Search results for: mixed methods approach
22469 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models
Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti
Abstract:
This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm
Procedia PDF Downloads 41222468 Investigation about Mechanical Equipment Needed to Break the Molecular Bonds of Heavy Oil by Using Hydrodynamic Cavitation
Authors: Mahdi Asghari
Abstract:
The cavitation phenomenon is the formation and production of micro-bubbles and eventually the bursting of the micro-bubbles inside the liquid fluid, which results in localized high pressure and temperature, causing physical and chemical fluid changes. This pressure and temperature are predicted to be 2000 atmospheres and 5000 °C, respectively. As a result of small bubbles bursting from this process, temperature and pressure increase momentarily and locally, so that the intensity and magnitude of these temperatures and pressures provide the energy needed to break the molecular bonds of heavy compounds such as fuel oil. In this paper, we study the theory of cavitation and the methods of cavitation production by acoustic and hydrodynamic methods and the necessary mechanical equipment and reactors for industrial application of the hydrodynamic cavitation method to break down the molecular bonds of the fuel oil and convert it into useful and economical products.Keywords: Cavitation, Hydrodynamic Cavitation, Cavitation Reactor, Fuel Oil
Procedia PDF Downloads 12122467 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis
Authors: Kunya Bowornchockchai
Abstract:
The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0) without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt is the time series data at time t, respectively.Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate
Procedia PDF Downloads 25522466 Use of a Business Intelligence Software for Interactive Visualization of Data on the Swiss Elite Sports System
Authors: Corinne Zurmuehle, Andreas Christoph Weber
Abstract:
In 2019, the Swiss Federal Institute of Sport Magglingen (SFISM) conducted a mixed-methods study on the Swiss elite sports system, which yielded a large quantity of research data. In a quantitative online survey, 1151 elite sports athletes, 542 coaches, and 102 Performance Directors of national sports federations (NF) have submitted their perceptions of the national support measures of the Swiss elite sports system. These data provide an essential database for the further development of the Swiss elite sports system. The results were published in a report presenting the results divided into 40 Olympic summer and 14 winter sports (Olympic classification). The authors of this paper assume that, in practice, this division is too unspecific to assess where further measures would be needed. The aim of this paper is to find appropriate parameters for data visualization in order to identify disparities in sports promotion that allow an assessment of where further interventions by Swiss Olympic (NF umbrella organization) are required. Method: First, the variable 'salary earned from sport' was defined as a variable to measure the impact of elite sports promotion. This variable was chosen as a measure as it represents an important indicator for the professionalization of elite athletes and therefore reflects national level sports promotion measures applied by Swiss Olympic. Afterwards, the variable salary was tested with regard to the correlation between Olympic classification [a], calculating the Eta coefficient. To estimate the appropriate parameters for data visualization, the correlation between salary and four further parameters was analyzed by calculating the Eta coefficient: [a] sport; [b] prioritization (from 1 to 5) of the sports by Swiss Olympic; [c] gender; [d] employment level in sports. Results & Discussion: The analyses reveal a very small correlation between salary and Olympic classification (ɳ² = .011, p = .005). Gender demonstrates an even small correlation (ɳ² = .006, p = .014). The parameter prioritization was correlating with small effect (ɳ² = .017, p = .001) as did employment level (ɳ² = .028, p < .001). The highest correlation was identified by the parameter sport with a moderate effect (ɳ² = .075, p = .047). The analyses show that the disparities in sports promotion cannot be determined by a particular parameter but presumably explained by a combination of several parameters. We argue that the possibility of combining parameters for data visualization should be enabled when the analysis is provided to Swiss Olympic for further strategic decision-making. However, the inclusion of multiple parameters massively multiplies the number of graphs and is therefore not suitable for practical use. Therefore, we suggest to apply interactive dashboards for data visualization using Business Intelligence Software. Practical & Theoretical Contribution: This contribution provides the first attempt to use Business Intelligence Software for strategic decision-making in national level sports regarding the prioritization of national resources for sports and athletes. This allows to set specific parameters with a significant effect as filters. By using filters, parameters can be combined and compared against each other and set individually for each strategic decision.Keywords: data visualization, business intelligence, Swiss elite sports system, strategic decision-making
Procedia PDF Downloads 9022465 DEMs: A Multivariate Comparison Approach
Authors: Juan Francisco Reinoso Gordo, Francisco Javier Ariza-López, José Rodríguez Avi, Domingo Barrera Rosillo
Abstract:
The evaluation of the quality of a data product is based on the comparison of the product with a reference of greater accuracy. In the case of MDE data products, quality assessment usually focuses on positional accuracy and few studies consider other terrain characteristics, such as slope and orientation. The proposal that is made consists of evaluating the similarity of two DEMs (a product and a reference), through the joint analysis of the distribution functions of the variables of interest, for example, elevations, slopes and orientations. This is a multivariable approach that focuses on distribution functions, not on single parameters such as mean values or dispersions (e.g. root mean squared error or variance). This is considered to be a more holistic approach. The use of the Kolmogorov-Smirnov test is proposed due to its non-parametric nature, since the distributions of the variables of interest cannot always be adequately modeled by parametric models (e.g. the Normal distribution model). In addition, its application to the multivariate case is carried out jointly by means of a single test on the convolution of the distribution functions of the variables considered, which avoids the use of corrections such as Bonferroni when several statistics hypothesis tests are carried out together. In this work, two DEM products have been considered, DEM02 with a resolution of 2x2 meters and DEM05 with a resolution of 5x5 meters, both generated by the National Geographic Institute of Spain. DEM02 is considered as the reference and DEM05 as the product to be evaluated. In addition, the slope and aspect derived models have been calculated by GIS operations on the two DEM datasets. Through sample simulation processes, the adequate behavior of the Kolmogorov-Smirnov statistical test has been verified when the null hypothesis is true, which allows calibrating the value of the statistic for the desired significance value (e.g. 5%). Once the process has been calibrated, the same process can be applied to compare the similarity of different DEM data sets (e.g. the DEM05 versus the DEM02). In summary, an innovative alternative for the comparison of DEM data sets based on a multinomial non-parametric perspective has been proposed by means of a single Kolmogorov-Smirnov test. This new approach could be extended to other DEM features of interest (e.g. curvature, etc.) and to more than three variablesKeywords: data quality, DEM, kolmogorov-smirnov test, multivariate DEM comparison
Procedia PDF Downloads 11522464 Constructions of Linear and Robust Codes Based on Wavelet Decompositions
Authors: Alla Levina, Sergey Taranov
Abstract:
The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability
Procedia PDF Downloads 48922463 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication
Authors: Aishwarya Shekhar, Himanshu Sharma
Abstract:
Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.Keywords: confidentiality, deduplication, data compression, hybridity of cloud
Procedia PDF Downloads 38322462 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems
Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh
Abstract:
It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property
Procedia PDF Downloads 20622461 Evaluation of Forage Yield and Competition Indices for Intercropped Barley and Legumes
Authors: Abdollah Javanmard, Fariborz Shekari
Abstract:
Barley (Hordeum vulgare L.), vetch (Vicia villosa), and grass pea (Lathyrus sativus L.) monocultures as well as mixtures of barley with each of the above legumes, in three seeding ratios (i.e., barley: legume 75:25, 50:50 and 25:75 based on seed numbers) were used to investigate forage yield and competition indices. The results showed that intercropping reduced the dry matter yield of the three component plants, compared with their respective monocrops. The greatest value of total dry matter yield was obtained from barley25-grasspea75 (5.44 t ha-1) mixture, followed by grass pea sole crop (4.99 t ha-1). The total AYL values were positive and greater than 0 in all mixtures, indicating an advantage from intercropping over sole crops. Intercropped barley had a higher relative crowding coefficient (K=1.64) than intercropped legumes (K=1.20), indicating that barley was more competitive than legumes in mixtures. Furthermore, grass pea was more competitive than vetch in mixtures with barley. The highest LER, SPI and MAI were obtained when barley was mixed at a rate of 25% with 75% seed rate of grass pea. It is concluded that intercropping of barley with grass pea has a good potential to improve the performance of forage with high land-use efficiency.Keywords: forage, grass pea, intercropping, LER, monetary advantage
Procedia PDF Downloads 38922460 Technological Innovation and Efficiency of Production of the Greek Aquaculture Industry
Authors: C. Nathanailides, S. Anastasiou, A. Dimitroglou, P. Logothetis, G. Kanlis
Abstract:
In the present work we reviewed historical data of the Greek Marine aquaculture industry including adoption of new methods and technological innovation. The results indicate that the industry exhibited a rapid rise in production efficiency, employment and adoption of new technologies which reduced outbreaks of diseases, reduced production risk and the price of the farmed fish. The improvements of total quality practices and technological input on the Greek Aquaculture industry include improved survival, growth and body shape of farmed fish, which resulted from development of new aquaculture feeds and the genetic selection of the bloodstock. Also improvements in the quality of the final product were achieved via technological input in the methods and technology applied during harvesting, packaging, and transportation-preservation of farmed fish ensuring high quality of the product from the fish farm to the plate of the consumers. These parameters (health management, nutrition, genetics, harvesting and post-harvesting methods and technology) changed significantly over the last twenty years and the results of these improvements are reflected in the production efficiency of the Aquaculture industry and the quality of the final product. It is concluded that the Greek aquaculture industry exhibited a rapid growth, adoption of technologies and supply was stabilized after the global financial crisis, nevertheless, the development of the Greek aquaculture industry is currently limited by international trade sanctions, credit crunch, and increased taxation and not by limited technology or resources.Keywords: innovation, aquaculture, total quality, management
Procedia PDF Downloads 37222459 Pulsed Electric Field as Pretreatment for Different Drying Method in Chilean Abalone (Concholepas Concholepas) Mollusk: Effects on Product Physical Properties and Drying Methods Sustainability
Authors: Luis González-Cavieres, Mario Perez-Won, Anais Palma-Acevedo, Gipsy Tabilo-Munizaga, Erick Jara-Quijada, Roberto Lemus-Mondaca
Abstract:
In this study, pulsed electric field (PEF: 2.0 kV/cm) was used as pretreatment in drying methods, vacuum microwave (VMD); freeze-drying (FD); and hot air (HAD), in Chilean abalone mollusk. Drying parameters, quality, energy consumption, and Sustainability parameters were evaluated. PEF+VMD showed better values than the other drying systems, with drying times 67% and 83% lower than PEF+FD and FD. In the quality parameters, PEF+FD showed a significantly lower value for hardness (250 N), and a lower change of color value (ΔE = 12). In the case of HAD, the PEF application did not significantly influence its processing. In energy parameters, VMD and PEF+VMD reduced energy consumption and CO2 emissions.Keywords: PEF technology, vacuum microwave drying, energy consumption, CO2 emissions
Procedia PDF Downloads 9422458 The Effect of Spatial Variability on Axial Pile Design of Closed Ended Piles in Sand
Authors: Cormac Reale, Luke J. Prendergast, Kenneth Gavin
Abstract:
While significant improvements have been made in axial pile design methods over recent years, the influence of soils natural variability has not been adequately accounted for within them. Soil variability is a crucial parameter to consider as it can account for large variations in pile capacity across the same site. This paper seeks to address this knowledge deficit, by demonstrating how soil spatial variability can be accommodated into existing cone penetration test (CPT) based pile design methods, in the form of layered non-homogeneous random fields. These random fields model the scope of a given property’s variance and define how it varies spatially. A Monte Carlo analysis of the pile will be performed taking into account parameter uncertainty and spatial variability, described using the measured scales of fluctuation. The results will be discussed in light of Eurocode 7 and the effect of spatial averaging on design capacities will be analysed.Keywords: pile axial design, reliability, spatial variability, CPT
Procedia PDF Downloads 24622457 Impact of Safety and Quality Considerations of Housing Clients on the Construction Firms’ Intention to Adopt Quality Function Deployment: A Case of Construction Sector
Authors: Saif Ul Haq
Abstract:
The current study intends to examine the safety and quality considerations of clients of housing projects and their impact on the adoption of Quality Function Deployment (QFD) by the construction firm. Mixed method research technique has been used to collect and analyze the data wherein a survey was conducted to collect the data from 220 clients of housing projects in Saudi Arabia. Then, the telephonic and Skype interviews were conducted to collect data of 15 professionals working in the top ten real estate companies of Saudi Arabia. Data were analyzed by using partial least square (PLS) and thematic analysis techniques. Findings reveal that today’s customer prioritizes the safety and quality requirements of their houses and as a result, construction firms adopt QFD to address the needs of customers. The findings are of great importance for the clients of housing projects as well as for the construction firms as they could apply QFD in housing projects to address the safety and quality concerns of their clients.Keywords: construction industry, quality considerations, quality function deployment, safety considerations
Procedia PDF Downloads 12522456 A Relational Case-Based Reasoning Framework for Project Delivery System Selection
Authors: Yang Cui, Yong Qiang Chen
Abstract:
An appropriate project delivery system (PDS) is crucial to the success of a construction project. Case-based reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the relational case-based reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then, feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.Keywords: relational cased-based reasoning, case-based reasoning, project delivery system, PDS selection
Procedia PDF Downloads 43222455 Developing Well-Being Indicators and Measurement Methods as Illustrated by Projects Aimed at Preventing Obesity in Children
Authors: E. Grochowska-Niedworok, K. Brukało, M. Hadasik, M. Kardas
Abstract:
Consumption of vegetables by school children and adolescents is essential for their normal growth, development and health, but a significant minority of the world's population consumes the right amount of these products. The aim of the study was to evaluate the preferences and frequency of consumption of vegetables by school children and adolescents. It has been assumed that effectively implemented nutrition education programs should have an impact on increasing the frequency of vegetable consumption among the recipients. The study covered 514 students of five schools in the Opole Voivodeship aged 9 years to 22 years. The research tool was an author's questionnaire, which consisted of closed questions on the frequency of vegetable consumption and the use of 10 ways to treat them. Preferences and frequencies are shown in percentages, while correlations were estimated on the basis of Cramer`s V and gamma coefficients. In each of the examined age groups, the relationship between sex and vegetable consumption (the Cramer`s V coefficient value was 0.06 to 0.38) was determined and the various methods of culinary processing were used (V Craméra was 0.08 to 0.34). For both sexes, the relationship between age and frequency of vegetable consumption was shown (gamma values ranged from ~ 0.00 to 0.39) and different cooking methods (gamma values were 0.01 to 0.22). The most important determinant of nutritional choices is the taste and availability of products. The fact that they have a positive effect on their health is only in third position. As has been shown, obesity prevention programs can not only address nutrition education but also teach about new flavors and increase the availability of healthy foods. In addition, the frequency of vegetable consumption can be a good indicator reflecting the healthy behaviors of children and adolescents.Keywords: children and adolescents, frequency, welfare rate, vegetables
Procedia PDF Downloads 20422454 Optimal Hedging of a Portfolio of European Options in an Extended Binomial Model under Proportional Transaction Costs
Authors: Norm Josephy, Lucy Kimball, Victoria Steblovskaya
Abstract:
Hedging of a portfolio of European options under proportional transaction costs is considered. Our discrete time financial market model extends the binomial market model with transaction costs to the case where the underlying stock price ratios are distributed over a bounded interval rather than over a two-point set. An optimal hedging strategy is chosen from a set of admissible non-self-financing hedging strategies. Our approach to optimal hedging of a portfolio of options is based on theoretical foundation that includes determination of a no-arbitrage option price interval as well as on properties of the non-self-financing strategies and their residuals. A computational algorithm for optimizing an investor relevant criterion over the set of admissible non-self-financing hedging strategies is developed. Applicability of our approach is demonstrated using both simulated data and real market data.Keywords: extended binomial model, non-self-financing hedging, optimization, proportional transaction costs
Procedia PDF Downloads 25222453 Musical Notation Reading versus Alphabet Reading-Comparison and Implications for Teaching Music Reading to Students with Dyslexia
Authors: Ora Geiger
Abstract:
Reading is a cognitive process of deciphering visual signs to produce meaning. During the reading process, written information of symbols and signs is received in the person’s eye and processed in the brain. This definition is relevant to both the reading of letters and the reading of musical notation. But while the letters of the alphabet are signs determined arbitrarily, notes are recorded systematically on a staff, with the location of each note on the staff indicating its relative pitch. In this paper, the researcher specifies the characteristics of alphabet reading in comparison to musical notation reading, and discusses the question whether a person diagnosed with dyslexia will necessarily have difficulty in reading musical notes. Dyslexia is a learning disorder that makes it difficult to acquire alphabet-reading skills due to difficulties expressed in the identification of letters, spelling, and other language deciphering skills. In order to read, one must be able to connect a symbol with a sound and to join the sounds into words. A person who has dyslexia finds it difficult to translate a graphic symbol into the sound that it represents. When teaching reading to children diagnosed with dyslexia, the multi-sensory approach, supporting the activation and involvement of most of the senses in the learning process, has been found to be particularly effective. According to this approach, when most senses participate in the reading learning process, it becomes more effective. During years of experience, the researcher, who is a music specialist, has been following the music reading learning process of elementary school age students, some of them diagnosed with Dyslexia, while studying to play soprano (descant) recorder. She argues that learning music reading while studying to play a musical instrument is a multi-sensory experience by its nature. The senses involved are: sight, hearing, touch, and the kinesthetic sense (motion), which provides the brain with information on the relative positions of the body. In this way, the learner experiences simultaneously visual, auditory, tactile, and kinesthetic impressions. The researcher concludes that there should be no contra-indication for teaching standard music reading to children with dyslexia if an appropriate process is offered. This conclusion is based on two main characteristics of music reading: (1) musical notation system is a systematic, logical, relative set of symbols written on a staff; and (2) music reading learning connected with playing a musical instrument is by its nature a multi-sensory activity since it combines sight, hearing, touch, and movement. This paper describes music reading teaching procedures and provides unique teaching methods that have been found to be effective for students who were diagnosed with Dyslexia. It provides theoretical explanations in addition to guidelines for music education practices.Keywords: alphabet reading, dyslexia, multisensory teaching method, music reading, recorder playing
Procedia PDF Downloads 36522452 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression
Authors: Abdulla D. Alblooshi
Abstract:
The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE
Procedia PDF Downloads 17122451 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction
Procedia PDF Downloads 38222450 On an Approach for Rule Generation in Association Rule Mining
Authors: B. Chandra
Abstract:
In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.Keywords: knowledge discovery, association rule mining, antecedent support, rule generation
Procedia PDF Downloads 32522449 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 27722448 Verifying Environmental Performance through Inventory and Assessment: Case Study of the Los Alamos National Laboratory Waste Compliance and Tracking System
Authors: Oral S. Saulters, Shanon D. Goldberg, Wendy A. Staples, Ellena I. Martinez, Lorie M. Sanchez, Diego E. Archuleta, Deborah L. Williams, Scot D. Johnson
Abstract:
To address an important set of unverified field conditions, the Los Alamos National Laboratory Waste Compliance and Tracking System (WCATS) Wall-to-Wall Team performed an unprecedented and advanced inventory. This reconciliation involved confirmation analysis for approximately 5850 hazardous, low-level, mixed low-level, and transuranic waste containers located in more than 200 staging and storage areas across 33 technical areas. The interdisciplinary team scoped, planned, and developed the multidimensional assessments. Through coordination with cross-functional site hosts, they were able to verify and validate data while resolving discrepancies identified in WCATS. The results were extraordinary with an updated inventory, tailored outreach, more cohesive communications, and timely closed-loop feedback.Keywords: circular economy, environmental performance data, social-ecological-technological systems, waste management
Procedia PDF Downloads 12822447 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles
Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad
Abstract:
As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.Keywords: computational methods, context-awareness, design process, smart spaces
Procedia PDF Downloads 33122446 Determination of the Thermally Comfortable Air Temperature with Consideration of Individual Clothing and Activity as Preparation for a New Smart Home Heating System
Authors: Alexander Peikos, Carole Binsfeld
Abstract:
The aim of this paper is to determine a thermally comfortable air temperature in an automated living room. This calculated temperature should serve as input for a user-specific and dynamic heating control in such a living space. In addition to the usual physical factors (air temperature, humidity, air velocity, and radiation temperature), individual clothing and activity should be taken into account. The calculation of such a temperature is based on different methods and indices which are usually used for the evaluation of the thermal comfort. The thermal insulation of the worn clothing is determined with a Radio Frequency Identification system. The activity performed is only taken into account indirectly through the generated heart rate. All these methods are ultimately very well suited for use in temperature regulation in an automated home, but still require further research and extensive evaluation.Keywords: smart home, thermal comfort, predicted mean vote, radio frequency identification
Procedia PDF Downloads 15922445 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites
Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim
Abstract:
In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite
Procedia PDF Downloads 31822444 Dimensional Investigation of Food Addiction in Individuals Who Have Undergone Bariatric Surgery
Authors: Ligia Florio, João Mauricio Castaldelli-Maia
Abstract:
Background: Food addiction (FA) emerged in the 1990s as a possible contributor to the increasing prevalence of obesity and overweight, in conjunction with changing food environments and mental health conditions. However, FA is not yet listed as one of the disorders in the DSM-5 and/or the ICD-11. Although there are controversies and debates in the literature about the classification and construct of FA, the most common approach to access it is the use of a research tool - the Yale Food Addiction Scale (YFAS) - which approximates the concept of FA to the concept diagnosis of dependence on psychoactive substances. There is a need to explore the dimensional phenotypes accessed by YFAS in different population groups for a better understanding and scientific support of FA diagnoses. Methods: The primary objective of this project was to investigate the construct validity of the FA concept by mYFAS 2.0 in individuals who underwent bariatric surgery (n = 100) at the Hospital Estadual Mário Covas since 2011. Statistical analyzes were conducted using the STATA software. In this sense, structural or factor validity was the type of construct validity investigated using exploratory factor analysis (EFA) and item response theory (IRT) techniques. Results: EFA showed that the one-dimensional model was the most parsimonious. The IRT showed that all criteria contributed to the latent structure, presenting discrimination values greater than 0.5, with most presenting values greater than 2. Conclusion: This study reinforces a FA dimension in patients who underwent bariatric surgery. Within this dimension, we identified the most severe and discriminating criteria for the diagnosis of FA.Keywords: obesity, food addiction, bariatric surgery, regain
Procedia PDF Downloads 7622443 Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago
Authors: Tyler Gill, Sophia Daniels
Abstract:
The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation.Keywords: crime mapping, emerging hot spot analysis, Getis-Ord Gi*, spatial-temporal analysis
Procedia PDF Downloads 24422442 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines
Authors: P. Byrnes, F. A. DiazDelaO
Abstract:
The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines
Procedia PDF Downloads 22122441 The Use of Social Stories and Digital Technology as Interventions for Autistic Children; A State-Of-The-Art Review and Qualitative Data Analysis
Authors: S. Hussain, C. Grieco, M. Brosnan
Abstract:
Background and Aims: Autism is a complex neurobehavioural disorder, characterised by impairments in the development of language and communication skills. The study involved a state-of-art systematic review, in addition to qualitative data analysis, to establish the evidence for social stories as an intervention strategy for autistic children. An up-to-date review of the use of digital technologies in the delivery of interventions to autistic children was also carried out; to propose the efficacy of digital technologies and the use of social stories to improve intervention outcomes for autistic children. Methods: Two student researchers reviewed a range of randomised control trials and observational studies. The aim of the review was to establish if there was adequate evidence to justify recommending social stories to autistic patients. Students devised their own search strategies to be used across a range of search engines, including Ovid-Medline, Google Scholar and PubMed. Students then critically appraised the generated literature. Additionally, qualitative data obtained from a comprehensive online questionnaire on social stories was also thematically analysed. The thematic analysis was carried out independently by each researcher, using a ‘bottom-up’ approach, meaning contributors read and analysed responses to questions and devised semantic themes from reading the responses to a given question. The researchers then placed each response into a semantic theme or sub-theme. The students then joined to discuss the merging of their theme headings. The Inter-rater reliability (IRR) was calculated before and after theme headings were merged, giving IRR for pre- and post-discussion. Lastly, the thematic analysis was assessed by a third researcher, who is a professor of psychology and the director for the ‘Centre for Applied Autism Research’ at the University of Bath. Results: A review of the literature, as well as thematic analysis of qualitative data found supporting evidence for social story use. The thematic analysis uncovered some interesting themes from the questionnaire responses, relating to the reasons why social stories were used and the factors influencing their effectiveness in each case. However, overall, the evidence for digital technologies interventions was limited, and the literature could not prove a causal link between better intervention outcomes for autistic children and the use of technologies. However, they did offer valid proposed theories for the suitability of digital technologies for autistic children. Conclusions: Overall, the review concluded that there was adequate evidence to justify advising the use of social stories with autistic children. The role of digital technologies is clearly a fast-emerging field and appears to be a promising method of intervention for autistic children; however, it should not yet be considered an evidence-based approach. The students, using this research, developed ideas on social story interventions which aim to help autistic children.Keywords: autistic children, digital technologies, intervention, social stories
Procedia PDF Downloads 12122440 Boundary Conditions for 2D Site Response Analysis in OpenSees
Authors: M. Eskandarighadi, C. R. McGann
Abstract:
It is observed from past experiences of earthquakes that local site conditions can significantly affect the strong ground motion characteristicssuch as frequency content, amplitude, and duration of seismic waves. The most common method for investigating site response is one-dimensional seismic site response analysis. The infinite horizontal length of the model and the homogeneous characteristic of the soil are crucial assumptions of this method. One boundary condition that can be used in the sides is tying the sides horizontally for vertical 1D wave propagation. However, 1D analysis cannot account for the 2D nature of wave propagation in the condition where the soil profile is not fully horizontal or has heterogeneity within layers. Therefore, 2D seismic site response analysis can be used to take all of these limitations into account for a better understanding of local site conditions. Different types of boundary conditions can be appliedin 2D site response models, such as tied boundary condition, massive columns, and free-field boundary condition. The tied boundary condition has been used in 1D analysis, which is useful for 1D wave propagation. Employing two massive columns at the sides is another approach for capturing the 2D nature of wave propagation. Free-field boundary condition can simulate the free-field motion that would exist far from the domain of interest. The goal for free-field boundary condition is to minimize the unwanted reflection from sides. This research focuses on the comparison between these methods with examples and discusses the details and limitations of each of these boundary conditions.Keywords: boundary condition, free-field, massive columns, opensees, site response analysis, wave propagation
Procedia PDF Downloads 185