Search results for: modeling platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5849

Search results for: modeling platform

479 Transportation Mode Choice Analysis for Accessibility of the Mehrabad International Airport by Statistical Models

Authors: Navid Mirzaei Varzeghani, Mahmoud Saffarzadeh, Ali Naderan, Amirhossein Taheri

Abstract:

Countries are progressing, and the world's busiest airports see year-on-year increases in travel demand. Passenger acceptability of an airport depends on the airport's appeals, which may include one of these routes between the city and the airport, as well as the facilities to reach them. One of the critical roles of transportation planners is to predict future transportation demand so that an integrated, multi-purpose system can be provided and diverse modes of transportation (rail, air, and land) can be delivered to a destination like an airport. In this study, 356 questionnaires were filled out in person over six days. First, the attraction of business and non-business trips was studied using data and a linear regression model. Lower travel costs, a range of ages more significant than 55, and other factors are essential for business trips. Non-business travelers, on the other hand, have prioritized using personal vehicles to get to the airport and ensuring convenient access to the airport. Business travelers are also less price-sensitive than non-business travelers regarding airport travel. Furthermore, carrying additional luggage (for example, more than one suitcase per person) undoubtedly decreases the attractiveness of public transit. Afterward, based on the manner and purpose of the trip, the locations with the highest trip generation to the airport were identified. The most famous district in Tehran was District 2, with 23 visits, while the most popular mode of transportation was an online taxi, with 12 trips from that location. Then, significant variables in separation and behavior of travel methods to access the airport were investigated for all systems. In this scenario, the most crucial factor is the time it takes to get to the airport, followed by the method's user-friendliness as a component of passenger preference. It has also been demonstrated that enhancing public transportation trip times reduces private transportation's market share, including taxicabs. Based on the responses of personal and semi-public vehicles, the desire of passengers to approach the airport via public transportation systems was explored to enhance present techniques and develop new strategies for providing the most efficient modes of transportation. Using the binary model, it was clear that business travelers and people who had already driven to the airport were the least likely to change.

Keywords: multimodal transportation, demand modeling, travel behavior, statistical models

Procedia PDF Downloads 178
478 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 422
477 The Impact of an Improved Strategic Partnership Programme on Organisational Performance and Growth of Firms in the Internet Protocol Television and Hybrid Fibre-Coaxial Broadband Industry

Authors: Collen T. Masilo, Brane Semolic, Pieter Steyn

Abstract:

The Internet Protocol Television (IPTV) and Hybrid Fibre-Coaxial (HFC) Broadband industrial sector landscape are rapidly changing and organisations within the industry need to stay competitive by exploring new business models so that they can be able to offer new services and products to customers. The business challenge in this industrial sector is meeting or exceeding high customer expectations across multiple content delivery modes. The increasing challenges in the IPTV and HFC broadband industrial sector encourage service providers to form strategic partnerships with key suppliers, marketing partners, advertisers, and technology partners. The need to form enterprise collaborative networks poses a challenge for any organisation in this sector, in selecting the right strategic partners who will ensure that the organisation’s services and products are marketed in new markets. Partners who will ensure that customers are efficiently supported by meeting and exceeding their expectations. Lastly, selecting cooperation partners who will represent the organisation in a positive manner, and contribute to improving the performance of the organisation. Companies in the IPTV and HFC broadband industrial sector tend to form informal partnerships with suppliers, vendors, system integrators and technology partners. Generally, partnerships are formed without thorough analysis of the real reason a company is forming collaborations, without proper evaluations of prospective partners using specific selection criteria, and with ineffective performance monitoring of partners to ensure that a firm gains real long term benefits from its partners and gains competitive advantage. Similar tendencies are illustrated in the research case study and are based on Skyline Communications, a global leader in end-to-end, multi-vendor network management and operational support systems (OSS) solutions. The organisation’s flagship product is the DataMiner network management platform used by many operators across multiple industries and can be referred to as a smart system that intelligently manages complex technology ecosystems for its customers in the IPTV and HFC broadband industry. The approach of the research is to develop the most efficient business model that can be deployed to improve a strategic partnership programme in order to significantly improve the performance and growth of organisations participating in a collaborative network in the IPTV and HFC broadband industrial sector. This involves proposing and implementing a new strategic partnership model and its main features within the industry which should bring about significant benefits for all involved companies to achieve value add and an optimal growth strategy. The proposed business model has been developed based on the research of existing relationships, value chains and business requirements in this industrial sector and validated in 'Skyline Communications'. The outputs of the business model have been demonstrated and evaluated in the research business case study the IPTV and HFC broadband service provider 'Skyline Communications'.

Keywords: growth, partnership, selection criteria, value chain

Procedia PDF Downloads 135
476 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.

Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)

Procedia PDF Downloads 363
475 Surveillance of Artemisinin Resistance Markers and Their Impact on Treatment Outcomes in Malaria Patients in an Endemic Area of South-Western Nigeria

Authors: Abiodun Amusan, Olugbenga Akinola, Kazeem Akano, María Hernández-Castañeda, Jenna Dick, Akintunde Sowunmi, Geoffrey Hart, Grace Gbotosho

Abstract:

Introduction: Artemisinin-based Combination Therapy (ACTs) is the cornerstone malaria treatment option in most malaria-endemic countries. Unfortunately, the malaria control effort is constantly being threatened by resistance of Plasmodium falciparum to ACTs. The recent evidence of artemisinin resistance in East Africa and its possibility of spreading to other African regions portends an imminent health catastrophe. This study aimed at evaluating the occurrence, prevalence, and influence of artemisinin-resistance markers on treatment outcomes in Ibadan before and after post-adoption of artemisinin combination therapy (ACTs) in Nigeria in 2005. Method: The study involved day zero dry blood spot (DBS) obtained from malaria patients during retrospective (2000-2005) and prospective (2021) studies. A cohort in the prospective study received oral dihydroartemisinin-piperaquine and underwent a 42-day follow-up to observe treatment outcomes. Genomic DNA was extracted from the DBS samples using a QIAamp blood extraction kit. Fragments of P. falciparum kelch13 (Pfkelch13), P. falciparum coronin (Pfcoronin), P. falciparum multidrug resistance 2 (PfMDR2), and P. falciparum chloroquine resistance transporter (PfCRT) genes were amplified and sequenced on a sanger sequencing platform to identify artemisinin resistance-associated mutations. Mutations were identified by aligning sequenced data with reference sequences obtained from the National Center for Biotechnology Information. Data were analyzed using descriptive statistics and student t-tests. Results: Mean parasite clearance time (PCT) and fever clearance time (FCT) were 2.1 ± 0.6 days (95% CI: 1.97-2.24) and 1.3 ± 0.7 days (95% CI: 1.1-1.6) respectively. Four mutations, K189T [34/53(64.2%)], R255K [2/53(3.8%)], K189N [1/53(1.9%)] and N217H [1/53(1.9%)] were identified within the N-terminal (Coiled-coil containing) domain of Pfkelch13. No artemisinin resistance-associated mutation usually found within the β-propeller domain of the Pfkelch13 gene was found in these analyzed samples. However, K189T and R255K mutations showed a significant correlation with longer parasite clearance time in the patients (P<0.002). The observed Pfkelch13 gene changes did not influence the baseline mean parasitemia (P = 0.44). P76S [17/100 (17%)] and V62M [1/100 (1%)] changes were identified in the Pfcoronin gene fragment without any influence on the parasitological parameters. No change was observed in the PfMDR2 gene, while no artemisinin resistance-associated mutation was found in the PfCRT gene. Furthermore, a sample each in the retrospective study contained the Pfkelch13 K189T and Pfcoronin P76S mutations. Conclusion: The study revealed absence of genetic-based evidence of artemisinin resistance in the study population at the time of study. The high frequency of K189T Pfkelch13 mutation and its correlation with increased parasite clearance time in this study may depict geographical variation of resistance mediators and imminent artemisinin resistance, respectively. The study also revealed an inherent potential of parasites to harbour drug-resistant genotypes before the introduction of ACTs in Nigeria.

Keywords: artemisinin resistance, plasmodium falciparum, Pfkelch13 mutations, Pfcoronin

Procedia PDF Downloads 53
474 A Decision-Support Tool for Humanitarian Distribution Planners in the Face of Congestion at Security Checkpoints: A Real-World Case Study

Authors: Mohanad Rezeq, Tarik Aouam, Frederik Gailly

Abstract:

In times of armed conflicts, various security checkpoints are placed by authorities to control the flow of merchandise into and within areas of conflict. The flow of humanitarian trucks that is added to the regular flow of commercial trucks, together with the complex security procedures, creates congestion and long waiting times at the security checkpoints. This causes distribution costs to increase and shortages of relief aid to the affected people to occur. Our research proposes a decision-support tool to assist planners and policymakers in building efficient plans for the distribution of relief aid, taking into account congestion at security checkpoints. The proposed tool is built around a multi-item humanitarian distribution planning model based on multi-phase design science methodology that has as its objective to minimize distribution and back ordering costs subject to capacity constraints that reflect congestion effects using nonlinear clearing functions. Using the 2014 Gaza War as a case study, we illustrate the application of the proposed tool, model the underlying relief-aid humanitarian supply chain, estimate clearing functions at different security checkpoints, and conduct computational experiments. The decision support tool generated a shipment plan that was compared to two benchmarks in terms of total distribution cost, average lead time and work in progress (WIP) at security checkpoints, and average inventory and backorders at distribution centers. The first benchmark is the shipment plan generated by the fixed capacity model, and the second is the actual shipment plan implemented by the planners during the armed conflict. According to our findings, modeling and optimizing supply chain flows reduce total distribution costs, average truck wait times at security checkpoints, and average backorders when compared to the executed plan and the fixed-capacity model. Finally, scenario analysis concludes that increasing capacity at security checkpoints can lower total operations costs by reducing the average lead time.

Keywords: humanitarian distribution planning, relief-aid distribution, congestion, clearing functions

Procedia PDF Downloads 85
473 Smart Construction Sites in KSA: Challenges and Prospects

Authors: Ahmad Mohammad Sharqi, Mohamed Hechmi El Ouni, Saleh Alsulamy

Abstract:

Due to the emerging technologies revolution worldwide, the need to exploit and employ innovative technologies for other functions and purposes in different aspects has become a remarkable matter. Saudi Arabia is considered one of the most powerful economic countries in the world, where the construction sector participates effectively in its economy. Thus, the construction sector in KSA should convoy the rapid digital revolution and transformation and implement smart devices on sites. A Smart Construction Site (SCS) includes smart devices, artificial intelligence, the internet of things, augmented reality, building information modeling, geographical information systems, and cloud information. This paper aims to study the level of implementation of SCS in KSA, analyze the obstacles and challenges of adopting SCS and find out critical success factors for its implementation. A survey of close-ended questions (scale and multi-choices) has been conducted on professionals in the construction sector of Saudi Arabia. A total number of twenty-nine questions has been prepared for respondents. Twenty-four scale questions were established, and those questions were categorized into several themes: quality, scheduling, cost, occupational safety and health, technologies and applications, and general perception. Consequently, the 5-point Likert scale tool (very low to very high) was adopted for this survey. In addition, five close-ended questions with multi-choice types have also been prepared; these questions have been derived from a previous study implemented in the United Kingdom (UK) and the Dominic Republic (DR), these questions have been rearranged and organized to fit the structured survey in order to place the Kingdom of Saudi Arabia in comparison with the United Kingdom (UK) as well as the Dominican Republic (DR). A total number of one hundred respondents have participated in this survey from all regions of the Kingdom of Saudi Arabia: southern, central, western, eastern, and northern regions. The drivers, obstacles, and success factors for implementing smart devices and technologies in KSA’s construction sector have been investigated and analyzed. Besides, it has been concluded that KSA is on the right path toward adopting smart construction sites with attractive results comparable to and even better than the UK in some factors.

Keywords: artificial intelligence, construction projects management, internet of things, smart construction sites, smart devices

Procedia PDF Downloads 159
472 Modeling the Downstream Impacts of River Regulation on the Grand Lake Meadows Complex using Delft3D FM Suite

Authors: Jaime Leavitt, Katy Haralampides

Abstract:

Numerical modelling has been used to investigate the long-term impact of a large dam on downstream wetland areas, specifically in terms of changing sediment dynamics in the system. The Mactaquac Generating Station (MQGS) is a 672MW run-of-the-river hydroelectric facility, commissioned in 1968 on the mainstem of the Wolastoq|Saint John River in New Brunswick, Canada. New Brunswick Power owns and operates the dam and has been working closely with the Canadian Rivers Institute at UNB Fredericton on a multi-year, multi-disciplinary project investigating the impact the dam has on its surrounding environment. With focus on the downstream river, this research discusses the initialization, set-up, calibration, and preliminary results of a 2-D hydrodynamic model using the Delft3d Flexible Mesh Suite (successor of the Delft3d 4 Suite). The flexible mesh allows the model grid to be structured in the main channel and unstructured in the floodplains and other downstream regions with complex geometry. The combination of grid types improves computational time and output. As the movement of water governs the movement of sediment, the calibrated and validated hydrodynamic model was applied to sediment transport simulations, particularly of the fine suspended sediments. Several provincially significant Protected Natural Areas and federally significant National Wildlife Areas are located 60km downstream of the MQGS. These broad, low-lying floodplains and wetlands are known as the Grand Lake Meadows Complex (GLM Complex). There is added pressure to investigate the impacts of river regulation on these protected regions that rely heavily on natural river processes like sediment transport and flooding. It is hypothesized that the fine suspended sediment would naturally travel to the floodplains for nutrient deposition and replenishment, particularly during the freshet and large storms. The purpose of this research is to investigate the impacts of river regulation on downstream environments and use the model as a tool for informed decision making to protect and maintain biologically productive wetlands and floodplains.

Keywords: hydrodynamic modelling, national wildlife area, protected natural area, sediment transport.

Procedia PDF Downloads 14
471 Modeling the Impact of Aquaculture in Wetland Ecosystems Using an Integrated Ecosystem Approach: Case Study of Setiu Wetlands, Malaysia

Authors: Roseliza Mat Alipiah, David Raffaelli, J. C. R. Smart

Abstract:

This research is a new approach as it integrates information from both environmental and social sciences to inform effective management of the wetlands. A three-stage research framework was developed for modelling the drivers and pressures imposed on the wetlands and their impacts to the ecosystem and the local communities. Firstly, a Bayesian Belief Network (BBN) was used to predict the probability of anthropogenic activities affecting the delivery of different key wetland ecosystem services under different management scenarios. Secondly, Choice Experiments (CEs) were used to quantify the relative preferences which key wetland stakeholder group (aquaculturists) held for delivery of different levels of these key ecosystem services. Thirdly, a Multi-Criteria Decision Analysis (MCDA) was applied to produce an ordinal ranking of the alternative management scenarios accounting for their impacts upon ecosystem service delivery as perceived through the preferences of the aquaculturists. This integrated ecosystem management approach was applied to a wetland ecosystem in Setiu, Terengganu, Malaysia which currently supports a significant level of aquaculture activities. This research has produced clear guidelines to inform policy makers considering alternative wetland management scenarios: Intensive Aquaculture, Conservation or Ecotourism, in addition to the Status Quo. The findings of this research are as follows: The BBN revealed that current aquaculture activity is likely to have significant impacts on water column nutrient enrichment, but trivial impacts on caged fish biomass, especially under the Intensive Aquaculture scenario. Secondly, the best fitting CE models identified several stakeholder sub-groups for aquaculturists, each with distinct sets of preferences for the delivery of key ecosystem services. Thirdly, the MCDA identified Conservation as the most desirable scenario overall based on ordinal ranking in the eyes of most of the stakeholder sub-groups. Ecotourism and Status Quo scenarios were the next most preferred and Intensive Aquaculture was the least desirable scenario. The methodologies developed through this research provide an opportunity for improving planning and decision making processes that aim to deliver sustainable management of wetland ecosystems in Malaysia.

Keywords: Bayesian belief network (BBN), choice experiments (CE), multi-criteria decision analysis (MCDA), aquaculture

Procedia PDF Downloads 297
470 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector

Authors: Sanaz Moayer, Fang Huang, Scott Gardner

Abstract:

In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.

Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management

Procedia PDF Downloads 417
469 Sustainable Organization for Sustainable Strategy: An Empirical Evidence

Authors: Lucia Varra, Marzia Timolo

Abstract:

The interest of scholars towards corporate sustainability has strengthened in recent years in parallel with the growing need to undertake paths of cultural and organizational change, as a way for greater competitiveness and stakeholders’ satisfaction. In fact, studies on the business sustainability, while on the one hand have integrated the three dimensions of sustainability that existed for some time in the economic approaches (economic, environmental and social dimensions), on the other hand did not give rise to an organic construct that puts together the aspects of strategic management with corporate social responsibility and even less with the organizational issues. Therefore some important questions remain open: Which organizational structure and which operational mechanisms are coherent or propitious to a sustainability strategy? Existing studies appear to be fragmented, although some aspects have shared importance: knowledge management, human resource, management, leadership, innovation, etc. The construction of a model of sustainable organization that supports the sustainability strategy no longer seems to be postponed, as is its connection with the main practices of measuring corporate social responsibility performance. The paper aims to identify the organizational characteristics of a sustainable corporate. To this end, from a theoretical point of view the work examines the main existing literary contributions and, from a practical point of view, it presents a business case referring to a service organization that for years has undertaken the sustainability strategy. This paper is divided into two parts: the first part concerns a review of the main articles on the strategic management topic and the main organizational issues raised by the literature, such as knowledge management, leadership, innovation, etc.; later, a modeling of the main variables examined by scholars and an integration of these with the international measurement standards of CSR is proposed. In the second part, using the methodology of the case study company, the hypotheses and the structure of the proposed model that aims to integrate the strategic issues with the organizational aspects and measurement of sustainability performance, are applied to an Italian company, which has some organizational and human resource management interventions are in place to align strategic decisions with the structure and operating mechanisms of the structure. The case presented supports the hypotheses of the model.

Keywords: CSR, strategic management, sustainable leadership, sustainable human resource management, sustainable organization

Procedia PDF Downloads 105
468 Global Winners versus Local Losers: Globalization Identity and Tradition in Spanish Club Football

Authors: Jim O'brien

Abstract:

Contemporary global representation and consumption of La Liga across a plethora of media platform outlets has resulted in significant implications for the historical, political and cultural developments which shaped the development of Spanish club football. This has established and reinforced a hierarchy of a small number of teams belonging to or aspiring to belong to a cluster of global elite clubs seeking to imitate the blueprint of the English Premier League in respect of corporate branding and marketing in order to secure a global fan base through success and exposure in La Liga itself and through the Champions League. The synthesis between globalization, global sport and the status of high profile clubs has created radical change within the folkloric iconography of Spanish football. The main focus of this paper is to critically evaluate the consequences of globalization on the rich tapestry at the core of the game’s distinctive history in Spain. The seminal debate underpinning the study considers whether the divergent aspects of globalization have acted as a malevolent force, eroding tradition, causing financial meltdown and reducing much of the fabric of club football to the status of by standers, or have promoted a renaissance of these traditions, securing their legacies through new fans and audiences. The study draws on extensive sources on the history, politics and culture of Spanish football, in both English and Spanish. It also uses primary and archive material derived from interviews and fieldwork undertaken with scholars, media professionals and club representatives in Spain. The paper has four main themes. Firstly, it contextualizes the key historical, political and cultural forces which shaped the landscape of Spanish football from the late nineteenth century. The seminal notions of region, locality and cultural divergence are pivotal to this discourse. The study then considers the relationship between football, ethnicity and identity as a barometer of continuity and change, suggesting that tradition is being reinvented and re-framed to reflect the shifting demographic and societal patterns within the Spanish state. Following on from this, consideration is given to the paradoxical function of ‘El Clasico’ and the dominant duopoly of the FC Barcelona – Real Madrid axis in both eroding tradition in the global nexus of football’s commodification and in protecting historic political rivalries. To most global consumers of La Liga, the mega- spectacle and hyperbole of ‘El Clasico’ is the essence of Spanish football, with cultural misrepresentation and distortion catapulting the event to the global media audience. Finally, the paper examines La Liga as a sporting phenomenon in which elite clubs, cult managers and galacticos serve as commodities on the altar of mass consumption in football’s global entertainment matrix. These processes accentuate a homogenous mosaic of cultural conformity which obscures local, regional and national identities and paradoxically fuses the global with the local to maintain the distinctive hue of La Liga, as witnessed by the extraordinary successes of Athletico Madrid and FC Eibar in recent seasons.

Keywords: Spanish football, globalization, cultural identity, tradition, folklore

Procedia PDF Downloads 306
467 Neural Networks Underlying the Generation of Neural Sequences in the HVC

Authors: Zeina Bou Diab, Arij Daou

Abstract:

The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.

Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird

Procedia PDF Downloads 74
466 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study

Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen

Abstract:

One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.

Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction

Procedia PDF Downloads 162
465 Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System

Authors: Amaia Martinez Martinez, Martin Turek, Carlos Ventura, Jay Drew

Abstract:

This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions.

Keywords: arch, discrete element model, seismic assessment, shake-table testing

Procedia PDF Downloads 209
464 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 53
463 Maneuvering Modelling of a One-Degree-of-Freedom Articulated Vehicle: Modeling and Experimental Verification

Authors: Mauricio E. Cruz, Ilse Cervantes, Manuel J. Fabela

Abstract:

The evaluation of the maneuverability of road vehicles is generally carried out through the use of specialized computer programs due to the advantages they offer compared to the experimental method. These programs are based on purely geometric considerations of the characteristics of the vehicles, such as main dimensions, the location of the axles, and points of articulation, without considering parameters such as weight distribution and magnitude, tire properties, etc. In this paper, we address the problem of maneuverability in a semi-trailer truck to navigate urban streets, maneuvering yards, and parking lots, using the Ackerman principle to propose a kinematic model that, through geometric considerations, it is possible to determine the space necessary to maneuver safely. The model was experimentally validated by conducting maneuverability tests with an articulated vehicle. The measurements were made through a GPS that allows us to know the position, trajectory, and speed of the vehicle, an inertial motion unit (IMU) that allows measuring the accelerations and angular speeds in the semi-trailer, and an instrumented steering wheel that allows measuring the angle of rotation of the flywheel, the angular velocity and the torque applied to the flywheel. To obtain the steering angle of the tires, a parameterization of the complete travel of the steering wheel and its equivalent in the tires was carried out. For the tests, 3 different angles were selected, and 3 turns were made for each angle in both directions of rotation (left and right turn). The results showed that the proposed kinematic model achieved 95% accuracy for speeds below 5 km / h. The experiments revealed that that tighter maneuvers increased significantly the space required and that the vehicle maneuverability was limited by the size of the semi-trailer. The maneuverability was also tested as a function of the vehicle load and 3 different load levels we used: light, medium, and heavy. It was found that the internal turning radii also increased with the load, probably due to the changes in the tires' adhesion to the pavement since heavier loads had larger contact wheel-road surfaces. The load was found as an important factor affecting the precision of the model (up to 30%), and therefore I should be considered. The model obtained is expected to be used to improve maneuverability through a robust control system.

Keywords: articuled vehicle, experimental validation, kinematic model, maneuverability, semi-trailer truck

Procedia PDF Downloads 119
462 Development of Three-Dimensional Groundwater Model for Al-Corridor Well Field, Amman–Zarqa Basin

Authors: Moayyad Shawaqfah, Ibtehal Alqdah, Amjad Adaileh

Abstract:

Coridoor area (400 km2) lies to the north – east of Amman (60 km). It lies between 285-305 E longitude and 165-185 N latitude (according to Palestine Grid). It been subjected to exploitation of groundwater from new eleven wells since the 1999 with a total discharge of 11 MCM in addition to the previous discharge rate from the well field 14.7 MCM. Consequently, the aquifer balance is disturbed and a major decline in water level. Therefore, suitable groundwater resources management is required to overcome the problems of over pumping and its effect on groundwater quality. Three–dimensional groundwater flow model Processing Modeflow for Windows Pro (PMWIN PRO, 2003) has been used in order to calculate the groundwater budget, aquifer characteristics, and to predict the aquifer response under different stresses for the next 20 years (2035). The model was calibrated for steady state conditions by trial and error calibration. The calibration was performed by matching observed and calculated initial heads for year 2001. Drawdown data for period 2001-2010 were used to calibrate transient model by matching calculated with observed one, after that, the transient model was validated by using the drawdown data for the period 2011-2014. The hydraulic conductivities of the Basalt- A7/B2 aquifer System are ranging between 1.0 and 8.0 m/day. The low conductivity value was found at the north-west and south-western parts of the study area, the high conductivity value was found at north-western corner of the study area and the average storage coefficient is about 0.025. The water balance for the Basalt and B2/A7 formation at steady state condition with a discrepancy of 0.003%. The major inflows come from Jebal Al Arab through the basalt and through the limestone aquifer (B2/A7 12.28 MCMY aquifer and from excess rainfall is about 0.68 MCM/a. While the major outflows from the Basalt-B2/A7 aquifer system are toward Azraq basin with about 5.03 MCMY and leakage to A1/6 aquitard with 7.89 MCMY. Four scenarios have been performed to predict aquifer system responses under different conditions. Scenario no.2 was found to be the best one which indicates that the reduction the abstraction rates by 50% of current withdrawal rate (25.08 MCMY) to 12.54 MCMY. The maximum drawdowns were decreased to reach about, 7.67 and 8.38m in the years 2025 and 2035 respectively.

Keywords: Amman/Zarqa Basin, Jordan, groundwater management, groundwater modeling, modflow

Procedia PDF Downloads 217
461 Utilizing Topic Modelling for Assessing Mhealth App’s Risks to Users’ Health before and during the COVID-19 Pandemic

Authors: Pedro Augusto Da Silva E Souza Miranda, Niloofar Jalali, Shweta Mistry

Abstract:

BACKGROUND: Software developers utilize automated solutions to scrape users’ reviews to extract meaningful knowledge to identify problems (e.g., bugs, compatibility issues) and possible enhancements (e.g., users’ requests) to their solutions. However, most of these solutions do not consider the health risk aspects to users. Recent works have shed light on the importance of including health risk considerations in the development cycle of mHealth apps to prevent harm to its users. PROBLEM: The COVID-19 Pandemic in Canada (and World) is currently forcing physical distancing upon the general population. This new lifestyle made the usage of mHealth applications more essential than ever, with a projected market forecast of 332 billion dollars by 2025. However, this new insurgency in mHealth usage comes with possible risks to users’ health due to mHealth apps problems (e.g., wrong insulin dosage indication due to a UI error). OBJECTIVE: These works aim to raise awareness amongst mHealth developers of the importance of considering risks to users’ health within their development lifecycle. Moreover, this work also aims to help mHealth developers with a Proof-of-Concept (POC) solution to understand, process, and identify possible health risks to users of mHealth apps based on users’ reviews. METHODS: We conducted a mixed-method study design. We developed a crawler to mine the negative reviews from two samples of mHealth apps (my fitness, medisafe) from the Google Play store users. For each mHealth app, we performed the following steps: • The reviews are divided into two groups, before starting the COVID-19 (reviews’ submission date before 15 Feb 2019) and during the COVID-19 (reviews’ submission date starts from 16 Feb 2019 till Dec 2020). For each period, the Latent Dirichlet Allocation (LDA) topic model was used to identify the different clusters of reviews based on similar topics of review The topics before and during COVID-19 are compared, and the significant difference in frequency and severity of similar topics are identified. RESULTS: We successfully scraped, filtered, processed, and identified health-related topics in both qualitative and quantitative approaches. The results demonstrated the similarity between topics before and during the COVID-19.

Keywords: natural language processing (NLP), topic modeling, mHealth, COVID-19, software engineering, telemedicine, health risks

Procedia PDF Downloads 133
460 The Use of Random Set Method in Reliability Analysis of Deep Excavations

Authors: Arefeh Arabaninezhad, Ali Fakher

Abstract:

Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.

Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty

Procedia PDF Downloads 269
459 Factors Affecting Cesarean Section among Women in Qatar Using Multiple Indicator Cluster Survey Database

Authors: Sahar Elsaleh, Ghada Farhat, Shaikha Al-Derham, Fasih Alam

Abstract:

Background: Cesarean section (CS) delivery is one of the major concerns both in developing and developed countries. The rate of CS deliveries are on the rise globally, and especially in Qatar. Many socio-economic, demographic, clinical and institutional factors play an important role for cesarean sections. This study aims to investigate factors affecting the prevalence of CS among women in Qatar using the UNICEF’s Multiple Indicator Cluster Survey (MICS) 2012 database. Methods: The study has focused on the women’s questionnaire of the MICS, which was successfully distributed to 5699 participants. Following study inclusion and exclusion criteria, a final sample of 761 women aged 19- 49 years who had at least one delivery of giving birth in their lifetime before the survey were included. A number of socio-economic, demographic, clinical and institutional factors, identified through literature review and available in the data, were considered for the analyses. Bivariate and multivariate logistic regression models, along with a multi-level modeling to investigate clustering effect, were undertaken to identify the factors that affect CS prevalence in Qatar. Results: From the bivariate analyses the study has shown that, a number of categorical factors are statistically significantly associated with the dependent variable (CS). When identifying the factors from a multivariate logistic regression, the study found that only three categorical factors -‘age of women’, ‘place at delivery’ and ‘baby weight’ appeared to be significantly affecting the CS among women in Qatar. Although the MICS dataset is based on a cluster survey, an exploratory multi-level analysis did not show any clustering effect, i.e. no significant variation in results at higher level (households), suggesting that all analyses at lower level (individual respondent) are valid without any significant bias in results. Conclusion: The study found a statistically significant association between the dependent variable (CS delivery) and age of women, frequency of TV watching, assistance at birth and place of birth. These results need to be interpreted cautiously; however, it can be used as evidence-base for further research on cesarean section delivery in Qatar.

Keywords: cesarean section, factors, multiple indicator cluster survey, MICS database, Qatar

Procedia PDF Downloads 120
458 Estimating the Ladder Angle and the Camera Position From a 2D Photograph Based on Applications of Projective Geometry and Matrix Analysis

Authors: Inigo Beckett

Abstract:

In forensic investigations, it is often the case that the most potentially useful recorded evidence derives from coincidental imagery, recorded immediately before or during an incident, and that during the incident (e.g. a ‘failure’ or fire event), the evidence is changed or destroyed. To an image analysis expert involved in photogrammetric analysis for Civil or Criminal Proceedings, traditional computer vision methods involving calibrated cameras is often not appropriate because image metadata cannot be relied upon. This paper presents an approach for resolving this problem, considering in particular and by way of a case study, the angle of a simple ladder shown in a photograph. The UK Health and Safety Executive (HSE) guidance document published in 2014 (INDG455) advises that a leaning ladder should be erected at 75 degrees to the horizontal axis. Personal injury cases can arise in the construction industry because a ladder is too steep or too shallow. Ad-hoc photographs of such ladders in their incident position provide a basis for analysis of their angle. This paper presents a direct approach for ascertaining the position of the camera and the angle of the ladder simultaneously from the photograph(s) by way of a workflow that encompasses a novel application of projective geometry and matrix analysis. Mathematical analysis shows that for a given pixel ratio of directly measured collinear points (i.e. features that lie on the same line segment) from the 2D digital photograph with respect to a given viewing point, we can constrain the 3D camera position to a surface of a sphere in the scene. Depending on what we know about the ladder, we can enforce another independent constraint on the possible camera positions which enables us to constrain the possible positions even further. Experiments were conducted using synthetic and real-world data. The synthetic data modeled a vertical plane with a ladder on a horizontally flat plane resting against a vertical wall. The real-world data was captured using an Apple iPhone 13 Pro and 3D laser scan survey data whereby a ladder was placed in a known location and angle to the vertical axis. For each case, we calculated camera positions and the ladder angles using this method and cross-compared them against their respective ‘true’ values.

Keywords: image analysis, projective geometry, homography, photogrammetry, ladders, Forensics, Mathematical modeling, planar geometry, matrix analysis, collinear, cameras, photographs

Procedia PDF Downloads 55
457 Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands

Authors: Wondmyibza Tsegaye Bayou, Johannes C. Nonner, Joost Heijkers

Abstract:

This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach.

Keywords: groundwater seepage, phreatic water table, piezometric water level, nature reserve, Zegveld, The Netherlands

Procedia PDF Downloads 90
456 Interactive Virtual Patient Simulation Enhances Pharmacology Education and Clinical Practice

Authors: Lyndsee Baumann-Birkbeck, Sohil A. Khan, Shailendra Anoopkumar-Dukie, Gary D. Grant

Abstract:

Technology-enhanced education tools are being rapidly integrated into health programs globally. These tools provide an interactive platform for students and can be used to deliver topics in various modes including games and simulations. Simulations are of particular interest to healthcare education, where they are employed to enhance clinical knowledge and help to bridge the gap between theory and practice. Simulations will often assess competencies for practical tasks, yet limited research examines the effects of simulation on student perceptions of their learning. The aim of this study was to determine the effects of an interactive virtual patient simulation for pharmacology education and clinical practice on student knowledge, skills and confidence. Ethics approval for the study was obtained from Griffith University Research Ethics Committee (PHM/11/14/HREC). The simulation was intended to replicate the pharmacy environment and patient interaction. The content was designed to enhance knowledge of proton-pump inhibitor pharmacology, role in therapeutics and safe supply to patients. The tool was deployed into a third-year clinical pharmacology and therapeutics course. A number of core practice areas were examined including the competency domains of questioning, counselling, referral and product provision. Baseline measures of student self-reported knowledge, skills and confidence were taken prior to the simulation using a specifically designed questionnaire. A more extensive questionnaire was deployed following the virtual patient simulation, which also included measures of student engagement with the activity. A quiz assessing student factual and conceptual knowledge of proton-pump inhibitor pharmacology and related counselling information was also included in both questionnaires. Sixty-one students (response rate >95%) from two cohorts (2014 and 2015) participated in the study. Chi-square analyses were performed and data analysed using Fishers exact test. Results demonstrate that student knowledge, skills and confidence within the competency domains of questioning, counselling, referral and product provision, show improvement following the implementation of the virtual patient simulation. Statistically significant (p<0.05) improvement occurred in ten of the possible twelve self-reported measurement areas. Greatest magnitude of improvement occurred in the area of counselling (student confidence p<0.0001). Student confidence in all domains (questioning, counselling, referral and product provision) showed a marked increase. Student performance in the quiz also improved, demonstrating a 10% improvement overall for pharmacology knowledge and clinical practice following the simulation. Overall, 85% of students reported the simulation to be engaging and 93% of students felt the virtual patient simulation enhanced learning. The data suggests that the interactive virtual patient simulation developed for clinical pharmacology and therapeutics education enhanced students knowledge, skill and confidence, with respect to the competency domains of questioning, counselling, referral and product provision. These self-reported measures appear to translate to learning outcomes, as demonstrated by the improved student performance in the quiz assessment item. Future research of education using virtual simulation should seek to incorporate modern quantitative measures of student learning and engagement, such as eye tracking.

Keywords: clinical simulation, education, pharmacology, simulation, virtual learning

Procedia PDF Downloads 343
455 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques

Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh

Abstract:

In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.

Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network

Procedia PDF Downloads 74
454 Association of Severe Preeclampsia with Offspring Neurodevelopmental and Psychiatric Disorders: A Finnish Population-Based Cohort Study

Authors: Linghua Kong, Xinxia Chen, Mika Gissler, Catharina Lavebratt

Abstract:

Background: Prenatal exposure to preeclampsia has been associated with an increased risk of offspring attention-deficit/hyperactivity disorders (ADHD), autism spectrum disorder (ASD), and intellectual disability. However, little is known about the association between prenatal exposure to severe preeclampsia and neurodevelopmental and psychiatric disorders in offspring. Objective: This study aimed to assess the risk of maternal preeclampsia combined with perinatal problems, specifically low birth weight and prematurity, on offspring neuropsychiatric disorders. Methods: All singleton live births in Finland between 1996 and 2014 (n=1 012 723) were followed up in nation-wide registries until 2018. Main exposures included pre-eclampsia, small for gestational age, and delivery before 34 gestational weeks. Offspring neurodevelopmental and psychiatric disorders (ICD-10 codes) were examined as outcomes variables. Offspring birth year, sex, maternal age at delivery, parity, marital status at birth, mother's country of birth, maternal smoking, maternal gestational diabetes, maternal use of psychotropic medication during pregnancy, and maternal systemic inflammatory diseases were used as covariates. Risks for neurodevelopmental and psychiatric disorders were estimated using Cox proportional hazards modeling. Results: Of the 1 012 723 offspring, 25 901 (2.6%) were exposed to preeclampsia, and 93 281 (9.2%) were diagnosed with a neuropsychiatric disorder. Compared to births unexposed to preeclampsia, small for gestational age or delivery before 34 gestational weeks, those exposed to preeclampsia only had a 21% increase in the likelihood of any neuropsychiatric disorders after adjusting for potential confounding (adjusted HR=1.21, 95% CI: 1.15-1.26), while exposure to preeclampsia combined with small for gestational age or delivery before 34 gestational weeks had a more than twofold increased risk of having a child with neuropsychiatric disorders (adjusted HR=2.16, 95% CI: 2.02-2.32). The adjusted HR for neuropsychiatric disorders in offspring with small for gestational age or delivery before 34 gestational weeks only was 1.79 (95% CI: 1.73-1.83). In addition, the risk estimate in offspring exposed to both preeclampsia and perinatal problems was greater than those only exposed to preeclampsia for having personality disorders (adjusted HR=1.66; 95% CI: 1.07-2.57), intellectual disabilities (adjusted HR=3.47; 95% CI: 2.86-4.22), specific developmental disorders (adjusted HR=2.91; 95% CI: 2.69-3.15), ASD (adjusted HR=1.75; 95% CI: 1.42-2.17), ADHD and conduct disorders (adjusted HR=2.00; 95%CI: 1.76-2.27), and other behavioral and emotional disorders (adjusted HR=2.09; 95% CI: 1.84-2.37). Conclusion: In utero exposure to severe preeclampsia increased the risk of several neurodevelopmental and psychiatric disorders in offspring. Our findings are relevant to women with hypertensive disorders with regard to pregnancy consultation and management and may yield effective clues for the prevention of neurodevelopmental and psychiatric disorders in childhood.

Keywords: low birth weight, neurodevelopmental disorders, preeclampsia, prematurity, psychiatric disorders

Procedia PDF Downloads 149
453 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Primary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

Finding algorithms to predict the growth of tumors has piqued the interest of researchers ever since the early days of cancer research. A number of studies were carried out as an attempt to obtain reliable data on the natural history of breast cancer growth. Mathematical modeling can play a very important role in the prognosis of tumor process of breast cancer. However, mathematical models describe primary tumor growth and metastases growth separately. Consequently, we propose a mathematical growth model for primary tumor and primary metastases which may help to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoM-IV and corresponding software. We are interested in: 1) modelling the whole natural history of primary tumor and primary metastases; 2) developing adequate and precise CoM-IV which reflects relations between PT and MTS; 3) analyzing the CoM-IV scope of application; 4) implementing the model as a software tool. The CoM-IV is based on exponential tumor growth model and consists of a system of determinate nonlinear and linear equations; corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and primary metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for primary metastases; 3) ‘visible period’ for primary metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-IV model and predictive software: a) detect different growth periods of primary tumor and primary metastases; b) make forecast of the period of primary metastases appearance; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of BC and facilitate optimization of diagnostic tests. The following are calculated by CoM-IV: the number of doublings for ‘nonvisible’ and ‘visible’ growth period of primary metastases; tumor volume doubling time (days) for ‘nonvisible’ and ‘visible’ growth period of primary metastases. The CoM-IV enables, for the first time, to predict the whole natural history of primary tumor and primary metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-IV describes correctly primary tumor and primary distant metastases growth of IV (T1-4N0-3M1) stage with (N1-3) or without regional metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and manifestation of primary metastases.

Keywords: breast cancer, exponential growth model, mathematical modelling, primary metastases, primary tumor, survival

Procedia PDF Downloads 337
452 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein

Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel

Abstract:

γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.

Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design

Procedia PDF Downloads 273
451 Comparisons of Drop Jump and Countermovement Jump Performance for Male Basketball Players with and without Low-Dye Taping Application

Authors: Chung Yan Natalia Yeung, Man Kit Indy Ho, Kin Yu Stan Chan, Ho Pui Kipper Lam, Man Wah Genie Tong, Tze Chung Jim Luk

Abstract:

Excessive foot pronation is a well-known risk factor of knee and foot injuries such as patellofemoral pain, patellar and Achilles tendinopathy, and plantar fasciitis. Low-Dye taping (LDT) application is not uncommon for basketball players to control excessive foot pronation for pain control and injury prevention. The primary potential benefits of using LDT include providing additional supports to medial longitudinal arch and restricting the excessive midfoot and subtalar motion in weight-bearing activities such as running and landing. Meanwhile, restrictions provided by the rigid tape may also potentially limit functional joint movements and sports performance. Coaches and athletes need to weigh the potential benefits and harmful effects before making a decision if applying LDT technique is worthwhile or not. However, the influence of using LDT on basketball-related performance such as explosive and reactive strength is not well understood. Therefore, the purpose of this study was to investigate the change of drop jump (DJ) and countermovement jump (CMJ) performance before and after LDT application for collegiate male basketball players. In this within-subject crossover study, 12 healthy male basketball players (age: 21.7 ± 2.5 years) with at least 3-year regular basketball training experience were recruited. Navicular drop (ND) test was adopted as the screening and only those with excessive pronation (ND ≥ 10mm) were included. Participants with recent lower limb injury history were excluded. Recruited subjects were required to perform both ND, DJ (on a platform of 40cm height) and CMJ (without arms swing) tests in series during taped and non-taped conditions in the counterbalanced order. Reactive strength index (RSI) was calculated by using the flight time divided by the ground contact time measured. For DJ and CMJ tests, the best of three trials was used for analysis. The difference between taped and non-taped conditions for each test was further calculated through standardized effect ± 90% confidence intervals (CI) with clinical magnitude-based inference (MBI). Paired samples T-test showed significant decrease in ND (-4.68 ± 1.44mm; 95% CI: -3.77, -5.60; p < 0.05) while MBI demonstrated most likely beneficial and large effect (standardize effect: -1.59 ± 0.27) in LDT condition. For DJ test, significant increase in both flight time (25.25 ± 29.96ms; 95% CI: 6.22, 44.28; p < 0.05) and RSI (0.22 ± 0.22; 95% CI: 0.08, 0.36; p < 0.05) were observed. In taped condition, MBI showed very likely beneficial and moderate effect (standardized effect: 0.77 ± 0.49) in flight time, possibly beneficial and small effect (standardized effect: -0.26 ± 0.29) in ground contact time and very likely beneficial and moderate effect (standardized effect: 0.77 ± 0.42) in RSI. No significant difference in CMJ was observed (95% CI: -2.73, 2.08; p > 0.05). For basketball players with pes planus, applying LDT could substantially support the foot by elevating the navicular height and potentially provide acute beneficial effects in reactive strength performance. Meanwhile, no significant harmful effect on CMJ was observed. Basketball players may consider applying LDT before the game or training to enhance the reactive strength performance. However since the observed effects in this study could not generalize to other players without excessive foot pronation, further studies on players with normal foot arch or navicular height are recommended.

Keywords: flight time, pes planus, pronated foot, reactive strength index

Procedia PDF Downloads 155
450 The Impact of External Technology Acquisition and Exploitation on Firms' Process Innovation Performance

Authors: Thammanoon Charmjuree, Yuosre F. Badir, Umar Safdar

Abstract:

There is a consensus among innovation scholars that knowledge is a vital antecedent for firm’s innovation; e.g., process innovation. Recently, there has been an increasing amount of attention to more open approaches to innovation. This open model emphasizes the use of purposive flows of knowledge across the organization boundaries. Firms adopt open innovation strategy to improve their innovation performance by bringing knowledge into the organization (inbound open innovation) to accelerate internal innovation or transferring knowledge outside (outbound open innovation) to expand the markets for external use of innovation. Reviewing open innovation research reveals the following. First, the majority of existing studies have focused on inbound open innovation and less on outbound open innovation. Second, limited research has considered the possible interaction between both and how this interaction may impact the firm’s innovation performance. Third, scholars have focused mainly on the impact of open innovation strategy on product innovation and less on process innovation. Therefore, our knowledge of the relationship between firms’ inbound and outbound open innovation and how these two impact process innovation is still limited. This study focuses on the firm’s external technology acquisition (ETA) and external technology exploitation (ETE) and the firm’s process innovation performance. The ETA represents inbound openness in which firms rely on the acquisition and absorption of external technologies to complement their technology portfolios. The ETE, on the other hand, refers to commercializing technology assets exclusively or in addition to their internal application. This study hypothesized that both ETA and ETE have a positive relationship with process innovation performance and that ETE fully mediates the relationship between ETA and process innovation performance, i.e., ETA has a positive impact on ETE, and turn, ETE has a positive impact on process innovation performance. This study empirically explored these hypotheses in software development firms in Thailand. These firms were randomly selected from a list of Software firms registered with the Department of Business Development, Ministry of Commerce of Thailand. The questionnaires were sent to 1689 firms. After follow-ups and periodic reminders, we obtained 329 (19.48%) completed usable questionnaires. The structure question modeling (SEM) has been used to analyze the data. An analysis of the outcome of 329 firms provides support for our three hypotheses: First, the firm’s ETA has a positive impact on its process innovation performance. Second, the firm’s ETA has a positive impact its ETE. Third, the firm’s ETE fully mediates the relationship between the firm’s ETA and its process innovation performance. This study fills up the gap in open innovation literature by examining the relationship between inbound (ETA) and outbound (ETE) open innovation and suggest that in order to benefits from the promises of openness, firms must engage in both. The study went one step further by explaining the mechanism through which ETA influence process innovation performance.

Keywords: process innovation performance, external technology acquisition, external technology exploitation, open innovation

Procedia PDF Downloads 205