Search results for: light gauge steel–concrete hybrid structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14868

Search results for: light gauge steel–concrete hybrid structure

9498 Computational Fluid Dynamics Simulation of Floating Body Motion Interacting with Focused Waves

Authors: Seul-Ki Park, Jong-Chun Park, Gyu-Mok Jeon, Dae-Kyung Ock, Seung-Gyu Jeong

Abstract:

Rogue waves cause frequent accidents of ships and offshore structures, which can result in severe damage to the structures. The Rogue waves, which are also known as big waves, freak waves, extreme waves, monster waves, focused waves, giant waves and abnormal waves, are unexpected and suddenly appearing, and can have a breaking force to destroy the structure even though modern structures are designed to tolerate a breaking wave. In the present study, a series of focused waves are numerically reproduced by concentrating nonlinear multi-directional waves into a target point using a commercial CFD software, Star-CCM+. A flow analysis for investigating the physical characteristics of the focused waves is performed using the Star-CCM+, while it has several difficulties to examine the inner properties of the waves in existing potential theory and experiments. Additionally, the 6-DOF (Degree of Freedom) motion of a floating body interacting with the focused waves are simulated, and the dynamic response of the body are discussed.

Keywords: multidirectional waves, focused waves, rogue waves, wave-structure interaction, numerical wave tank, computational fluid dynamics

Procedia PDF Downloads 248
9497 Synthesis of α-Diimin Nickel(II) Catalyst Supported on Graphene and Graphene Oxide for Ethylene Slurry Polymerization

Authors: Mehrji Khosravan, Mostafa Fathali-Sianib, Davood Soudbar, Sasan Talebnezhad, Mohammad-Reza Ebrahimi

Abstract:

The late transition metal catalyst of the end group of transition metals in the periodic table as Ni, Fe, Co, and Pd was grown up rapidly in polyolefin industries recently. These metals with suitable ligands exhibited special characteristic properties and appropriate activities in the production of polyolefins. The ligand 1,4-bis (2,6-diisopropyl phenyl) acenaphthene was synthesized by reaction of 2,6-diisopropyl aniline and acenaphthenequinone. The ligand was added to nickel (II) dibromide salt for synthesis the 1,4-bis (2,6 diisopropylphenyl) acenaphthene nickel (II) dibromide catalyst. The structure of the ligand characterized by IR technique. The catalyst then deposited on graphene and graphene oxide by vander walss-attachment for use in Ethylene slurry polymerization process in the presence of catalyst activator such as methylaluminoxane (MAO) in hexane solvent. The structure of the catalyst characterized by IR and TEM techniques and some of the polymers were characterized by DSC. The highest activity was achieved at 600 C for catalyst.

Keywords: α-diimine nickel (II) complex, graphene as supported catalyst, late transition metal, ethylene polymerization

Procedia PDF Downloads 380
9496 Two Houses in the Arabian Desert: Assessing the Built Work of RCR Architects in the UAE

Authors: Igor Peraza Curiel, Suzanne Strum

Abstract:

Today, when many foreign architects are receiving commissions in the United Arab Emirates, it is essential to analyze how their designs are influenced by the region's culture, environment, and building traditions. This study examines the approach to siting, geometry, construction methods, and material choices in two private homes for a family in Dubai, a project being constructed on adjacent sites by the acclaimed Spanish team of RCR Architects. Their third project in Dubai, the houses mark a turning point in their design approach to the desert. The Pritzker Prize-winning architects of RCR gained renown for building works deeply responsive to the history, landscape, and customs of their hometown in a volcanic area of the Catalonia region of Spain. Key formative projects and their entry to practice in UAE will be analyzed according to the concepts of place identity, the poetics of construction, and material imagination. The poetics of construction, a theoretical position with a long practical tradition, was revived by the British critic Kenneth Frampton. The idea of architecture as a constructional craft is related to the concepts of material imagination and place identity--phenomenological concerns with the creative engagement with local matter and topography that are at the very essence of RCR's way of designing, detailing, and making. Our study situates RCR within the challenges of building in the region, where western forms and means have largely replaced the ingenious responsiveness of indigenous architecture to the climate and material scarcity. The dwellings, iterations of the same steel and concrete vaulting system, highlight the conceptual framework of RCR's design approach to offer a study in contemporary critical regionalism. The Kama House evokes Bedouin tents, while the Alwah House takes the form of desert dunes in response to the temporality of the winds. Metal mesh screens designed to capture the shifting sands will complete the forms. The original research draws on interviews with the architects and unique documentation provided by them and collected by the authors during on-site visits. By examining the two houses in-depth, this paper foregrounds a series of timely questions: 1) What is the impact of the local climatic, cultural, and material conditions on their project in the UAE? 2) How does this work further their experiences in the region? 3) How has RCR adapted their construction techniques as their work expands beyond familiar settings? The investigation seeks to understand how the design methodology developed for more than 20 years and enmeshed in the regional milieu of their hometown can transform as the architects encounter unique characteristics and values in the Middle East. By focusing on the contemporary interpretation of Arabic geometry and elements, the houses reveal the role of geometry, tectonics, and material specificity in the realization from conceptual sketches to built form. In emphasizing the importance of regional responsiveness, the dynamics of international construction practice, and detailing this study highlights essential issues for professionals and students looking to practice in an increasingly global market.

Keywords: material imagination, regional responsiveness, place identity, poetics of construction

Procedia PDF Downloads 133
9495 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single

Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa

Abstract:

Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600  minimum load impedance of the DAQ card with the 5 to 20  low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.

Keywords: flux density, electrical steel, LabVIEW, magnetization

Procedia PDF Downloads 288
9494 Unsteady Characteristics Investigation on the Precessing Vortex Breakdown and Energy Separation in a Vortex Tube

Authors: Xiangji Guo, Bo Zhang

Abstract:

In this paper, the phenomenon of vortex breakdown in a vortex tube was analyzed within the scope of unsteady character in swirl flows. A 3-D Unsteady Reynolds-averaged Navier–Stokes (URANS) closed by the Reynolds Stress Model (RSM) was adopted to simulate the large-scale vortex structure in vortex tube, and the numerical model was verified by the steady results. The swirl number was calculated for the vortex tube and the flow field was classed as strong swirl flow. According to the results, a time-dependent spiral flow field gyrates around a central recirculation zone which is precessing around the axis of the tube, and manifests the flow structure is the spiral type (S-type) vortex breakdown. The vortex breakdown is crucial for the formation of the central recirculation zone (CRZ), a further discussion was about the affection on CRZ with the different external conditions of vortex tube, the study on the unsteady characters was expected to hope to design of vortex tube and analyze the energy separation effect.

Keywords: vortex tube, vortex breakdown, central recirculation zone, unsteady, energy separation

Procedia PDF Downloads 309
9493 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing

Authors: Jonathan Martino, Kristof Harri

Abstract:

In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.

Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration

Procedia PDF Downloads 265
9492 Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads

Authors: Mezigheche Nawel, Gouasmia Abdelhacine, Athmani Allaeddine, Merzoud Mouloud

Abstract:

Masonry infill walls are inevitable in the self-supporting structures, but their contribution in the resistance of earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of the behavior of masonry infill walls in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D finite element analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load: The finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, so we can conclude that the filling brings an additional rigidity to the structure not to be neglected. It is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal.

Keywords: finite element, masonry infill walls, rigidity of the masonry, tended diagonal

Procedia PDF Downloads 486
9491 Development of Mechanisms of Value Creation and Risk Management Organization in the Conditions of Transformation of the Economy of Russia

Authors: Mikhail V. Khachaturyan, Inga A. Koryagina, Eugenia V. Klicheva

Abstract:

In modern conditions, scientific judgment of problems in developing mechanisms of value creation and risk management acquires special relevance. Formation of economic knowledge has resulted in the constant analysis of consumer behavior for all players from national and world markets. Effective mechanisms development of the demand analysis, crucial for consumer's characteristics of future production, and the risks connected with the development of this production are the main objectives of control systems in modern conditions. The modern period of economic development is characterized by a high level of globalization of business and rigidity of competition. At the same time, the considerable share of new products and services costs has a non-material intellectual nature. The most successful in Russia is the contemporary development of small innovative firms. Such firms, through their unique technologies and new approaches to process management, which form the basis of their intellectual capital, can show flexibility and succeed in the market. As a rule, such enterprises should have very variable structure excluding the tough scheme of submission and demanding essentially new incentives for inclusion of personnel in innovative activity. Realization of similar structures, as well as a new approach to management, can be constructed based on value-oriented management which is directed to gradual change of consciousness of personnel and formation from groups of adherents included in the solution of the general innovative tasks. At the same time, valuable changes can gradually capture not only innovative firm staff, but also the structure of its corporate partners. Introduction of new technologies is the significant factor contributing to the development of new valuable imperatives and acceleration of the changing values systems of the organization. It relates to the fact that new technologies change the internal environment of the organization in a way that the old system of values becomes inefficient in new conditions. Introduction of new technologies often demands change in the structure of employee’s interaction and training in their new principles of work. During the introduction of new technologies and the accompanying change in the value system, the structure of the management of the values of the organization is changing. This is due to the need to attract more staff to justify and consolidate the new value system and bring their view into the motivational potential of the new value system of the organization.

Keywords: value, risk, creation, problems, organization

Procedia PDF Downloads 281
9490 Requirement Engineering and Software Product Line Scoping Paradigm

Authors: Ahmed Mateen, Zhu Qingsheng, Faisal Shahzad

Abstract:

Requirement Engineering (RE) is a part being created for programming structure during the software development lifecycle. Software product line development is a new topic area within the domain of software engineering. It also plays important role in decision making and it is ultimately helpful in rising business environment for productive programming headway. Decisions are central to engineering processes and they hold them together. It is argued that better decisions will lead to better engineering. To achieve better decisions requires that they are understood in detail. In order to address the issues, companies are moving towards Software Product Line Engineering (SPLE) which helps in providing large varieties of products with minimum development effort and cost. This paper proposed a new framework for software product line and compared with other models. The results can help to understand the needs in SPL testing, by identifying points that still require additional investigation. In our future scenario, we will combine this model in a controlled environment with industrial SPL projects which will be the new horizon for SPL process management testing strategies.

Keywords: requirements engineering, software product lines, scoping, process structure, domain specific language

Procedia PDF Downloads 221
9489 Credit Risk and Financial Stability

Authors: Zidane Abderrezzaq

Abstract:

In contrast to recent successful developments in macro monetary policies, the modelling, measurement and management of systemic financial stability has remained problematical. Indeed, the focus of most effort has been on improving individual, rather than systemic, bank risk management; the Basel II objective has been to bring regulatory bank capital into line with the (sophisticated) banks’ assessment of their own economic capital. Even at the individual bank level there are concerns over appropriate diversification allowances, differing objectives of banks and regulators, the need for a buffer over regulatory minima, and the distinction between expected and unexpected losses (EL and UL). At the systemic level the quite complex and prescriptive content of Basel II raises dangers of ‘endogenous risk’ and procyclicality. Simulations suggest that this latter could be a serious problem. In an extension to the main analysis we study how liquidity effects interact with banking structure to produce a greater chance of systemic breakdown. We finally consider how the risk of contagion might depend on the degree of asymmetry (tiering) inherent in the structure of the banking system. A number of our results have important implications for public policy, which this paper also draws out.

Keywords: systemic stability, financial regulation, credit risk, systemic risk

Procedia PDF Downloads 370
9488 Characterization of the GntR Family Transcriptional Regulator Rv0792c: A Potential Drug Target for Mycobacterium tuberculosis

Authors: Thanusha D. Abeywickrama, Inoka C. Perera, Genji Kurisu

Abstract:

Tuberculosis, considered being as the ninth leading cause of death worldwide, cause from a single infectious agent M. tuberculosis and the drug resistance nature of this bacterium is a continuing threat to the world. Therefore TB preventing treatment is expanding, where this study designed to analyze the regulatory mechanism of GntR transcriptional regulator gene Rv0792c, which lie between several genes codes for some hypothetical proteins, a monooxygenase and an oxidoreductase. The gene encoding Rv0792c was cloned into pET28a and expressed protein was purified to near homogeneity by Nickel affinity chromatography. It was previously reported that the protein binds within the intergenic region (BS region) between Rv0792c gene and monooxygenase (Rv0793). This resulted in binding of three protein molecules with the BS region suggesting tight control of monooxygenase as well as its own gene. Since monooxygenase plays a key role in metabolism, this gene may have a global regulatory role. The natural ligand for this regulator is still under investigation. In relation to the Rv0792 protein structure, a Circular Dichroism (CD) spectrum was carried out to determine its secondary structure elements. Percentage-wise, 17.4% Helix, 21.8% Antiparallel, 5.1% Parallel, 12.3% turn and 43.5% other were revealed from CD spectrum data under room temperature. Differential Scanning Calorimetry (DSC) was conducted to assess the thermal stability of Rv0792, which the melting temperature of protein is 57.2 ± 0.6 °C. The graph of heat capacity (Cp) versus temperature for the best fit was obtained for non-two-state model, which concludes the folding of Rv0792 protein occurs through stable intermediates. Peak area (∆HCal ) and Peak shape (∆HVant ) was calculated from the graph and ∆HCal / ∆HVant was close to 0.5, suggesting dimeric nature of the protein.

Keywords: CD spectrum, DSC analysis, GntR transcriptional regulator, protein structure

Procedia PDF Downloads 218
9487 Intellectual Capital Disclosure: A Study of Australia and Sri Lanka

Authors: Puwanenthiren Pratheepkanth

Abstract:

This study considers whether national development level influences a firm’s voluntary intellectual capital disclosure (ICD) provided by a sample of 100 Australian and 100 Sri Lankan firms in terms of a two-years during 2015-16. This two-nation study uses a content analysis and literature-review analysis to provide an understanding of the underlying forces and issues. It was found that Australian firms tend to rely heavily on external structure disclosures (with particular attention to brands, customer loyalty, and research collaborations), but Sri Lankan relatively larger firms prefer intellectual property disclosures and the smaller firms tend to be as adept at external structure as their Australian counterparts. It was also found that the nature of a firm tends to trump the nurture of the development level of the country in which the firm is embedded. While a wider diffusion of better ICD methodology under International Financial Reporting Standard (IFRS) could improve the cost-effectiveness of financial reporting and generally increase efficiency, this is unlikely to occur until competition is more of a spur.

Keywords: developed countries, developing countries, content analysis, intellectual capital disclosure

Procedia PDF Downloads 166
9486 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients

Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska

Abstract:

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).

Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers

Procedia PDF Downloads 171
9485 Real-Space Mapping of Surface Trap States in Cigse Nanocrystals Using 4D Electron Microscopy

Authors: Riya Bose, Ashok Bera, Manas R. Parida, Anirudhha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, Omar F. Mohammed

Abstract:

This work reports visualization of charge carrier dynamics on the surface of copper indium gallium selenide (CIGSe) nanocrystals in real space and time using four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and correlates it with the optoelectronic properties of the nanocrystals. The surface of the nanocrystals plays a key role in controlling their applicability for light emitting and light harvesting purposes. Typically for quaternary systems like CIGSe, which have many desirable attributes to be used for optoelectronic applications, relative abundance of surface trap states acting as non-radiative recombination centre for charge carriers remains as a major bottleneck preventing further advancements and commercial exploitation of these nanocrystals devices. Though ultrafast spectroscopic techniques allow determining the presence of picosecond carrier trapping channels, because of relative larger penetration depth of the laser beam, only information mainly from the bulk of the nanocrystals is obtained. Selective mapping of such ultrafast dynamical processes on the surfaces of nanocrystals remains as a key challenge, so far out of reach of purely optical probing time-resolved laser techniques. In S-UEM, the optical pulse generated from a femtosecond (fs) laser system is used to generate electron packets from the tip of the scanning electron microscope, instead of the continuous electron beam used in the conventional setup. This pulse is synchronized with another optical excitation pulse that initiates carrier dynamics in the sample. The principle of S-UEM is to detect the secondary electrons (SEs) generated in the sample, which is emitted from the first few nanometers of the top surface. Constructed at different time delays between the optical and electron pulses, these SE images give direct and precise information about the carrier dynamics on the surface of the material of interest. In this work, we report selective mapping of surface dynamics in real space and time of CIGSe nanocrystals applying 4D S-UEM. We show that the trap states can be considerably passivated by ZnS shelling of the nanocrystals, and the carrier dynamics can be significantly slowed down. We also compared and discussed the S-UEM kinetics with the carrier dynamics obtained from conventional ultrafast time-resolved techniques. Additionally, a direct effect of the state trap removal can be observed in the enhanced photoresponse of the nanocrystals after shelling. Direct observation of surface dynamics will not only provide a profound understanding of the photo-physical mechanisms on nanocrystals’ surfaces but also enable to unlock their full potential for light emitting and harvesting applications.

Keywords: 4D scanning ultrafast microscopy, charge carrier dynamics, nanocrystals, optoelectronics, surface passivation, trap states

Procedia PDF Downloads 293
9484 Cultural Policies, Globalisation of Arts, and Impact on Cultural Heritage: A Contextual Analysis of France

Authors: Nasser AlShawaaf

Abstract:

While previous researchers have attempted to explain art museums commercialisation with reference to cultural policies, they have overlooked the phenomenon of globalisation. This study examines the causes and effects of globalisation of art museums in France. Building on arts literature, we show that the cultural policies of the French government since 1980s of cultural democratisation, cultural decentralisation, and implementing market principles on the cultural sector are leading to arts globalisation. Although globalisation is producing economic benefits and enhancing cultural reach, however, the damages include artistic values and creativity, cultural heritage and representation, and the museum itself. Art museums and host cities could overcome negative consequences through a hybrid collection display and develop local collections gradually.

Keywords: cultural policy, cultural decentralisation, cultural globalisation, art museums, contextual analysis, France

Procedia PDF Downloads 100
9483 Keratin Reconstruction: Evaluation of Green Peptides Technology on Hair Performance

Authors: R. Di Lorenzo, S. Laneri, A. Sacchi

Abstract:

Hair surface properties affect hair texture and shine, whereas the healthy state of the hair cortex sways hair ends. Even if cosmetic treatments are intrinsically safe, there is potentially damaging action on the hair fibers. Loss of luster, frizz, split ends, and other hair problems are particularly prevalent among people who repeatedly alter the natural style of their hair or among people with intrinsically weak hair. Technological and scientific innovations in hair care thus become invaluable allies to preserve their natural well-being and shine. The study evaluated restoring keratin-like ingredients that improve hair fibers' structural integrity, increase tensile strength, improve hair manageability and moisturizing. The hair shaft is composed of 65 - 95% of keratin. It gives the hair resistance, elasticity, and plastic properties and also contributes to their waterproofing. Providing exogenous keratin is, therefore, a practical approach to protect and nourish the hair. By analyzing the amino acid composition of keratin, we find a high frequency of hydrophobic amino acids. It confirms the critical role interactions, mainly hydrophobic, between cosmetic products and hair. The active ingredient analyzed comes from vegetable proteins through an enzymatic cut process that selected only oligo- and polypeptides (> 3500 KDa) rich in amino acids with hydrocarbon side chains apolar or sulfur. These chemical components are the most expressed amino acids at the level of the capillary keratin structure, and it determines the most significant possible compatibility with the target substrate. Given the biological variability of the sources, it isn't easy to define a constant and reproducible molecular formula of the product. Still, it consists of hydroxypropiltrimonium vegetable peptides with keratin-like performances. 20 natural hair tresses (30 cm in length and 0.50 g weight) were treated with the investigated products (5 % v/v aqueous solution) following a specific protocol and compared with non-treated (Control) and benchmark-keratin-treated strands (Benchmark). Their brightness, moisture content, cortical and surface integrity, and tensile strength were evaluated and statistically compared. Keratin-like treated hair tresses showed better results than the other two groups (Control and Benchmark). The product improves the surface with significant regularization of the cuticle closure, improves the cortex and the peri-medullar area filling, gives a highly organized and tidy structure, delivers a significant amount of sulfur on the hair, and is more efficient moisturization and imbibition power, increases hair brightness. The hydroxypropyltrimonium quaternized group added to the C-terminal end interacts with the negative charges that form on the hair after washing when disheveled and tangled. The interactions anchor the product to the hair surface, keeping the cuticles adhered to the shaft. The small size allows the peptides to penetrate and give body to the hair, together with a conditioning effect that gives an image of healthy hair. Results suggest that the product is a valid ally in numerous restructuring/conditioning, shaft protection, straightener/dryer-damage prevention hair care product.

Keywords: conditioning, hair damage, hair, keratin, polarized light microscopy, scanning electron microscope, thermogravimetric analysis

Procedia PDF Downloads 122
9482 Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications

Authors: Vinay Kumar K. S., Shravani V., Spoorthi G., Udith K. S., Divya T. M., Venkatesha M.

Abstract:

In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology.

Keywords: Ansys HFSS, gain, return loss, slot array, microstrip patch antenna, 5G antenna

Procedia PDF Downloads 107
9481 Grain Structure Evolution during Friction-Stir Welding of 6061-T6 Aluminum Alloy

Authors: Aleksandr Kalinenko, Igor Vysotskiy, Sergey Malopheyev, Sergey Mironov, Rustam Kaibyshev

Abstract:

From a thermo-mechanical standpoint, friction-stir welding (FSW) represents a unique combination of very large strains, high temperature and relatively high strain rate. The material behavior under such extreme deformation conditions is not studied well and thus, the microstructural examinations of the friction-stir welded materials represent an essential academic interest. Moreover, a clear understanding of the microstructural mechanisms operating during FSW should improve our understanding of the microstructure-properties relationship in the FSWed materials and thus enables us to optimize their service characteristics. Despite extensive research in this field, the microstructural behavior of some important structural materials remains not completely clear. In order to contribute to this important work, the present study was undertaken to examine the grain structure evolution during the FSW of 6061-T6 aluminum alloy. To provide an in-depth insight into this process, the electron backscatter diffraction (EBSD) technique was employed for this purpose. Microstructural observations were conducted by using an FEI Quanta 450 Nova field-emission-gun scanning electron microscope equipped with TSL OIMTM software. A suitable surface finish for EBSD was obtained by electro-polishing in a solution of 25% nitric acid in methanol. A 15° criterion was employed to differentiate low-angle boundaries (LABs) from high-angle boundaries (HABs). In the entire range of the studied FSW regimes, the grain structure evolved in the stir zone was found to be dominated by nearly-equiaxed grains with a relatively high fraction of low-angle boundaries and the moderate-strength B/-B {112}<110> simple-shear texture. In all cases, the grain-structure development was found to be dictated by an extensive formation of deformation-induced boundaries, their gradual transformation to the high-angle grain boundaries. Accordingly, the grain subdivision was concluded to the key microstructural mechanism. Remarkably, a gradual suppression of this mechanism has been observed at relatively high welding temperatures. This surprising result has been attributed to the reduction of dislocation density due to the annihilation phenomena.

Keywords: electron backscatter diffraction, friction-stir welding, heat-treatable aluminum alloys, microstructure

Procedia PDF Downloads 232
9480 Relation of the Anomalous Magnetic Moment of Electron with the Proton and Neutron Masses

Authors: Sergei P. Efimov

Abstract:

The anomalous magnetic moment of the electron is calculated by introducing the effective mass of the virtual part of the electron structure. In this case, the anomalous moment is inversely proportional to the effective mass Meff, which is shown to be a linear combination of the neutron, proton, and electrostatic electron field masses. The spin of a rotating structure is assumed to be equal to 3/2, while the spin of a 'bare' electron is equal to unity, the resultant spin being 1/2. A simple analysis gives the coefficients for a linear combination of proton and electron masses, the approximation precision giving here nine significant digits after the decimal point. The summand proportional to α² adds four more digits. Thus, the conception of the effective mass Meff leads to the formula for the total magnetic moment of the electron, which is accurate to fourteen digits. Association with the virtual beta-decay reaction and possible reasons for simplicity of the derived formula are discussed.

Keywords: anomalous magnetic moment of electron, comparison with quantum electrodynamics. effective mass, fifteen significant figures, proton and neutron masses

Procedia PDF Downloads 118
9479 Fatigue Behavior of Dissimilar Welded Monel400 and SS316 by FSW

Authors: Aboozar Aghaei

Abstract:

In the present work, the dissimilar Monel400 and SS316 were joined by friction stir welding (FSW). The applied rotating speed was 400 rpm, whereas the traverse speed varied between 50 and 150 mm/min. At a constant rotating speed, the sound welds were obtained at the welding speeds of 50 and 100 mm/min. However, a groove-like defect was formed when the welding speed exceeded 100 mm/min. The mechanical properties of the joints were evaluated using tensile and fatigue tests. The fatigue strength of dissimilar FSWed specimen was higher than that of both Monel400 and SS316. To study the failure behavior of FSWed specimens, the fracture surfaces were analyzed using scanning electron microscope (SEM). The failure analysis indicates that different mechanisms may contribute to the fracture of welds. This was attributed to the dissimilar characteristics of dissimilar materials exhibiting different failure behaviors.

Keywords: mechanical properties, stainless steel, frictions, monel

Procedia PDF Downloads 68
9478 The Utility of Sonographic Features of Lymph Nodes during EBUS-TBNA for Predicting Malignancy

Authors: Atefeh Abedini, Fatemeh Razavi, Mihan Pourabdollah Toutkaboni, Hossein Mehravaran, Arda Kiani

Abstract:

In countries with the highest prevalence of tuberculosis, such as Iran, the differentiation of malignant tumors from non-malignant is very important. In this study, which was conducted for the first time among the Iranian population, the utility of the ultrasonographic morphological characteristics in patients undergoing EBUS was used to distinguish the non-malignant versus malignant lymph nodes. The morphological characteristics of lymph nodes, which consist of size, shape, vascular pattern, echogenicity, margin, coagulation necrosis sign, calcification, and central hilar structure, were obtained during Endobronchial Ultrasound-Guided Trans-Bronchial Needle Aspiration and were compared with the final pathology results. During this study period, a total of 253 lymph nodes were evaluated in 93 cases. Round shape, non-hilar vascular pattern, heterogeneous echogenicity, hyperechogenicity, distinct margin, and the presence of necrosis sign were significantly higher in malignant nodes. On the other hand, the presence of calcification and also central hilar structure were significantly higher in the benign nodes (p-value ˂ 0.05). Multivariate logistic regression showed that size>1 cm, heterogeneous echogenicity, hyperechogenicity, the presence of necrosis signs and, the absence of central hilar structure are independent predictive factors for malignancy. The accuracy of each of the aforementioned factors is 42.29 %, 71.54 %, 71.90 %, 73.51 %, and 65.61 %, respectively. Of 74 malignant lymph nodes, 100% had at least one of these independent factors. According to our results, the morphological characteristics of lymph nodes based on Endobronchial Ultrasound-Guided Trans-Bronchial Needle Aspiration can play a role in the prediction of malignancy.

Keywords: EBUS-TBNA, malignancy, nodal characteristics, pathology

Procedia PDF Downloads 133
9477 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability

Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard

Abstract:

The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.

Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty

Procedia PDF Downloads 181
9476 Solvent Extraction in Ionic Liquids: Structuration and Aggregation Effects on Extraction Mechanisms

Authors: Sandrine Dourdain, Cesar Lopez, Tamir Sukhbaatar, Guilhem Arrachart, Stephane Pellet-Rostaing

Abstract:

A promising challenge in solvent extraction is to replace the conventional organic solvents, with ionic liquids (IL). Depending on the extraction systems, these new solvents show better efficiency than the conventional ones. Although some assumptions based on ions exchanges have been proposed in the literature, these properties are not predictable because the involved mechanisms are still poorly understood. It is well established that the mechanisms underlying solvent extraction processes are based not only on the molecular chelation of the extractant molecules but also on their ability to form supra-molecular aggregates due to their amphiphilic nature. It is therefore essential to evaluate how IL affects the aggregation properties of the extractant molecules. Our aim is to evaluate the influence of IL structure and polarity on solvent extraction mechanisms, by looking at the aggregation of the extractant molecules in IL. We compare extractant systems that are well characterized in common solvents and show thanks to SAXS and SANS measurements, that in the absence of IL ion exchange mechanisms, extraction properties are related to aggregation.

Keywords: solvent extraction in Ionic liquid, aggregation, Ionic liquids structure, SAXS, SANS

Procedia PDF Downloads 151
9475 Study of NGL Feed Price Calculation for a Typical NGL Fractionation Plant

Authors: Simin Eydivand, Ali Ghanadieslami, Reza Amiri

Abstract:

Natural gas liquids (NGLs) are light hydrocarbons that are dissolved in associated or non‐associated natural gas in a hydrocarbon reservoir and are produced within a gas stream. There are different ways to calculate the price of NGL. In this study, a spreadsheet calculation method is used for calculation of NGL price with an attractive economy of IRR 25%. For a typical NGL Plant with 3,200,000 t/y capacity of investment and operation of 90% capacity to have IRR 25%, the price of NGL is calculated 277 $/t.

Keywords: natural gas liquid, NGL, LPG, price, NGL fractionation, NF, investment, IRR, NPV

Procedia PDF Downloads 400
9474 Preventing the Drought of Lakes by Using Deep Reinforcement Learning in France

Authors: Farzaneh Sarbandi Farahani

Abstract:

Drought and decrease in the level of lakes in recent years due to global warming and excessive use of water resources feeding lakes are of great importance, and this research has provided a structure to investigate this issue. First, the information required for simulating lake drought is provided with strong references and necessary assumptions. Entity-Component-System (ECS) structure has been used for simulation, which can consider assumptions flexibly in simulation. Three major users (i.e., Industry, agriculture, and Domestic users) consume water from groundwater and surface water (i.e., streams, rivers and lakes). Lake Mead has been considered for simulation, and the information necessary to investigate its drought has also been provided. The results are presented in the form of a scenario-based design and optimal strategy selection. For optimal strategy selection, a deep reinforcement algorithm is developed to select the best set of strategies among all possible projects. These results can provide a better view of how to plan to prevent lake drought.

Keywords: drought simulation, Mead lake, entity component system programming, deep reinforcement learning

Procedia PDF Downloads 84
9473 STD-NMR Based Protein Engineering of the Unique Arylpropionate-Racemase AMDase G74C

Authors: Sarah Gaßmeyer, Nadine Hülsemann, Raphael Stoll, Kenji Miyamoto, Robert Kourist

Abstract:

Enzymatic racemization allows the smooth interconversion of stereocenters under very mild reaction conditions. Racemases find frequent applications in deracemization and dynamic kinetic resolutions. Arylmalonate decarboxylase (AMDase) from Bordetella Bronchiseptica has high structural similarity to amino acid racemases. These cofactor-free racemases are able to break chemically strong CH-bonds under mild conditions. The racemase-like catalytic machinery of mutant G74C conveys it a unique activity in the racemisation of pharmacologically relevant derivates of 2-phenylpropionic acid (profenes), which makes AMDase G74C an interesting object for the mechanistic investigation of cofactor-independent racemases. Structure-guided protein engineering achieved a variant of this unique racemase with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. By saturation–transfer–difference NMR spectroscopy (STD-NMR), substrate binding during catalysis was investigated. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose variation increased the activity of G74C. While single-amino acid exchanges increased the activity moderately, structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering.

Keywords: racemase, rational protein design, STD-NMR, structure guided saturation mutagenesis

Procedia PDF Downloads 301
9472 Electro-Winning of Dilute Solution of Copper Metal from Sepon Mine, Lao PDR

Authors: S. Vasailor, C. Rattanakawin

Abstract:

Electro-winning of copper metal from dilute sulfate solution (13.7 g/L) was performed in a lab electrolytic cell with stainless-steel cathode and lead-alloy anode. The effects of various parameters including cell voltage, electro-winning temperature and time were studied in order to acquire an appropriate current efficiency of copper deposition. The highest efficiency is about 95% obtaining from electro-winning condition of 3V, 55°C and 3,600 s correspondingly. The cathode copper with 95.5% Cu analyzed using atomic absorption spectrometry can be obtained from this single-winning condition. In order to increase the copper grade, solvent extraction should be used to increase the sulfate concentration, say 50 g/L, prior to winning the cathode copper effectively.

Keywords: copper metal, current efficiency, dilute sulfate solution, electro-winning

Procedia PDF Downloads 133
9471 Explanatory Variables for Crash Injury Risk Analysis

Authors: Guilhermina Torrao

Abstract:

An extensive number of studies have been conducted to determine the factors which influence crash injury risk (CIR); however, uncertainties inherent to selected variables have been neglected. A review of existing literature is required to not only obtain an overview of the variables and measures but also ascertain the implications when comparing studies without a systematic view of variable taxonomy. Therefore, the aim of this literature review is to examine and report on peer-reviewed studies in the field of crash analysis and to understand the implications of broad variations in variable selection in CIR analysis. The objective of this study is to demonstrate the variance in variable selection and classification when modeling injury risk involving occupants of light vehicles by presenting an analytical review of the literature. Based on data collected from 64 journal publications reported over the past 21 years, the analytical review discusses the variables selected by each study across an organized list of predictors for CIR analysis and provides a better understanding of the contribution of accident and vehicle factors to injuries acquired by occupants of light vehicles. A cross-comparison analysis demonstrates that almost half the studies (48%) did not consider vehicle design specifications (e.g., vehicle weight), whereas, for those that did, the vehicle age/model year was the most selected explanatory variable used by 41% of the literature studies. For those studies that included speed risk factor in their analyses, the majority (64%) used the legal speed limit data as a ‘proxy’ of vehicle speed at the moment of a crash, imposing limitations for CIR analysis and modeling. Despite the proven efficiency of airbags in minimizing injury impact following a crash, only 22% of studies included airbag deployment data. A major contribution of this study is to highlight the uncertainty linked to explanatory variable selection and identify opportunities for improvements when performing future studies in the field of road injuries.

Keywords: crash, exploratory, injury, risk, variables, vehicle

Procedia PDF Downloads 126
9470 Control for Fluid Flow Behaviours of Viscous Fluids and Heat Transfer in Mini-Channel: A Case Study Using Numerical Simulation Method

Authors: Emmanuel Ophel Gilbert, Williams Speret

Abstract:

The control for fluid flow behaviours of viscous fluids and heat transfer occurrences within heated mini-channel is considered. Heat transfer and flow characteristics of different viscous liquids, such as engine oil, automatic transmission fluid, one-half ethylene glycol, and deionized water were numerically analyzed. Some mathematical applications such as Fourier series and Laplace Z-Transforms were employed to ascertain the behaviour-wave like structure of these each viscous fluids. The steady, laminar flow and heat transfer equations are reckoned by the aid of numerical simulation technique. Further, this numerical simulation technique is endorsed by using the accessible practical values in comparison with the anticipated local thermal resistances. However, the roughness of this mini-channel that is one of the physical limitations was also predicted in this study. This affects the frictional factor. When an additive such as tetracycline was introduced in the fluid, the heat input was lowered, and this caused pro rata effect on the minor and major frictional losses, mostly at a very minute Reynolds number circa 60-80. At this ascertained lower value of Reynolds numbers, there exists decrease in the viscosity and minute frictional losses as a result of the temperature of these viscous liquids been increased. It is inferred that the three equations and models are identified which supported the numerical simulation via interpolation and integration of the variables extended to the walls of the mini-channel, yields the utmost reliance for engineering and technology calculations for turbulence impacting jets in the near imminent age. Out of reasoning with a true equation that could support this control for the fluid flow, Navier-stokes equations were found to tangential to this finding. Though, other physical factors with respect to these Navier-stokes equations are required to be checkmated to avoid uncertain turbulence of the fluid flow. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme via numerical simulation method that takes into account certain terms in the full Navier-Stokes equations. However, this resulted in dropping out in the approximation of certain assumptions. Concrete questions raised in the main body of the work are sightseen further in the appendices.

Keywords: frictional losses, heat transfer, laminar flow, mini-channel, number simulation, Reynolds number, turbulence, viscous fluids

Procedia PDF Downloads 171
9469 An Overview of Structure Based Activity Outcomes of Pyran Derivatives Against Alzheimer’s Disease

Authors: Faisal Almalki

Abstract:

Pyran is a heterocyclic group containing oxygen that possesses a variety of pharmacological effects. Pyran is also one of the most prevalent structural subunits in natural products, such as xanthones, coumarins, flavonoids, benzopyrans, etc. Additionally demonstrating the neuroprotective properties of pyrans is the fact that this heterocycle has recently attracted the attention of scientists worldwide. Alzheimer's Disease (AD) treatment and diagnosis are two of the most critical research objectives worldwide. Increased amounts of extracellular senile plaques, intracellular neurofibrillary tangles, and a progressive shutdown of cholinergic basal forebrain neuron transmission are often related with cognitive impairment. This review highlights the various pyran scaffolds of natural and synthetic origin that are effective in the treatment of AD. For better understanding synthetic compounds are categorized as different types of pyran derivatives like chromene, flavone, xanthone, xanthene, etc. The discussion encompasses both the structure-activity correlations of these compounds as well as their activity against AD. Because of the intriguing actions that were uncovered by these pyran-based scaffolds, there is no question that they are at the forefront of the search for potential medication candidates that could treat Alzheimer's disease.

Keywords: alzheimer’s disease, pyran, coumarin, xanthone

Procedia PDF Downloads 67