korean Pop Music on a global scale in their own inimitable ways. Both are exceptional in their own right and while the artists cannot, ought not, should not be compared for the grave injustice made in comparing one individual planet with one solar system, a contrast is merited and hence done. The reality, nonetheless, is about disengagement from a group that lives life humanly, learning and evolving with each challenge and mistake without a clean, perfect tag attached to it, demonstrating not only an inability to disassociate the person from the artist and the music but also an inability to understand the difference between a private and public life.

Keywords: K-Pop, big bang, BTS, music, public image, entertainment, korean entertainment

Procedia PDF Downloads 98
6018 Investigations of Thermo Fluid Characteristics of Copper Alloy Porous Heat Sinks by Forced Air Cooling

Authors: Ashish Mahalle, Kishore Borakhade

Abstract:

High porosity metal foams are excellent for heat dissipation. There use has been widened to include heat removal from high density microelectronics circuits. Other important applications have been found in compact heat exchangers for airborne equipment, regenerative and dissipative air cooled condenser towers, and compact heat sinks for power electronic. The low relative density, open porosity and high thermal conductivity of the cell edges, large accessible surface area per unit volume, and the ability to mix the cooling fluid make metal foam heat exchangers efficient, compact and light weight. This paper reports the thermal performance of metal foam for high heat dissipation. In experimentation metal foam samples of different pore diameters i.e. 35 µ, 20 µ, 12 µ, are analyzed for varying velocities and heat inputs. The study investigate the effect of various dimensionless no. like Re,Nu, Pr and heat transfer characteristics of basic flow configuration.

Keywords: pores, foam, effective thermal conductivity, permeability

Procedia PDF Downloads 311
6017 Extraction and Uses of Essential Oil

Authors: Ram Prasad Baral

Abstract:

A large number of herb materials contain Essential Oils with extensive bioactivities. Acknowledging the importance of plants and its medicinal value, extraction of Essential Oil had been done using Steam Distillation method. In this project, Steam Distillation was used to extract oil from different plant materials like Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha Arvensia, Nardostachys Jatamansi, Wintergreen Essential Oil, and Valeriana Officinalis. Research has confirmed centuries of practical use of essential oils, and we now know that the 'fragrant pharmacy' contains compounds with an extremely broad range of biochemical effects. Essential oils are so termed as they are believed to represent the very essence of odor and flavor. The recovery of Essential Oil from the raw botanical starting material is very important since the quality of the oil is greatly influenced during this step. There is a variety of methods for obtaining volatile oils from plants. Steam distillation method was found to be one of the promising techniques for the extraction of essential oil from plants as reputable distiller will preserve the original qualities of the plant. The distillation was conducted in Clevenger apparatus in which boiling, condensing, and decantation was done. Analysis of essential oil was done using Gas Chromatography-Mass Spectrometer apparatus, which gives evaluates essential oil qualitatively and quantitatively. The volume of essential oil obtained was changing with respect to temperature and time of heating.

Keywords: Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha

Procedia PDF Downloads 324
6016 Non-Invasive Techniques for Management of Carious Primary Dentition Using Silver Diamine Fluoride and Moringa Extract as a Modification of the Hall Technique

Authors: Rasha F. Sharaf

Abstract:

Treatment of dental caries in young children is considered a great challenge for all dentists, especially with uncooperative children. Recently non-invasive techniques have been highlighted as they alleviate the need for local anesthesia and other painful procedures during management of carious teeth and, at the same time, increase the success rate of the treatment done. Silver Diamine Fluoride (SDF) is one of the most effective cariostatic materials that arrest the progression of carious lesions and aid in remineralizing the demineralized tooth structure. Both fluoride and silver ions proved to have an antibacterial action and aid in the precipitation of an insoluble layer that prevents further decay. At the same time, Moringa proved to have an effective antibacterial action against different types of bacteria, therefore, it can be used as a non-invasive technique for the management of caries in children. One of the important theories for the control of caries is by depriving the cariogenic bacteria from nutrients causing their starvation and death, which can be achieved by applying stainless steel crown on primary molars with carious lesions which are not involving the pulp, and this technique is known as Hall technique. The success rate of the Hall technique can be increased by arresting the carious lesion using either SDF or Moringa and gaining the benefit of their antibacterial action. Multiple clinical cases with 1 year follow up will be presented, comparing different treatment options, and using various materials and techniques for non-invasive and non-painful management of carious primary teeth.

Keywords: SDF, hall technique, carious primary teeth, moringa extract

Procedia PDF Downloads 96
6015 Analysis of Solvent Effect on the Mechanical Properties of Poly(Ether Ether Ketone) Using Nano-Indentation

Authors: Tanveer Iqbal, Saima Yasin, Muhammad Zafar, Ahmad Shakeel, Fahad Nazir, Paul F. Luckham

Abstract:

The contact performance of polymeric composites is dependent on the localized mechanical properties of materials. This is particularly important for fiber oriented polymeric materials where self-lubrication from top layers has been the basic requirement. The nanoindentation response of fiber reinforced poly(etheretherketone), PEEK, composites have been evaluated to determine the near-surface mechanical characteristics. Load-displacement compliance, hardness and elastic modulus data based on contact compliance mode (CSM) indentation of carbon fiber oriented and glass fiber oriented PEEK composites are reported as a function of indentation contact displacement. The composite surfaces were indented to a maximum penetration depth of 5µm using Berkovich tip indenter. A typical multiphase response of the composite surface is depicted from analysis of the indentation data for the composites, showing presence of polymer matrix, fibers, and interphase regions. The observed experimental results show that although the surface mechanical properties of carbon fiber based PEEK composite were comparatively higher, the properties of matrix material were seen to be increased in the presence of glass fibers. The experimental methodology may provide a convenient means to understand morphological description of the multimodal polymeric composites.

Keywords: nanoindentation, PEEK, modulus, hardness, plasticization

Procedia PDF Downloads 192
6014 A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints

Authors: S. Alotaibi, S. Omer, Y. Su

Abstract:

The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort “noise, pollution” as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles.

Keywords: electric vehicles, zero emission car, fuel economy, CO₂ footprint

Procedia PDF Downloads 148