Search results for: teaching and learning empathy
3163 Optimizing Productivity and Quality through the Establishment of a Learning Management System for an Agency-Based Graduate School
Authors: Maria Corazon Tapang-Lopez, Alyn Joy Dela Cruz Baltazar, Bobby Jones Villanueva Domdom
Abstract:
The requisite for an organization implementing quality management system to sustain its compliance to the requirements and commitment for continuous improvement is even higher. It is expected that the offices and units has high and consistent compliance to the established processes and procedures. The Development Academy of the Philippines has been operating under project management to which is has a quality management certification. To further realize its mandate as a think-tank and capacity builder of the government, DAP expanded its operation and started to grant graduate degree through its Graduate School of Public and Development Management (GSPDM). As the academic arm of the Academy, GSPDM offers graduate degree programs on public management and productivity & quality aligned to the institutional trusts. For a time, the documented procedures and processes of a project management seem to fit the Graduate School. However, there has been a significant growth in the operations of the GSPDM in terms of the graduate programs offered that directly increase the number of students. There is an apparent necessity to align the project management system into a more educational system otherwise it will no longer be responsive to the development that are taking place. The strongly advocate and encourage its students to pursue internal and external improvement to cope up with the challenges of providing quality service to their own clients and to our country. If innovation will not take roots in the grounds of GSPDM, then how will it serve the purpose of “walking the talk”? This research was conducted to assess the diverse flow of the existing internal operations and processes of the DAP’s project management and GSPDM’s school management that will serve as basis to develop a system that will harmonize into one, the Learning Management System. The study documented the existing process of GSPDM following the project management phases of conceptualization & development, negotiation & contracting, mobilization, implementation, and closure into different flow charts of the key activities. The primary source of information as respondents were the different groups involved into the delivery of graduate programs - the executive, learning management team and administrative support offices. The Learning Management System (LMS) shall capture the unique and critical processes of the GSPDM as a degree-granting unit of the Academy. The LMS is the harmonized project management and school management system that shall serve as the standard system and procedure for all the programs within the GSPDM. The unique processes cover the three important areas of school management – student, curriculum, and faculty. The required processes of these main areas such as enrolment, course syllabus development, and faculty evaluation were appropriately placed within the phases of the project management system. Further, the research shall identify critical reports and generate manageable documents and records to ensure accuracy, consistency and reliable information. The researchers had an in-depth review of the DAP-GSDPM’s mandate, analyze the various documents, and conducted series of focused group discussions. A comprehensive review on flow chart system prior and various models of school management systems were made. Subsequently, the final output of the research is a work instructions manual that will be presented to the Academy’s Quality Management Council and eventually an additional scope for ISO certification. The manual shall include documented forms, iterative flow charts and program Gantt chart that will have a parallel development of automated systems.Keywords: productivity, quality, learning management system, agency-based graduate school
Procedia PDF Downloads 3213162 Visual Speech Perception of Arabic Emphatics
Authors: Maha Saliba Foster
Abstract:
Speech perception has been recognized as a bi-sensory process involving the auditory and visual channels. Compared to the auditory modality, the contribution of the visual signal to speech perception is not very well understood. Studying how the visual modality affects speech recognition can have pedagogical implications in second language learning, as well as clinical application in speech therapy. The current investigation explores the potential effect of speech visual cues on the perception of Arabic emphatics (AEs). The corpus consists of 36 minimal pairs each containing two contrasting consonants, an AE versus a non-emphatic (NE). Movies of four Lebanese speakers were edited to allow perceivers to have partial view of facial regions: lips only, lips-cheeks, lips-chin, lips-cheeks-chin, lips-cheeks-chin-neck. In the absence of any auditory information and relying solely on visual speech, perceivers were above chance at correctly identifying AEs or NEs across vowel contexts; moreover, the models were able to predict the probability of perceivers’ accuracy in identifying some of the COIs produced by certain speakers; additionally, results showed an overlap between the measurements selected by the computer and those selected by human perceivers. The lack of significant face effect on the perception of AEs seems to point to the lips, present in all of the videos, as the most important and often sufficient facial feature for emphasis recognition. Future investigations will aim at refining the analyses of visual cues used by perceivers by using Principal Component Analysis and including time evolution of facial feature measurements.Keywords: Arabic emphatics, machine learning, speech perception, visual speech perception
Procedia PDF Downloads 3073161 Internet of Things in Higher Education: Implications for Students with Disabilities
Authors: Scott Hollier, Ruchi Permvattana
Abstract:
The purpose of this abstract is to share the findings of a recently completed disability-related Internet of Things (IoT) project undertaken at Curtin University in Australia. The project focused on identifying how IoT could support people with disabilities with their educational outcomes. To achieve this, the research consisted of an analysis of current literature and interviews conducted with students with vision, hearing, mobility and print disabilities. While the research acknowledged the ability to collect data with IoT is now a fairly common occurrence, its benefits and applicability still need to be grounded back into real-world applications. Furthermore, it is important to consider if there are sections of our society that may benefit from these developments and if those benefits are being fully realised in a rush by large companies to achieve IoT dominance for their particular product or digital ecosystem. In this context, it is important to consider a group which, to our knowledge, has had little specific mainstream focus in the IoT area –people with disabilities. For people with disabilities, the ability for every device to interact with us and with each other has the potential to yield significant benefits. In terms of engagement, the arrival of smart appliances is already offering benefits such as the ability for a person in a wheelchair to give verbal commands to an IoT-enabled washing machine if the buttons are out of reach, or for a blind person to receive a notification on a smartphone when dinner has finished cooking in an IoT-enabled microwave. With clear benefits of IoT being identified for people with disabilities, it is important to also identify what implications there are for education. With higher education being a critical pathway for many people with disabilities in finding employment, the question as to whether such technologies can support the educational outcomes of people with disabilities was what ultimately led to this research project. This research will discuss several significant findings that have emerged from the research in relation to how consumer-based IoT can be used in the classroom to support the learning needs of students with disabilities, how industrial-based IoT sensors and actuators can be used to monitor and improve the real-time learning outcomes for the delivery of lectures and student engagement, and a proposed method for students to gain more control over their learning environment. The findings shared in this presentation are likely to have significant implications for the use of IoT in the classroom through the implementation of affordable and accessible IoT solutions and will provide guidance as to how policies can be developed as the implications of both benefits and risks continue to be considered by educators.Keywords: disability, higher education, internet of things, students
Procedia PDF Downloads 1193160 Encouraging the Uptake of Entrepreneurship by Graduates of Higher Education Institutions in South Africa
Authors: Chux Gervase Iwu, Simon Nsengimane
Abstract:
Entrepreneurship stimulates socio-economic development in many countries, if not all. It creates jobs and decreases unemployment and inequality. There are other benefits that are accruable from entrepreneurship, namely the empowerment of women and the promotion of better livelihoods. Innovation has become a weapon for business competition, growth, and sustainability. Paradoxically, it is a threat to businesses because products can be duplicated; new products may decrease the market share of existing ones or delete them from the market. This creates a constant competitive environment that calls for updates, innovation, and the invention of new products and services. Thus, the importance of higher education in instilling a good entrepreneurial mindset in students has become even more critical. It can be argued that the business environment is under enormous pressure from several factors, including the fourth industrial revolution, which calls for the adoption and use of information and communication technology, which is the catalyst for many innovations and organisational changes. Therefore, it is crucial that higher education students are equipped with relevant knowledge and skills to respond effectively to the needs of the business environment and create a vibrant entrepreneurship ecosystem. In South Africa, entrepreneurship education or some form of it has been a privilege for economic and management fields of study, leaving behind other fields. Entrepreneurship should not be limited to business faculties but rather extended to other fields of study. This is perhaps the reason for low levels of entrepreneurship uptake among South African graduates if they are compared with the graduates in other countries. There may be other reasons for the low entrepreneurship uptake. Some of these have been documented in extant literature to include (1) not enough time was spent teaching entrepreneurship in the business faculties, (2) the skills components in the curricula are insufficient, and (3) the overall attitudes/mindsets necessary to establish and run sustainable enterprises seem absent. Therefore, four important areas are recognised as crucial for the effective implementation of entrepreneurship education: policy, private sector engagement, curriculum development, and teacher development. The purpose of this research is to better comprehend the views, aspirations, and expectations of students and faculty members to design an entrepreneurial teaching model for higher education institutions. A qualitative method will be used to conduct a purposive interview with undergraduate and graduate students in select higher institutions. Members of faculty will also be included in the sample as well as, where possible, two or more government personnel responsible for higher education policy development. At present, interpretative analysis is proposed for the analysis of the interviews with the support of Atlas Ti. It is hoped that an entrepreneurship education model in the South African context is realised through this study.Keywords: entrepreneurship education, higher education institution, graduate unemployment, curriculum development
Procedia PDF Downloads 793159 Tomato-Weed Classification by RetinaNet One-Step Neural Network
Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri
Abstract:
The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.Keywords: deep learning, object detection, cnn, tomato, weeds
Procedia PDF Downloads 1063158 Progress in Combining Image Captioning and Visual Question Answering Tasks
Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima
Abstract:
Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.Keywords: image captioning, visual question answering, deep learning, natural language processing
Procedia PDF Downloads 743157 Adolescents' Perspectives on Parental Responses to Teen Dating Violence
Authors: Beverly Black
Abstract:
Teen dating violence (TDV) is a significant public health problem with severe negative impact on youths’ mental and physical health and well-being. Exacerbating the negative impact of TDV victimization is the fact that teens rarely report the violence. They are fearful to tell friends or family, especially parents. The family context is the first place where children learn about interpersonal relationships, and therefore, parental response of teens’ life experiences influences teens’ actions and development. This study examined youths’ perspectives on parental responses to TDV. Effective parental responses to TDV may increase the likelihood that youth will leave abusive relationships. Method. Eleven gender-separate focus groups were conducted with 27 females and 28 males, ages 12 to 17, to discuss parental responses to teen dating violence. Youth were recruited from a metropolitan community in the southwestern part of the United States. Focus groups questions asked the middle and high school youth how they would want their parents to respond to them if they approached them about various incidents of dating violence. All focus groups were transcribed. Using QSR-N10, two researchers’ analyzed data first using open and axial coding techniques to find overarching themes. Researchers triangulated the coded data to ensure accurate interpretations of the participants’ messages and used the scenario questions to structure the coded results. Results. Most youths suggested that parents should simply talk with them; they recognized the importance of communication. Teens wanted parents to ask questions, educate them about healthy relationships, share their personal experiences, and give teens advice (tell them to break up, limit contact with perpetrator, go to police). Younger youth expressed more willingness to listen to parental advice. Older youth wanted their parents to give them the opportunity to make their decisions. Many of the teens’ comments focused on the importance of parents protecting the teen, providing support and empathy for the teen, and especially refraining from overreacting (not yelling, not getting angry and staying calm). Implications. Parents need to know how to effectively respond to youth needing to leave unhealthy relationships. Demanding that their children end a relationship may not be a realistic approach to TDV. A parent’s ineffective response, when approached by an adolescent for assistance in TDV, may influence a youth to dismiss parents and other adults as viable options for seeking assistance. Parents and prevention educators can learn from hearing youths’ voices about effective responses to TDV.Keywords: adolescents dating abuse, adolescent and parent communication, parental responses to teen dating violence, teen dating violence
Procedia PDF Downloads 2733156 The Influence of Active Breaks on the Attention/Concentration Performance in Eighth-Graders
Authors: Christian Andrä, Luisa Zimmermann, Christina Müller
Abstract:
Introduction: The positive relation between physical activity and cognition is commonly known. Relevant studies show that in everyday school life active breaks can lead to improvement in certain abilities (e.g. attention and concentration). A beneficial effect is in particular attributed to moderate activity. It is still unclear whether active breaks are beneficial after relatively short phases of cognitive load and whether the postulated effects of activity really have an immediate impact. The objective of this study was to verify whether an active break after 18 minutes of cognitive load leads to enhanced attention/concentration performance, compared to inactive breaks with voluntary mobile phone activity. Methodology: For this quasi-experimental study, 36 students [age: 14.0 (mean value) ± 0.3 (standard deviation); male/female: 21/15] of a secondary school were tested. In week 1, every student’s maximum heart rate (Hfmax) was determined through maximum effort tests conducted during physical education classes. The task was to run 3 laps of 300 m with increasing subjective effort (lap 1: 60%, lap 2: 80%, lap 3: 100% of the maximum performance capacity). Furthermore, first attention/concentration tests (D2-R) took place (pretest). The groups were matched on the basis of the pretest results. During week 2 and 3, crossover testing was conducted, comprising of 18 minutes of cognitive preload (test for concentration performance, KLT-R), a break and an attention/concentration test after a 2-minutes transition. Different 10-minutes breaks (active break: moderate physical activity with 65% Hfmax or inactive break: mobile phone activity) took place between preloading and transition. Major findings: In general, there was no impact of the different break interventions on the concentration test results (symbols processed after physical activity: 185.2 ± 31.3 / after inactive break: 184.4 ± 31.6; errors after physical activity: 5.7 ± 6.3 / after inactive break: 7.0. ± 7.2). There was, however, a noticeable development of the values over the testing periods. Although no difference in the number of processed symbols was detected (active/inactive break: period 1: 49.3 ± 8.8/46.9 ± 9.0; period 2: 47.0 ± 7.7/47.3 ± 8.4; period 3: 45.1 ± 8.3/45.6 ± 8.0; period 4: 43.8 ± 7.8/44.6 ± 8.0), error rates decreased successively after physical activity and increased gradually after an inactive break (active/inactive break: period 1: 1.9 ± 2.4/1.2 ± 1.4; period 2: 1.7 ± 1.8/ 1.5 ± 2.0, period 3: 1.2 ± 1.6/1.8 ± 2.1; period 4: 0.9 ± 1.5/2.5 ± 2.6; p= .012). Conclusion: Taking into consideration only the study’s overall results, the hypothesis must be dismissed. However, more differentiated evaluation shows that the error rates decreased after active breaks and increased after inactive breaks. Obviously, the effects of active intervention occur with a delay. The 2-minutes transition (regeneration time) used for this study seems to be insufficient due to the longer adaptation time of the cardio-vascular system in untrained individuals, which might initially affect the concentration capacity. To use the positive effects of physical activity for teaching and learning processes, physiological characteristics must also be considered. Only this will ensure optimum ability to perform.Keywords: active breaks, attention/concentration test, cognitive performance capacity, heart rate, physical activity
Procedia PDF Downloads 3153155 Teaching Academic Writing for Publication: A Liminal Threshold Experience Towards Development of Scholarly Identity
Authors: Belinda du Plooy, Ruth Albertyn, Christel Troskie-De Bruin, Ella Belcher
Abstract:
In the academy, scholarliness or intellectual craftsmanship is considered the highest level of achievement, culminating in being consistently successfully published in impactful, peer-reviewed journals and books. Scholarliness implies rigorous methods, systematic exposition, in-depth analysis and evaluation, and the highest level of critical engagement and reflexivity. However, being a scholar does not happen automatically when one becomes an academic or completes graduate studies. A graduate qualification is an indication of one’s level of research competence but does not necessarily prepare one for the type of scholarly writing for publication required after a postgraduate qualification has been conferred. Scholarly writing for publication requires a high-level skillset and a specific mindset, which must be intentionally developed. The rite of passage to become a scholar is an iterative process with liminal spaces, thresholds, transitions, and transformations. The journey from researcher to published author is often fraught with rejection, insecurity, and disappointment and requires resilience and tenacity from those who eventually triumph. It cannot be achieved without support, guidance, and mentorship. In this article, the authors use collective auto-ethnography (CAE) to describe the phases and types of liminality encountered during the liminal journey toward scholarship. The authors speak as long-time facilitators of Writing for Academic Publication (WfAP) capacity development events (training workshops and writing retreats) presented at South African universities. Their WfAP facilitation practice is structured around experiential learning principles that allow them to act as critical reading partners and reflective witnesses for the writer-participants of their WfAP events. They identify three essential facilitation features for the effective holding of a generative, liminal, and transformational writing space for novice academic writers in order to enable their safe passage through the various liminal spaces they encounter during their scholarly development journey. These features are that facilitators should be agents of disruption and liminality while also guiding writers through these liminal spaces; that there should be a sense of mutual trust and respect, shared responsibility and accountability in order for writers to produce publication-worthy scholarly work; and that this can only be accomplished with the continued application of high levels of sensitivity and discernment by WfAP facilitators. These are key features for successful WfAP scholarship training events, where focused, individual input triggers personal and professional transformational experiences, which in turn translate into high-quality scholarly outputs.Keywords: academic writing, liminality, scholarship, scholarliness, threshold experience, writing for publication
Procedia PDF Downloads 443154 Building Learning Organization: Case Study of Transforming a Banking Company with 21st Century Creative Services Company
Authors: Zeynep Aykul Yavuz
Abstract:
Misconception about design is about making a product pretty. However, the holistic approaches such as design thinking or human-centered design could take the design from making things nice to things inspired by real people and work with real-world limitations. Design thinking helps companies to understand not only problem area but also opportunities. It can be used by any people from any background which provide a space for companies where employees from different departments work together to solve the same problem. While demanding skills changing year to year into the market, previous technical skills are commons anymore. The frontier companies in the sectors look for interactive methods to solve problems. Moreover, the recruiter aims to understand the candidate’s design thinking skills (. The study includes a case study where a 21st century creative services company “ATÖLYE” offers innovation transformation with design thinking to a banking company. Both companies are located in İstanbul in Turkey. The banking company contacted with the ATÖLYE in January 2018 because they heard design thinking in different markets and how it transformed the way of working. The transformation process had 3 phases which were basic training of teams while getting coaching from ATÖLYE’s employees, coaching training with graduates of basic training, facilitator training. Employees built new skills while solving the banking company’s strategic problems. ATÖLYE offered experiential learning which helped employees’ making sense of new skills and knowledge. One day workshops were organized to create awareness about the practice of design thinking. In addition to these, a community of practice was built to create an environment to make reflections and discuss good practice. Not only graduates from the training program but also other employees from the company participated in the community gatherings. ATÖLYE did not train some employees in the company. Rather than that, its aim was to build a contemporary organization for the company. This provided a sustainable system in terms of human resources and motivation. At the beginning of 2020, employees from the first cohort in the basic training who took coaching training and facilitator training have started to design training for different groups in the company. They have considered what could be better in their training experience and designed new ones according to that, so they have been using design thinking to design the design training. This is one of the outcomes which shows the impact of all process clearly.Keywords: design thinking, learning community, professional development, training, organizational transformation
Procedia PDF Downloads 1123153 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor
Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes
Abstract:
In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data
Procedia PDF Downloads 1493152 Modeling the Acquisition of Expertise in a Sequential Decision-Making Task
Authors: Cristóbal Moënne-Loccoz, Rodrigo C. Vergara, Vladimir López, Domingo Mery, Diego Cosmelli
Abstract:
Our daily interaction with computational interfaces is plagued of situations in which we go from inexperienced users to experts through self-motivated exploration of the same task. In many of these interactions, we must learn to find our way through a sequence of decisions and actions before obtaining the desired result. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion so that a specific sequence of actions must be performed in order to produce the expected outcome. But, as they become experts in the use of such interfaces, do users adopt specific search and learning strategies? Moreover, if so, can we use this information to follow the process of expertise development and, eventually, predict future actions? This would be a critical step towards building truly adaptive interfaces that can facilitate interaction at different moments of the learning curve. Furthermore, it could provide a window into potential mechanisms underlying decision-making behavior in real world scenarios. Here we tackle this question using a simple game interface that instantiates a 4-level binary decision tree (BDT) sequential decision-making task. Participants have to explore the interface and discover an underlying concept-icon mapping in order to complete the game. We develop a Hidden Markov Model (HMM)-based approach whereby a set of stereotyped, hierarchically related search behaviors act as hidden states. Using this model, we are able to track the decision-making process as participants explore, learn and develop expertise in the use of the interface. Our results show that partitioning the problem space into such stereotyped strategies is sufficient to capture a host of exploratory and learning behaviors. Moreover, using the modular architecture of stereotyped strategies as a Mixture of Experts, we are able to simultaneously ask the experts about the user's most probable future actions. We show that for those participants that learn the task, it becomes possible to predict their next decision, above chance, approximately halfway through the game. Our long-term goal is, on the basis of a better understanding of real-world decision-making processes, to inform the construction of interfaces that can establish dynamic conversations with their users in order to facilitate the development of expertise.Keywords: behavioral modeling, expertise acquisition, hidden markov models, sequential decision-making
Procedia PDF Downloads 2523151 Tolerance of Ambiguity in Relation to Listening Performance across Learners of Various Linguistic Backgrounds
Authors: Amin Kaveh Boukani
Abstract:
Foreign language learning is not straightforward and can be affected by numerous factors, among which personality features like tolerance of ambiguity (TA) are so well-known and important. Such characteristics yet can be affected by other factors like learning additional languages. The current investigation, thus, opted to explore the possible effect of linguistic background (being bilingual or trilingual) on the tolerance of ambiguity (TA) of Iranian EFL learners. Furthermore, the possible mediating effect of TA on multilingual learners' language performance (listening comprehension in this study) was expounded. This research involved 68 EFL learners (32 bilinguals, 29 trilinguals) with the age range of 19-29 doing their degrees in the Department of English Language and Literature of Urmia University. A set of questionnaires, including tolerance of ambiguity (Herman et. al., 2010) and linguistic background information (Modirkhameneh, 2005), as well as the IELTS listening comprehension test, were used for data collection purposes. The results of a set of independent samples t-test and mediation analysis (Hayes, 2022) showed that (1) linguistic background (being bilingual or trilingual) had a significant direct effect on EFL learners' TA, (2) Linguistic background had a significant direct influence on listening comprehension, (3) TA had a substantial direct influence on listening comprehension, and (4) TA moderated the influence of linguistic background on listening comprehension considerably. These results suggest that multilingualism may be considered as an advantageous asset for EFL learners and should be a prioritized characteristic in EFL instruction in multilingual contexts. Further pedagogical implications and suggestions for research are proposed in light of effective EFL instruction in multilingual contexts.Keywords: tolerance of ambiguity, listening comprehension, multilingualism, bilingual, trilingual
Procedia PDF Downloads 623150 Affective Attributes and Second Language Performance of Third Year Maritime Students: A Teacher's Compass
Authors: Sonia Pajaron, Flaviano Sentina, Ranulfo Etulle
Abstract:
Learning a second language calls for a total commitment from the learner whose response is necessary to successfully send and receive linguistic messages. It is relevant to virtually every aspect of human behaviour which is even more challenging when the components on -affective domains- are involved in second language learning. This study investigated the association between the identified affective attributes and second language performance of the one hundred seventeen (117) randomly selected third year maritime students. A descriptive-correlational method was utilized to generate data on their affective attributes while composition writing (2 series) and IELTS-based interview was done for speaking test. Additionally, to establish the respondents’ English language profile, data on their high school grades (GPA), entrance exam results in English subject (written) as well as in the interview was extracted as baseline information. Data were subjected to various statistical treatment (average means, percentages and pearson-r moment coefficient correlation) and found out that, Nautical Science and Marine Engineering students were found to have average high school grade, entrance test results, both written and in the interview turned out to be very satisfactory at 50% passing percentage. Varied results were manifested in their affective attributes towards learning the second language. On attitude, nautical science students had true positive attitude while marine engineering had only a moderate positive one. Secondly, the former were positively motivated to learn English while the latter were just moderately motivated. As regards anxiety, both groups embodied a moderate level of anxiety in the English language. Finally, data showed that nautical science students exuded real confidence while the marine engineering group had only moderate confidence with the second language. Respondents’ English academic achievement (GWA) was significantly correlated with confidence and speaking with anxiety towards the second language among the students from the nautical science group with moderate positive and low negative degree of correlation, respectively. On the other hand, the marine engineering students’ speaking test result was significantly correlated with anxiety and self-confidence with a moderate negative and low positive degree of correlation, respectively while writing was significantly correlated with motivation bearing a low positive degree of correlation.Keywords: affective attributes, second language, second language performance, anxiety, attitude, self-confidence and motivation
Procedia PDF Downloads 2723149 Personality Composition in Senior Management Teams: The Importance of Homogeneity in Dynamic Managerial Capabilities
Authors: Shelley Harrington
Abstract:
As a result of increasingly dynamic business environments, the creation and fostering of dynamic capabilities, [those capabilities that enable sustained competitive success despite of dynamism through the awareness and reconfiguration of internal and external competencies], supported by organisational learning [a dynamic capability] has gained increased and prevalent momentum in the research arena. Presenting findings funded by the Economic Social Research Council, this paper investigates the extent to which Senior Management Team (SMT) personality (at the trait and facet level) is associated with the creation of dynamic managerial capabilities at the team level, and effective organisational learning/knowledge sharing within the firm. In doing so, this research highlights the importance of micro-foundations in organisational psychology and specifically dynamic capabilities, a field which to date has largely ignored the importance of psychology in understanding these important and necessary capabilities. Using a direct measure of personality (NEO PI-3) at the trait and facet level across 32 high technology and finance firms in the UK, their CEOs (N=32) and their complete SMTs [N=212], a new measure of dynamic managerial capabilities at the team level was created and statistically validated for use within the work. A quantitative methodology was employed with regression and gap analysis being used to show the empirical foundations of personality being positioned as a micro-foundation of dynamic capabilities. The results of this study found that personality homogeneity within the SMT was required to strengthen the dynamic managerial capabilities of sensing, seizing and transforming, something which was required to reflect strong organisational learning at middle management level [N=533]. In particular, it was found that the greater the difference [t-score gaps] between the personality profiles of a Chief Executive Officer (CEO) and their complete, collective SMT, the lower the resulting self-reported nature of dynamic managerial capabilities. For example; the larger the difference between a CEOs level of dutifulness, a facet contributing to the definition of conscientiousness, and their SMT’s level of dutifulness, the lower the reported level of transforming, a capability fundamental to strategic change in a dynamic business environment. This in turn directly questions recent trends, particularly in upper echelons research highlighting the need for heterogeneity within teams. In doing so, it successfully positions personality as a micro-foundation of dynamic capabilities, thus contributing to recent discussions from within the strategic management field calling for the need to empirically explore dynamic capabilities at such a level.Keywords: dynamic managerial capabilities, senior management teams, personality, dynamism
Procedia PDF Downloads 2703148 Interdisciplinary Approach in Vocational Training for Orthopaedic Surgery
Authors: Mihail Nagea, Olivera Lupescu, Elena Taina Avramescu, Cristina Patru
Abstract:
Classical education of orthopedic surgeons involves lectures, self study, workshops and cadaver dissections, and sometimes supervised practical training within surgery, which quite seldom gives the young surgeons the feeling of being unable to apply what they have learned especially in surgical practice. The purpose of this paper is to present a different approach from the classical one, which enhances the practical skills of the orthopedic trainees and prepare them for future practice. The paper presents the content of the research project 2015-1-RO01-KA202-015230, ERASMUS+ VET ‘Collaborative learning for enhancing practical skills for patient-focused interventions in gait rehabilitation after orthopedic surgery’ which, using e learning as a basic tool , delivers to the trainees not only courses, but especially practical information through videos and case scenarios including gait analysis in order to build patient focused therapeutic plans, adapted to the characteristics of each patient. The outcome of this project is to enhance the practical skills in orthopedic surgery and the results are evaluated following the answers to the questionnaires, but especially the reactions within the case scenarios. The participants will thus follow the idea that any mistake within solving the cases might represent a failure of treating a real patient. This modern approach, besides using interactivity to evaluate the theoretical and practical knowledge of the trainee, increases the sense of responsibility, as well as the ability to react properly in real cases.Keywords: interdisciplinary approach, gait analysis, orthopedic surgery, vocational training
Procedia PDF Downloads 2513147 Coherence and Cohesion in IELTS Academic Writing: Helping Students to Improve
Authors: Rory Patrick O'Kane
Abstract:
More universities and third level institutions now require at least an IELTS Band 6 for entry into courses of study for non-native speakers of English. This presentation focuses on IELTS Academic Writing Tasks 1 and 2 and in particular on the marking criterion of Coherence and Cohesion. A requirement for candidates aiming at Band 6 and above is that they produce answers which show a clear, overall progression of information and ideas and which use cohesive devices effectively. With this in mind, the presenter will examine what exactly is meant by coherence and cohesion and various strategies which can be used to assist students in improving their scores in this area. A number of classroom teaching ideas will be introduced, and participants will have the opportunity to compare and discuss sample answers written by candidates for this examination with a specific focus on coherence and cohesion. Intended audience: Teachers of IELTS Academic Writing.Keywords: coherence, cohesion, IELTS, strategies
Procedia PDF Downloads 2723146 Early Education Assessment Methods
Authors: Anantdeep Kaur, Sharanjeet Singh
Abstract:
Early childhood education and assessment of children is a very essential tool that helps them in their growth and development. Techniques should be developed, and tools should be created in this field as it is a very important learning phase of life. Some information and sources are included for student assessment to provide a record of growth in all developmental areas cognitive, physical, Language, social-emotional, and approaches to learning. As an early childhood educator, it is very important to identify children who need special support and counseling to improve them because they are not mentally mature to discuss with the teacher their problems and needs. It is the duty and responsibility of the educator to assess children from their body language, behavior, and their routine actions about their skills that can be improved and which can take them forward in their future life. And also, children should be assessed with their weaker points because this is the right time to correct them, and they be improved with certain methods and tools by working on them constantly. Observing children regularly with all their facets of development, including intellectual, linguistic, social-emotional, and physical development. Every day, a physical education class should be regulated to check their physical growth activities, which can help to assess their physical activeness and motor abilities. When they are outside on the playgrounds, it is very important to instill environmental understanding among them so that they should know that they are very part of this nature, and it will help them to be one with the universe rather than feeling themselves individually. This technique assists them in living their childhood full of energy all the time. All types of assessments have unique purposes. It is important first to determine what should be measured, then find the program that best assesses those.Keywords: special needs, motor ability, environmental understanding, physical development
Procedia PDF Downloads 953145 Therapeutic Management of Toxocara canis Induced Hepatitis in Dogs
Authors: Milind D. Meshram
Abstract:
Ascarids are the most frequent worm parasite of dogs and cats. There are two species that commonly infect dogs: Toxocara canis and Toxascaris leonina. Adult roundworms live in the stomach and intestines and can grow to 7 inches (18 cm) long. A female may lay 200,000 eggs in a day. The eggs are protected by a hard shell. They are extremely hardy and can live for months or years in the soil. A dog aged about 6 years, from Satara was referred to Teaching Veterinary Clinical Complex (TVCC) with a complaint of abdominal pain, anorexia, loss of condition and dull body coat with mucous pale membrane. The clinical examination revealed Anaemia, palpation of abdomen revealed enlargement of liver, slimy feel of the intestine loop, diarrhea.Keywords: therapeutic management, Toxocara canis, induced hepatitis, dogs
Procedia PDF Downloads 5923144 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution
Authors: Pitigalage Chamath Chandira Peiris
Abstract:
A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.Keywords: single image super resolution, computer vision, vision transformers, image restoration
Procedia PDF Downloads 1063143 Constructing a Two-Tier Test about Source Current to Diagnose Pre-Service Elementary School Teacher’ Misconceptions
Authors: Abdeljalil Metioui
Abstract:
The purpose of this article is to present the results of two-stage qualitative research. The first involved the identification of the alternative conceptions of 80 elementary pre-service teachers from Quebec in Canada about the operation of simple electrical circuits. To do this, they completed a two-choice questionnaire (true or false) with justification. Data analysis identifies many conceptual difficulties. For example, for their majority, whatever the electrical device that composes an electrical circuit, the current source (power supply), and the generated electrical power is constant. The second step was to develop a double multiple-choice questionnaire based on the identified designs. It allows teachers to quickly diagnose their students' conceptions and take them into account in their teaching.Keywords: development, electrical circuits, two-tier diagnostic test, secondary and high school
Procedia PDF Downloads 1143142 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism
Authors: Ferah Tesfaye Admasu
Abstract:
Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning
Procedia PDF Downloads 243141 Measuring the Impact of Implementing an Effective Practice Skills Training Model in Youth Detention
Authors: Phillipa Evans, Christopher Trotter
Abstract:
Aims: This study aims to examine the effectiveness of a practice skills framework implemented in three youth detention centres in Juvenile Justice in New South Wales (NSW), Australia. The study is supported by a grant from and Australian Research Council and NSW Juvenile Justice. Recent years have seen a number of incidents in youth detention centres in Australia and other places. These have led to inquiries and reviews with some suggesting that detention centres often do not even meet basic human rights and do little in terms of providing opportunities for rehabilitation of residents. While there is an increasing body of research suggesting that community based supervision can be effective in reducing recidivism if appropriate skills are used by supervisors, there has been less work considering worker skills in youth detention settings. The research that has been done, however, suggest that teaching interpersonal skills to youth officers may be effective in enhancing the rehabilitation culture of centres. Positive outcomes have been seen in a UK detention centre for example, from teaching staff to do five-minute problem-solving interventions. The aim of this project is to examine the effectiveness of training and coaching youth detention staff in three NSW detention centres in interpersonal practice skills. Effectiveness is defined in terms of reductions in the frequency of critical incidents and improvements in the well-being of staff and young people. The research is important as the results may lead to the development of more humane and rehabilitative experiences for young people. Method: The study involves training staff in core effective practice skills and supporting staff in the use of those skills through supervision and de-briefing. The core effective practice skills include role clarification, pro-social modelling, brief problem solving, and relationship skills. The training also addresses some of the background to criminal behaviour including trauma. Data regarding critical incidents and well-being before and after the program implementation are being collected. This involves interviews with staff and young people, the completion of well-being scales, and examination of departmental records regarding critical incidents. In addition to the before and after comparison a matched control group which is not offered the intervention is also being used. The study includes more than 400 young people and 100 youth officers across 6 centres including the control sites. Data collection includes interviews with workers and young people, critical incident data such as assaults, use of lock ups and confinement and school attendance. Data collection also includes analysing video-tapes of centre activities for changes in the use of staff skills. Results: The project is currently underway with ongoing training and supervision. Early results will be available for the conference.Keywords: custody, practice skills, training, youth workers
Procedia PDF Downloads 1053140 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning
Authors: Ali Kazemi
Abstract:
The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis
Procedia PDF Downloads 593139 What Is At Stake When Developing and Using a Rubric to Judge Chemistry Honours Dissertations for Entry into a PhD?
Authors: Moira Cordiner
Abstract:
As a result of an Australian university approving a policy to improve the quality of assessment practices, as an academic developer (AD) with expertise in criterion-referenced assessment commenced in 2008. The four-year appointment was to support 40 'champions' in their Schools. This presentation is based on the experiences of a group of Chemistry academics who worked with the AD to develop and implement an honours dissertation rubric. Honours is a research year following a three-year undergraduate year. If the standard of the student's work is high enough (mainly the dissertation) then the student can commence a PhD. What became clear during the process was that much more was at stake than just the successful development and trial of the rubric, including academics' reputations, university rankings and research outputs. Working with the champion-Head of School(HOS) and the honours coordinator, the AD helped them adapt an honours rubric that she had helped create and trial successfully for another Science discipline. A year of many meetings and complex power plays between the two academics finally resulted in a version that was critiqued by the Chemistry teaching and learning committee. Accompanying the rubric was an explanation of grading rules plus a list of supervisor expectations to explain to students how the rubric was used for grading. Further refinements were made until all staff were satisfied. It was trialled successfully in 2011, then small changes made. It was adapted and implemented for Medicine honours with her help in 2012. Despite coming to consensus about statements of quality in the rubric, a few academics found it challenging matching these to the dissertations and allocating a grade. They had had no time to undertake training to do this, or make overt their implicit criteria and standards, which some admitted they were using - 'I know what a first class is'. Other factors affecting grading included: the small School where all supervisors knew each other and the students, meant that friendships and collegiality were at stake if low grades were given; no external examiners were appointed-all were internal with the potential for bias; supervisors’ reputations were at stake if their students did not receive a good grade; the School's reputation was also at risk if insufficient honours students qualified for PhD entry; and research output was jeopardised without enough honours students to work on supervisors’ projects. A further complication during the study was a restructure of the university and retrenchments, with pressure to increase research output as world rankings assumed greater importance to senior management. In conclusion, much more was at stake than developing a usable rubric. The HOS had to be seen to champion the 'new' assessment practice while balancing institutional demands for increased research output and ensuring as many honours dissertations as possible met high standards, so that eventually the percentage of PhD completions and research output rose. It is therefore in the institution's best interest for this cycle to be maintained as it affects rankings and reputations. In this context, are rubrics redundant?Keywords: explicit and implicit standards, judging quality, university rankings, research reputations
Procedia PDF Downloads 3373138 Level of Awareness of Genetic Counselling in Benue State Nigeria: Its Advocacy on the Inheritance of Sickle Cell Disease
Authors: Agi Sunday
Abstract:
A descriptive analysis of reported cases of sickle cell disease and the level of awareness about genetic counselling in 30 hospitals were carried out. Additionally, 150 individuals between ages 16-45 were randomly selected for evaluation of genetic counselling awareness. The main tools for this study were questionnaires which were taken to hospitals, and individuals completed the others. The numbers of reported cases of sickle cell disease recorded in private, public and teaching hospitals were 14 and 57; 143 and 89; 272 and 57 for the periods of 1995-2000 and 2001-2005, respectively. A general informal genetic counselling took place mostly in the hospitals visited. 122 (86%) individuals had the knowledge of genetic disease and only 43 (30.3%) individuals have been exposed to genetic counselling. 64% of individuals agreed that genetic counselling would help in the prevention of genetic disease.Keywords: sickle disease, genetic counseling, genetic testing, advocacy
Procedia PDF Downloads 3913137 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 833136 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 3903135 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1203134 A CDA-Driven Study of World English Series Published by Cengage Heinle
Authors: Mohammad Amin Mozaheb, Jalal Farzaneh Dehkordi, Khojasteh Hosseinzadehpilehvar
Abstract:
English Language Teaching (ELT) is widely promoted across the world. ELT textbooks play pivotal roles in the mentioned process. Since biases of authors have been an issue of continuing interest to analysts over the past few years, the present study seeks to analyze an ELT textbook using Critical Discourse Analysis (CDA). To obtain the goal of the study, the listening section of a book called World English 3 (new edition) has been analyzed in terms of the cultures and countries mentioned in the listening section of the book using content-based analysis. The analysis indicates biases towards certain cultures. Moreover, some countries are shown as rich and powerful countries, while some others have been shown as poor ones without considering the history behind them.Keywords: ELT, textbooks, critical discourse analysis, World English
Procedia PDF Downloads 231