Search results for: winkler model (beam on elastic foundation)
13687 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation
Procedia PDF Downloads 21413686 Innovations in the Implementation of Preventive Strategies and Measuring Their Effectiveness Towards the Prevention of Harmful Incidents to People with Mental Disabilities who Receive Home and Community Based Services
Authors: Carlos V. Gonzalez
Abstract:
Background: Providers of in-home and community based services strive for the elimination of preventable harm to the people under their care as well as to the employees who support them. Traditional models of safety and protection from harm have assumed that the absence of incidents of harm is a good indicator of safe practices. However, this model creates an illusion of safety that is easily shaken by sudden and inadvertent harmful events. As an alternative, we have developed and implemented an evidence-based resilient model of safety known as C.O.P.E. (Caring, Observing, Predicting and Evaluating). Within this model, safety is not defined by the absence of harmful incidents, but by the presence of continuous monitoring, anticipation, learning, and rapid response to events that may lead to harm. Objective: The objective was to evaluate the effectiveness of the C.O.P.E. model for the reduction of harm to individuals with mental disabilities who receive home and community based services. Methods: Over the course of 2 years we counted the number of incidents of harm and near misses. We trained employees on strategies to eliminate incidents before they fully escalated. We trained employees to track different levels of patient status within a scale from 0 to 10. Additionally, we provided direct support professionals and supervisors with customized smart phone applications to track and notify the team of changes in that status every 30 minutes. Finally, the information that we collected was saved in a private computer network that analyzes and graphs the outcome of each incident. Result and conclusions: The use of the COPE model resulted in: A reduction in incidents of harm. A reduction the use of restraints and other physical interventions. An increase in Direct Support Professional’s ability to detect and respond to health problems. Improvement in employee alertness by decreasing sleeping on duty. Improvement in caring and positive interaction between Direct Support Professionals and the person who is supported. Developing a method to globally measure and assess the effectiveness of prevention from harm plans. Future applications of the COPE model for the reduction of harm to people who receive home and community based services are discussed.Keywords: harm, patients, resilience, safety, mental illness, disability
Procedia PDF Downloads 45113685 Nonlinear Estimation Model for Rail Track Deterioration
Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami
Abstract:
Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.Keywords: ANFIS, MGT, prediction modeling, rail track degradation
Procedia PDF Downloads 34013684 Comparative Study of Sorption of Cr Ions and Dye Bezaktiv Yellow HE-4G with the Use of Adsorbents Natural Mixture of Olive Stone and Date Pits from Aqueous Solution
Authors: H. Aksas, H. Babaci, K. Louhab
Abstract:
In this paper, a comparative study of the adsorption of Chromium and dyes, onto mixture biosorbents, olive stones and date pits at different percentage was investigated in aqueous solution. The study of various parameters: Effect of contact time, pH, temperature and initial concentration shows that these materials possess a high affinity for the adsorption of chromium for the adsorption of dye bezaktiv yellow HE-4G. To deepen the comparative study of the adsorption of chromium and dye with the use of different blends of olive stones and date pits, the following models are studied: Langmuir, Freundlich isotherms and Dubinin- Radushkvich (D-R) were used as the adsorption equilibrium data model. Langmuir isotherm model was the most suitable for the adsorption of the dye bezaktiv HE-4G and the D-R model is most suitable for adsorption Chrome. The pseudo-first-order model, pseudo-second order and intraparticle diffusion were used to describe the adsorption kinetics. The apparent activation energy was found to be less than 8KJ/mol, which is characteristic of a controlled chemical reaction for the adsorption of two materials. t was noticed that adsorption of chromium and dye BEZAKTIV HE-YELLOW 4G follows the kinetics of the pseudo second order. The study of the effect of temperature was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes. The resulting thermodynamic parameters indicate the endothermic nature of the adsorption of Cr (VI) ions and the dye Bezaktiv HE-4G. But these materials are very good adsorbents, as they represent a low cost. in addition, it has been noticed that the greater the quantity of olive stone in the mixture increases, the adsorption ability of the dye or chromium increases.Keywords: chromium ions, anions dye, sorption, mixed adsorbents, olive stone, date pits
Procedia PDF Downloads 23213683 Measuring Service Recovery Quality of Electronic Shopping Customers: A Study of Select Cities in India
Authors: Ramanjaneyulu Mogili, G.V.R.K. Acharyulu
Abstract:
Indian organized retail sector is growing at a faster pace and gaining popularity. Indian Brand Equity Foundation (IBEF) reveals that the current market size of Indian retail industry is about US$ 520 billion with for growth rate 14 to 15 percent annually by 2018 the Indian retail sector is likely to grow at a CAGR of 13% to reach a size of US$ 950 billion. Developments in Information Technology have enabled online Retail sector that empowers customers to order products, conduct transactions without the need to interact physically with the retailers. In recent years, the online shopping industry has gained popularity to the point where certain categories of customers would consider buying electronic products online rather than visiting the stores. Conventionally the physical location of a store is seen as a source of competitive advantage. Online Retailing service sites provide virtual shopping space to the customers. Online Retail services are gaining momentum in India, with internet penetration improving in the country and smartphones becoming affordable along with changing lifestyles and preferences of customers. Although online shoppers prefer the convenience and choice available in online shopping, certain issues raised due to the occurrence of service failure. The proposed study attempts to measure the service recovery and failure process of electronic goods in Indian retail channels.Keywords: service recovery, customer satisfaction, e-shopping, service failure
Procedia PDF Downloads 23313682 Growth Curves Genetic Analysis of Native South Caspian Sea Poultry Using Bayesian Statistics
Authors: Jamal Fayazi, Farhad Anoosheh, Mohammad R. Ghorbani, Ali R. Paydar
Abstract:
In this study, to determine the best non-linear regression model describing the growth curve of native poultry, 9657 chicks of generations 18, 19, and 20 raised in Mazandaran breeding center were used. Fowls and roosters of this center distributed in south of Caspian Sea region. To estimate the genetic variability of none linear regression parameter of growth traits, a Gibbs sampling of Bayesian analysis was used. The average body weight traits in the first day (BW1), eighth week (BW8) and twelfth week (BW12) were respectively estimated as 36.05, 763.03, and 1194.98 grams. Based on the coefficient of determination, mean squares of error and Akaike information criteria, Gompertz model was selected as the best growth descriptive function. In Gompertz model, the estimated values for the parameters of maturity weight (A), integration constant (B) and maturity rate (K) were estimated to be 1734.4, 3.986, and 0.282, respectively. The direct heritability of BW1, BW8 and BW12 were respectively reported to be as 0.378, 0.3709, 0.316, 0.389, 0.43, 0.09 and 0.07. With regard to estimated parameters, the results of this study indicated that there is a possibility to improve some property of growth curve using appropriate selection programs.Keywords: direct heritability, Gompertz, growth traits, maturity weight, native poultry
Procedia PDF Downloads 26913681 The Per Capita Income, Energy production and Environmental Degradation: A Comprehensive Assessment of the existence of the Environmental Kuznets Curve Hypothesis in Bangladesh
Authors: Ashique Mahmud, MD. Ataul Gani Osmani, Shoria Sharmin
Abstract:
In the first quarter of the twenty-first century, the most substantial global concern is environmental contamination, and it has gained the prioritization of both the national and international community. Keeping in mind this crucial fact, this study conducted different statistical and econometrical methods to identify whether the gross national income of the country has a significant impact on electricity production from nonrenewable sources and different air pollutants like carbon dioxide, nitrous oxide, and methane emissions. Besides, the primary objective of this research was to analyze whether the environmental Kuznets curve hypothesis holds for the examined variables. After analyzing different statistical properties of the variables, this study came to the conclusion that the environmental Kuznets curve hypothesis holds for gross national income and carbon dioxide emission in Bangladesh in the short run as well as the long run. This study comes to this conclusion based on the findings of ordinary least square estimations, ARDL bound tests, short-run causality analysis, the Error Correction Model, and other pre-diagnostic and post-diagnostic tests that have been employed in the structural model. Moreover, this study wants to demonstrate that the outline of gross national income and carbon dioxide emissions is in its initial stage of development and will increase up to the optimal peak. The compositional effect will then force the emission to decrease, and the environmental quality will be restored in the long run.Keywords: environmental Kuznets curve hypothesis, carbon dioxide emission in Bangladesh, gross national income in Bangladesh, autoregressive distributed lag model, granger causality, error correction model
Procedia PDF Downloads 15613680 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease
Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani
Abstract:
Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence
Procedia PDF Downloads 2513679 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects
Authors: H. Triki, Y. Hamaizi, A. El-Akrmi
Abstract:
We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution
Procedia PDF Downloads 63913678 Common Sense Leadership in the Example of Turkish Political Leader Devlet Bahçeli
Authors: B. Gültekin, T. Gültekin
Abstract:
Peace diplomacy is the most important international tool to maintain peace all over the World. This study consists of three parts. In the first part, the leadership of Devlet Bahçeli, leader of the Nationalist Movement Party, will be introduced as a tool of peace communication and peace management. Also, in this part, peace communication will be explained by the peace leadership traits of Devlet Bahçeli, who is one of the efficient political leaders representing the concepts of compromise and agreement on different sides of politics. In the second part of study, it is aimed to analyze Devlet Bahçeli’s leadership within the frame of peace communication and the final part of this study is about creating an original public communication model for public diplomacy based on Devlet Bahçeli as an example. As a result, the main purpose of this study is to develop an original peace communication model including peace modules, peace management projects, original dialogue procedures and protocols exhibited in the policies of Devlet Bahçeli. The political leadership represented by Devlet Bahçeli inspires political leaders to provide peace communication. In this study, principles and policies of peace leadership of Devlet Bahçeli will be explained as an original model on a peace communication platform.Keywords: public diplomacy, dialogue management, peace leadership, peace diplomacy
Procedia PDF Downloads 17413677 Bioeconomic Modeling for the Sustainable Exploitation of Three Key Marine Species in Morocco
Authors: I .Ait El Harch, K. Outaaoui, Y. El Foutayeni
Abstract:
This study aims to deepen the understanding and optimize fishing activity in Morocco by holistically integrating biological and economic aspects. We develop a biological equilibrium model in which these competing species present their natural growth by logistic equations, taking into account density and competition between them. The integration of human intervention adds a realistic dimension to our model. A company specifically targets the three species, thus influencing population dynamics according to their fishing activities. The aim of this work is to determine the fishing effort that maximizes the company’s profit, taking into account the constraints associated with conserving ecosystem equilibrium.Keywords: bioeconomical modeling, optimization techniques, linear complementarity problem LCP, biological equilibrium, maximizing profits
Procedia PDF Downloads 3113676 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 18813675 Salting Effect in Partially Miscible Systems of Water/Acétic Acid/1-Butanol at 298.15k: Experimental Study and Estimation of New Solvent-Solvent and Salt-Solvent Binary Interaction Parameters for NRTL Model
Authors: N. Bourayou, A. -H. Meniai, A. Gouaoura
Abstract:
The presence of salt can either raise or lower the distribution coefficient of a solute acetic acid in liquid- liquid equilibria. The coefficient of solute is defined as the ratio of the composition of solute in solvent rich phase to the composition of solute in diluents (water) rich phase. The phenomena are known as salting–out or salting-in, respectively. The effect of monovalent salt, sodium chloride and the bivalent salt, sodium sulfate on the distribution of acetic acid between 1-butanol and water at 298.15K were experimentally shown to be effective in modifying the liquid-liquid equilibrium of water/acetic acid/1-butanol system in favour of the solvent extraction of acetic acid from an aqueous solution with 1-butanol, particularly at high salt concentrations of both salts. All the two salts studied are found to have to salt out effect for acetic acid in varying degrees. The experimentally measured data were well correlated by Eisen-Joffe equation. NRTL model for solvent mixtures containing salts was able to provide good correlation of the present liquid-liquid equilibrium data. Using the regressed salt concentration coefficients for the salt-solvent interaction parameters and the solvent-solvent interaction parameters obtained from the same system without salt. The calculated phase equilibrium was in a quite good agreement with the experimental data, showing the ability of NRTL model to correlate salt effect on the liquid-liquid equilibrium.Keywords: activity coefficient, Eisen-Joffe, NRTL model, sodium chloride
Procedia PDF Downloads 28613674 Surge in U. S. Citizens Expatriation: Testing Structual Equation Modeling to Explain the Underlying Policy Rational
Authors: Marco Sewald
Abstract:
Comparing present to past the numbers of Americans expatriating U. S. citizenship have risen. Even though these numbers are small compared to the immigrants, U. S. citizens expatriations have historically been much lower, making the uptick worrisome. In addition, the published lists and numbers from the U.S. government seems incomplete, with many not counted. Different branches of the U. S. government report different numbers and no one seems to know exactly how big the real number is, even though the IRS and the FBI both track and/or publish numbers of Americans who renounce. Since there is no single explanation, anecdotal evidence suggests this uptick is caused by global tax law and increased compliance burdens imposed by the U.S. lawmakers on U.S. citizens abroad. Within a research project the question arose about the reasons why a constant growing number of U.S. citizens are expatriating – the answers are believed helping to explain the underlying governmental policy rational, leading to such activities. While it is impossible to locate former U.S. citizens to conduct a survey on the reasons and the U.S. government is not commenting on the reasons given within the process of expatriation, the chosen methodology is Structural Equation Modeling (SEM), in the first step by re-using current surveys conducted by different researchers within the population of U. S. citizens residing abroad during the last years. Surveys questioning the personal situation in the context of tax, compliance, citizenship and likelihood to repatriate to the U. S. In general SEM allows: (1) Representing, estimating and validating a theoretical model with linear (unidirectional or not) relationships. (2) Modeling causal relationships between multiple predictors (exogenous) and multiple dependent variables (endogenous). (3) Including unobservable latent variables. (4) Modeling measurement error: the degree to which observable variables describe latent variables. Moreover SEM seems very appealing since the results can be represented either by matrix equations or graphically. Results: the observed variables (items) of the construct are caused by various latent variables. The given surveys delivered a high correlation and it is therefore impossible to identify the distinct effect of each indicator on the latent variable – which was one desired result. Since every SEM comprises two parts: (1) measurement model (outer model) and (2) structural model (inner model), it seems necessary to extend the given data by conducting additional research and surveys to validate the outer model to gain the desired results.Keywords: expatriation of U. S. citizens, SEM, structural equation modeling, validating
Procedia PDF Downloads 22413673 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces
Authors: Monika Rawat, Rahul Kumar
Abstract:
Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation
Procedia PDF Downloads 19913672 Production of Nitric Oxide by Thienopyrimidine TP053
Authors: Elena G. Salina, Laurent R. Chiarelli, Maria R. Pasca, Vadim A. Makarov
Abstract:
Tuberculosis is one of the most challenging threats to human health, confronted by the problem of drug resistance. Evidently, new drugs for tuberculosis are urgently needed. Thienopyrimidine TP053 is one of the most promising new antitubercular prodrugs. Mycothiol-dependent reductase Mrx2, encoded by rv2466c, is known to be a TP053 activator; however, the precise mode of action of this compound remained unclear. Being highly active against both replicating and non-replicating tuberculosis bacilli, TP053 also revealed dose-escalating activity for M. tuberculosis-infected murine macrophages. The chemical structure of TP053 is characterized by the presence of NO₂ group which was suggested to be responsible for the toxic effects of the activated compound. Reduction of a nitroaromatic moiety of TP53 by Mrx2 was hypothesized to result in NO release. Analysis of the products of enzymatic activation of TP053 by Mrx2 by the Greiss reagent clearly demonstrated production of nitric oxide in a time-dependent manner. Mass-spectra of cell lysates of TP-treated M. tuberculosis bacilli demonstrated the transformation of TP053 to its non-active metabolite with Mw=261 that corresponds NO release. The mechanism of NO toxicity for bacteria includes DNA damage and degradation of iron-sulfur centers, especially under oxygen depletion. Thus, TP-053 drug-like scaffold is prospective for further development of novel anti-TB drug. This work was financially supported by the Russian Foundation for Basic Research (Grant 17-04-00342).Keywords: drug discovery, M. tuberculosis, nitric oxide, NO donors
Procedia PDF Downloads 15713671 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target
Authors: Vishal Raj, Noorhan Abbas
Abstract:
Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)
Procedia PDF Downloads 11213670 Incorporating Spatial Selection Criteria with Decision-Maker Preferences of A Precast Manufacturing Plant
Authors: M. N. A. Azman, M. S. S. Ahamad
Abstract:
The Construction Industry Development Board of Malaysia has been actively promoting the use of precast manufacturing in the local construction industry over the last decade. In an era of rapid technological changes, precast manufacturing significantly contributes to improving construction activities and ensuring sustainable economic growth. Current studies on the location decision of precast manufacturing plants aimed to enhanced local economic development are scarce. To address this gap, the present research establishes a new set of spatial criteria, such as attribute maps and preference weights, derived from a survey of local industry decision makers. These data represent the input parameters for the MCE-GIS site selection model, for which the weighted linear combination method is used. Verification tests on the model were conducted to determine the potential precast manufacturing sites in the state of Penang, Malaysia. The tests yield a predicted area of 12.87 acres located within a designated industrial zone. Although, the model is developed specifically for precast manufacturing plant but nevertheless it can be employed to other types of industries by following the methodology and guidelines proposed in the present research.Keywords: geographical information system, multi criteria evaluation, industrialised building system, civil engineering
Procedia PDF Downloads 29013669 Power and Wear Reduction Using Composite Links of Crank-Rocker Mechanism with Optimum Transmission Angle
Authors: Khaled M. Khader, Mamdouh I. Elimy
Abstract:
Reducing energy consumption became the major concern for all countries of the world during the recent decades. In general, power saving is currently the nominal goal of most industrial countries. It is well known that fossil fuels are the main pillar of development of world countries. Unfortunately, the increased rate of fossil fuel consumption will lead to serious problems caused by an expected depletion of fuels. Moreover, dangerous gases and vapors emission lead to severe environmental problems during fuel burning. Consequently, most engineering sectors especially the mechanical sectors are looking for improving any machine accompanied by reducing its energy consumption. Crank-Rocker planar mechanism is the most applied in mechanical systems. Besides, it is one of the most significant parts of the machines for obtaining the oscillatory motion. The transmission angle of this mechanism can be considered as an optimum value when its extreme values are equally varied around 90°. In addition, the transmission angle plays an important role in decreasing the required driving power and improving the dynamic properties of the mechanism. Hence, appropriate selection of mechanism links lengthens, which assures optimum transmission angle leads to decreasing the driving power. Moreover, mechanism's links manufactured from composite materials afford link's lightweight, which decreases the required driving torque. Furthermore, wear and corrosion problems can be treated through using composite links instead of using metal ones. This paper is dealing with improving the performance of crank-rocker mechanism using composite links due to their flexural elastic modulus values and stiffness in addition to high damping of composite materials.Keywords: Composite Material, Crank-Rocker Mechanism, Transmission angle, Design techniques, Power Saving
Procedia PDF Downloads 30713668 Approach to Quantify Groundwater Recharge Using GIS Based Water Balance Model
Authors: S. S. Rwanga, J. M. Ndambuki
Abstract:
Groundwater quantification needs a method which is not only flexible but also reliable in order to accurately quantify its spatial and temporal variability. As groundwater is dynamic and interdisciplinary in nature, an integrated approach of remote sensing (RS) and GIS technique is very useful in various groundwater management studies. Thus, the GIS water balance model (WetSpass) together with remote sensing (RS) can be used to quantify groundwater recharge. This paper discusses the concept of WetSpass in combination with GIS on the quantification of recharge with a view to managing water resources in an integrated framework. The paper presents the simulation procedures and expected output after simulation. Preliminary data are presented from GIS output only.Keywords: groundwater, recharge, GIS, WetSpass
Procedia PDF Downloads 45113667 Application of Response Surface Methodology to Optimize the Factor Influencing the Wax Deposition of Malaysian Crude Oil
Authors: Basem Elarbe, Ibrahim Elganidi, Norida Ridzuan, Norhyati Abdullah
Abstract:
Wax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the oil and gas industry due to low-temperature conditions. It may lead to a reduction in production, shut-in, plugging of pipelines and increased fluid viscosity. The most significant popular approach to solve this issue is by injection of a wax inhibitor into the channel. This research aims to determine the amount of wax deposition of Malaysian crude oil by estimating the effective parameters using (Design-Expert version 7.1.6) by response surface methodology (RSM) method. Important parameters affecting wax deposition such as cold finger temperature, inhibitor concentration and experimental duration were investigated. It can be concluded that SA-co-BA copolymer had a higher capability of reducing wax in different conditions where the minimum point of wax reduction was found at 300 rpm, 14℃, 1h, 1200 ppmThe amount of waxes collected for each parameter were 0.12g. RSM approach was applied using rotatable central composite design (CCD) to minimize the wax deposit amount. The regression model’s variance (ANOVA) results revealed that the R2 value of 0.9906, indicating that the model can be clarified 99.06% of the data variation, and just 0.94% of the total variation were not clarified by the model. Therefore, it indicated that the model is extremely significant, confirming a close agreement between the experimental and the predicted values. In addition, the result has shown that the amount of wax deposit decreased significantly with the increase of temperature and the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA), which were set at 14°C and 1200 ppm, respectively. The amount of wax deposit was successfully reduced to the minimum value of 0.01 g after the optimization.Keywords: wax deposition, SABA inhibitor, RSM, operation factors
Procedia PDF Downloads 29113666 An Elasto-Viscoplastic Constitutive Model for Unsaturated Soils: Numerical Implementation and Validation
Authors: Maria Lazari, Lorenzo Sanavia
Abstract:
Mechanics of unsaturated soils has been an active field of research in the last decades. Efficient constitutive models that take into account the partial saturation of soil are necessary to solve a number of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls. A large number of constitutive models can now be found in the literature that considers fundamental issues associated with the unsaturated soil behaviour, like the volume change and shear strength behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse upon wetting depending on the stress level, and it is also possible that a soil might experience a reversal in the volumetric behaviour during wetting. Shear strength of soils also changes dramatically with changes in the degree of saturation, and a related engineering problem is slope failures caused by rainfall. There are several states of the art reviews over the last years for studying the topic, usually providing a thorough discussion of the stress state, the advantages, and disadvantages of specific constitutive models as well as the latest developments in the area of unsaturated soil modelling. However, only a few studies focused on the coupling between partial saturation states and time effects on the behaviour of geomaterials. Rate dependency is experimentally observed in the mechanical response of granular materials, and a viscoplastic constitutive model is capable of reproducing creep and relaxation processes. Therefore, in this work an elasto-viscoplastic constitutive model for unsaturated soils is proposed and validated on the basis of experimental data. The model constitutes an extension of an existing elastoplastic strain-hardening constitutive model capable of capturing the behaviour of variably saturated soils, based on energy conjugated stress variables in the framework of superposed continua. The purpose was to develop a model able to deal with possible mechanical instabilities within a consistent energy framework. The model shares the same conceptual structure of the elastoplastic laws proposed to deal with bonded geomaterials subject to weathering or diagenesis and is capable of modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. The novelty of the proposed formulation is enhanced with the incorporation of density dependent stiffness and hardening coefficients in order to allow the modeling of the pycnotropy behaviour of granular materials with a single set of material constants. The model has been implemented in the commercial FE platform PLAXIS, widely used in Europe for advanced geotechnical design. The algorithmic strategies adopted for the stress-point algorithm had to be revised to take into account the different approach adopted by PLAXIS developers in the solution of the discrete non-linear equilibrium equations. An extensive comparison between models with a series of experimental data reported by different authors is presented to validate the model and illustrate the capability of the newly developed model. After the validation, the effectiveness of the viscoplastic model is displayed by numerical simulations of a partially saturated slope failure of the laboratory scale and the effect of viscosity and degree of saturation on slope’s stability is discussed.Keywords: PLAXIS software, slope, unsaturated soils, Viscoplasticity
Procedia PDF Downloads 22613665 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 8213664 Effect of Glass Powder and GGBS on Strength of Fly Ash Based Geopolymer Concrete
Authors: I. Ramesha Mithanthaya, N. Bhavanishankar Rao
Abstract:
In this study, the effect of glass powder (GP) and ground granulated blast furnace slag (GGBS) on the compressive strength of Fly ash based geopolymer concrete has been investigated. The mass ratio of fine aggregate (fA) to coarse aggregate (CA) was maintained constant. NAOH flakes dissolved in water was used as activating liquid and mixed with fly ash (FA) to produce geopolymer paste or cementing material. This paste was added to mixture of CA and fA to obtain geopolymer concrete. Cube samples were prepared from this concrete. The ranges of investigation parameters include GP/FA from 0% to 20%, and GGBS/ FA from 0% to 20% with constant amount of GP. All the samples were air cured inside laboratory under room temperature. Compressive strength of cube samples after 7 days and 28 days curing were determined. The test results are presented and discussed. Based on the results of limited tests a suitable composition of FA, GP and GGBS for constant quantity of CA and fA has been obtained to produce geopolymer concrete of M32. It is found that geopolymer concrete is 14% cheaper than concrete of same strength using OPC. The strength gain in the case of geo-polymer concrete is rather slow compared to that of Portland cement concrete. Tensile strength of this concrete was also determined by conducting flexure test on beam prepared using this concrete. During curing, up to 7days, greyish-white powder used to come out from all the surfaces of sample and it was found to be a mixture of Carbonates and Sulphides of Na, Mg and Fe. Detailed investigation is necessary to arrive at an optimum mixture composition for producing Geo-polymer concrete of required strength. Effect of greyish-white powder on the strength and durability of the concrete is to be studied.Keywords: geopolymer, industrial waste, green material, cost effective material, eco-friendly material
Procedia PDF Downloads 54613663 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 20213662 Learners as Consultants: Knowledge Acquisition and Client Organisations-A Student as Producer Case Study
Authors: Barry Ardley, Abi Hunt, Nick Taylor
Abstract:
As a theoretical and practical framework, this study uses the student-as-producer approach to learning in higher education, as adopted by the Lincoln International Business School, University of Lincoln, UK. Students as producer positions learners as skilled and capable agents, able to participate as partners with tutors in live research projects. To illuminate the nature of this approach to learning and to highlight its critical issues, the authors report on two guided student consultancy projects. These were set up with the assistance of two local organisations in the city of Lincoln, UK. Using the student as a producer model to deliver the projects enabled learners to acquire and develop a range of key skills and knowledge not easily accessible in more traditional educational settings. This paper presents a systematic case study analysis of the eight organising principles of the student-as-producer model, as adopted by university tutors. The experience of tutors implementing students as producers suggests that the model can be widely applied to benefit not only the learning and teaching experiences of higher education students and staff but additionally a university’s research programme and its community partners.Keywords: consultancy, learning, student as producer, research
Procedia PDF Downloads 8113661 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 28313660 Mastering Multiplication Tables: Unlocking Academic Excellence in Speed and Accuracy
Authors: Chidozie Gabriel Uzoigwe
Abstract:
Mastery of multiplication tables is a critical foundation for mathematical proficiency, influencing both academic speed and accuracy. This study examines the impact of multiplication table mastery on academic performance, drawing on data from the 2024 National Multiplication Table Challenge (NMTC) held in Ebonyi State, Nigeria. The competition involved 500 pupils and evaluated their speed and accuracy in solving multiplication-related problems. Notably, the top 12 participants exhibited exceptional performance, demonstrating a strong correlation between mastery of multiplication tables and enhanced academic capabilities. This paper delves into the factors contributing to multiplication table mastery, including teaching methodologies, cognitive development, and access to resources, while also identifying educational gaps that hinder foundational mathematics learning. The analysis underscores the need for targeted interventions such as innovative instructional strategies, early exposure to multiplication concepts, and structured assessment programs to address these challenges. The findings reinforce the pivotal role of multiplication table mastery in fostering academic excellence and provide actionable recommendations for educators, policymakers, and stakeholders in mathematics education. By prioritizing foundational skills, this study advocates for a global emphasis on improving mathematics education to support students' academic success.Keywords: academic performance, academic speed and accuracy, foundational mathematics, mathematical proficiency, multiplication table mastery, teaching methodologies
Procedia PDF Downloads 613659 Modeling Jordan University of Science and Technology Parking Using Arena Program
Authors: T. Qasim, M. Alqawasmi, M. Hawash, M. Betar, W. Qasim
Abstract:
Over the last decade, the over population that has happened in urban areas has been reflecting on the services that various local institutions provide to car users in the form of car parks, which is becoming a daily necessity in our lives. This study focuses on car parks at Jordan University of Science and Technology, in Irbid, Jordan, to understand the university parking needs. Data regarding arrival and departure times of cars and the parking utilization were collected, to find various options that the university can implement to solve and develop an efficient car parking system. Arena software was used to simulate a parking model. This model allows measuring the different solutions that solve the parking problem at Jordan University of Science and Technology.Keywords: car park, simulation, modeling, service time
Procedia PDF Downloads 19213658 Analysis of Creative City Indicators in Isfahan City, Iran
Authors: Reza Mokhtari Malek Abadi, Mohsen Saghaei, Fatemeh Iman
Abstract:
This paper investigates the indices of a creative city in Isfahan. Its main aim is to evaluate quantitative status of the creative city indices in Isfahan city, analyze the dispersion and distribution of these indices in Isfahan city. Concerning these, this study tries to analyze the creative city indices in fifteen area of Isfahan through secondary data, questionnaire, TOPSIS model, Shannon entropy and SPSS. Based on this, the fifteen areas of Isfahan city have been ranked with 12 factors of creative city indices. The results of studies show that fifteen areas of Isfahan city are not equally benefiting from creative indices and there is much difference between the areas of Isfahan city.Keywords: grading, creative city, creative city evaluation indicators, regional planning model
Procedia PDF Downloads 476