Search results for: edge detection algorithm
1841 Time to Retire Rubber Crumb: How Soft Fall Playgrounds are Threatening Australia’s Great Barrier Reef
Authors: Michelle Blewitt, Scott P. Wilson, Heidi Tait, Juniper Riordan
Abstract:
Rubber crumb is a physical and chemical pollutant of concern for the environment and human health, warranting immediate investigations into its pathways to the environment and potential impacts. This emerging microplastic is created by shredding end-of-life tyres into ‘rubber crumb’ particles between 1-5mm used on synthetic turf fields and soft-fall playgrounds as a solution to intensifying tyre waste worldwide. Despite having known toxic and carcinogenic properties, studies into the transportation pathways and movement patterns of rubber crumbs from these surfaces remain in their infancy. To address this deficit, AUSMAP, the Australian Microplastic Assessment Project, in partnership with the Tangaroa Blue Foundation, conducted a study to quantify crumb loss from soft-fall surfaces. To our best knowledge, this is the first of its kind, with funding for the audits being provided by the Australian Government’s Reef Trust. Sampling occurred at 12 soft-fall playgrounds within the Great Barrier Reef Catchment Area on Australia’s North-East coast, in close proximity to the United Nations World Heritage Listed Reef. Samples were collected over a 12-month period using randomized sediment cores at 0, 2 and 4 meters away from the playground edge along a 20-meter transect. This approach facilitated two objectives pertaining to particle movement: to establish that crumb loss is occurring and that it decreases with distance from the soft-fall surface. Rubber crumb abundance was expressed as a total value and used to determine an expected average of rubber crumb loss per m2. An Analysis of Variance (ANOVA) was used to compare the differences in crumb abundance at each interval from the playground. Site characteristics, including surrounding sediment type, playground age, degree of ultra-violet exposure and amount of foot traffic, were additionally recorded for the comparison. Preliminary findings indicate that crumb is being lost at considerable rates from soft-fall playgrounds in the region, emphasizing an urgent need to further examine it as a potential source of aquatic pollution, soil contamination and threat to individuals who regularly utilize these surfaces. Additional implications for the future of rubber crumbs as a fit-for-purpose recycling initiative will be discussed with regard to industry, governments and the economic burden of surface maintenance and/ or replacement.Keywords: microplastics, toxic rubber crumb, litter pathways, marine environment
Procedia PDF Downloads 911840 Evaluation of the Accuracy of a ‘Two Question Screening Tool’ in the Detection of Intimate Partner Violence in a Primary Healthcare Setting in South Africa
Authors: A. Saimen, E. Armstrong, C. Manitshana
Abstract:
Intimate partner violence (IPV) has been recognised as a global human rights violation. It is universally under diagnosed and the institution of timeous multi-faceted interventions has been noted to benefit IPV victims. Currently, the concept of using a screening tool to detect IPV has not been widely explored in a primary healthcare setting in South Africa, and it was for this reason that this study has been undertaken. A systematic random sampling of 1 in 8 women over a period of 3 months was conducted prospectively at the OPD of a Level 1 Hospital. Participants were asked about their experience of IPV during the past 12 months. The WAST-short, a two-question tool, was used to screen patients for IPV. To verify the result of the screening, women were also asked the remaining questions from the WAST. Data was collected from 400 participants, with a response rate of 99.3%. The prevalence of IPV in the sample was 32%. The WAST-short was shown to have the following operating characteristics: sensitivity 45.2%, specificity 98%,positive predictive value 98%, negative predictive value 79%. The WAST-short lacks sufficient sensitivity and therefore is not an ideal screening tool for this setting. Improvement in the sensitivity of the WAST-short in this setting may be achieved by lowering the threshold for a positive result for IPV screening, and modification of the screening questions to better reflect IPV as understood by the local population.Keywords: domestic violence, intimate partner violence, screening, screening tools
Procedia PDF Downloads 3051839 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction
Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung
Abstract:
In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality
Procedia PDF Downloads 4741838 CFD Prediction of the Round Elbow Fitting Loss Coefficient
Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli
Abstract:
Pressure loss in ductworks is an important factor to be considered in design of engineering systems such as power-plants, refineries, HVAC systems to reduce energy costs. Ductwork can be composed by straight ducts and different types of fittings (elbows, transitions, converging and diverging tees and wyes). Duct fittings are significant sources of pressure loss in fluid distribution systems. Fitting losses can be even more significant than equipment components such as coils, filters, and dampers. At the present work, a conventional 90o round elbow under turbulent incompressible airflow is studied. Mass, momentum, and k-e turbulence model equations are solved employing the finite volume method. The SIMPLE algorithm is used for the pressure-velocity coupling. In order to validate the numerical tool, the elbow pressure loss coefficient is determined using the same conditions to compare with ASHRAE database. Furthermore, the effect of Reynolds number variation on the elbow pressure loss coefficient is investigated. These results can be useful to perform better preliminary design of air distribution ductworks in air conditioning systems.Keywords: duct fitting, pressure loss, elbow, thermodynamics
Procedia PDF Downloads 3911837 Collective Intelligence-Based Early Warning Management for Agriculture
Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin
Abstract:
The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.Keywords: agricultural engineering, warning systems, social network services, context awareness
Procedia PDF Downloads 3821836 Configuration Design and Optimization of the Movable Leg-Foot Lunar Soft-Landing Device
Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian
Abstract:
Lunar exploration is a necessary foundation for deep-space exploration. For the functional limitations of the fixed landers which are widely used currently and are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability, a movable lunar soft-landing device based on cantilever type buffer mechanism and leg-foot type walking mechanism is presented. Firstly, a 20 DoFs quadruped configuration based on pushrod is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and can make the kinematics of the whole mechanism unchanged before and after buffering. Secondly, the multi-function main/auxiliary buffers based on crumple-energy absorption and screw-nut mechanism, as well as the telescopic device which could be used to protect the plantar force sensors during the buffer process are designed. Finally, the kinematic model of the whole mechanism is established, and the configuration optimization of the whole mechanism is completed based on the performance requirements of slope adaptation and obstacle crossing. This research can provide a technical solution integrating soft-landing, large-scale inspection and material-transfer for future lunar exploration and even mars exploration, and can also serve as the technical basis for developing the reusable landers.Keywords: configuration design, lunar soft-landing device, movable, optimization
Procedia PDF Downloads 1591835 Elastohydrodynamic Lubrication Study Using Discontinuous Finite Volume Method
Authors: Prawal Sinha, Peeyush Singh, Pravir Dutt
Abstract:
Problems in elastohydrodynamic lubrication have attracted a lot of attention in the last few decades. Solving a two-dimensional problem has always been a big challenge. In this paper, a new discontinuous finite volume method (DVM) for two-dimensional point contact Elastohydrodynamic Lubrication (EHL) problem has been developed and analyzed. A complete algorithm has been presented for solving such a problem. The method presented is robust and easily parallelized in MPI architecture. GMRES technique is implemented to solve the matrix obtained after the formulation. A new approach is followed in which discontinuous piecewise polynomials are used for the trail functions. It is natural to assume that the advantages of using discontinuous functions in finite element methods should also apply to finite volume methods. The nature of the discontinuity of the trail function is such that the elements in the corresponding dual partition have the smallest support as compared with the Classical finite volume methods. Film thickness calculation is done using singular quadrature approach. Results obtained have been presented graphically and discussed. This method is well suited for solving EHL point contact problem and can probably be used as commercial software.Keywords: elastohydrodynamic, lubrication, discontinuous finite volume method, GMRES technique
Procedia PDF Downloads 2571834 An Exploration of the Pancreatic Cancer miRNome during the Progression of the Disease
Authors: Barsha Saha, Shouvik Chakravarty, Sukanta Ray, Kshaunish Das, Nidhan K. Biswas, Srikanta Goswami
Abstract:
Pancreatic Ductal Adenocarcinoma is a well-recognised cause of cancer death with a five-year survival rate of about 9%, and its incidence in India has been found to be increased manifold in recent years. Due to delayed detection, this highly metastatic disease has a poor prognosis. Several molecular alterations happen during the progression of the disease from pre-cancerous conditions, and many such alterations could be investigated for their biomarker potential. MicroRNAs have been shown to be prognostic for PDAC patients in a variety of studies. We hereby used NGS technologies to evaluate the role of small RNA changes during pancreatic cancer development from chronic pancreatitis. Plasma samples were collected from pancreatic cancer patients (n=16), chronic pancreatitis patients (n=8), and also from normal individuals (n=16). Pancreatic tumour tissue (n=5) and adjacent normal tissue samples (n=5) were also collected. Sequencing of small RNAs was carried out after small RNAs were isolated from plasma samples and tissue samples. We find that certain microRNAs are highly deregulated in pancreatic cancer patients in comparison to normal samples. A combinatorial analysis of plasma and tissue microRNAs and subsequent exploration of their targets and altered molecular pathways could not only identify potential biomarkers for disease diagnosis but also help to understand the underlying mechanism.Keywords: small RNA sequencing, pancreatic cancer, biomarkers, tissue sample
Procedia PDF Downloads 941833 Detection and Quantification of Active Pharmaceutical Ingredients as Adulterants in Garcinia cambogia Slimming Preparations Using NIR Spectroscopy Combined with Chemometrics
Authors: Dina Ahmed Selim, Eman Shawky Anwar, Rasha Mohamed Abu El-Khair
Abstract:
A rapid, simple and efficient method with minimal sample treatment was developed for authentication of Garcinia cambogia fruit peel powder, along with determining undeclared active pharmaceutical ingredients (APIs) in its herbal slimming dietary supplements using near infrared spectroscopy combined with chemometrics. Five featured adulterants, including sibutramine, metformin, orlistat, ephedrine, and theophylline are selected as target compounds. The Near infrared spectral data matrix of authentic Garcinia cambogia fruit peel and specimens degraded by intentional contamination with the five selected APIs was subjected to hierarchical clustering analysis to investigate their bundling figure. SIMCA models were established to ensure the genuiness of Garcinia cambogia fruit peel which resulted in perfect classification of all tested specimens. Adulterated samples were utilized for construction of PLSR models based on different APIs contents at minute levels of fraud practices (LOQ < 0.2% w/w).The suggested approach can be applied to enhance and guarantee the safety and quality of Garcinia fruit peel powder as raw material and in dietary supplements.Keywords: Garcinia cambogia, Quality control, NIR spectroscopy, Chemometrics
Procedia PDF Downloads 771832 Molecular and Phytochemical Fingerprinting of Anti-Cancer Drug Yielding Plants in South India
Authors: Alexis John de Britto
Abstract:
Studies were performed to select the superior genotypes based on intra-specific variations, caused by phytogeographical, climatic and edaphic parameters of three anti cancer drug yielding mangrove plants such as Acanthus ilicifolius L., Calophyllum inophyllum L. and Excoecaria agallocha L. using ISSR (Inter Simple Sequence Repeats) markers and phytochemical analysis such as preliminary phytochemical tests, TLC, HPTLC, HPLC and antioxidant tests. The plants were collected from five different geographical locations of the East Coast of south India. Genetic heterozygosity, Nei’s gene diversity, Shannon’s information index and Percentage of polymorphism between the populations were calculated using POPGENE software. Cluster analysis was performed using UPGMA algorithm. AMOVA and correlations between genetic diversity and soil factors were analyzed. Combining the molecular and phytochemical variations superior genotypes were selected. Conservation constraints and methods of efficient exploitation of the species are discussed.Keywords: anti-cancer drug yielding plants, DNA fingerprinting, phytochemical analysis, selection of superior genotypes
Procedia PDF Downloads 3301831 Bridging Livelihood and Conservation: The Role of Ecotourism in the Campo Ma’an National Park, Cameroon
Authors: Gadinga Walter Forje, Martin Ngankam Tchamba, Nyong Princely Awazi, Barnabas Neba Nfornka
Abstract:
Ecotourism is viewed as a double edge sword for the enhancement of conservation and local livelihood within a protected landscape. The Campo Ma’an National Park (CMNP) adopted ecotourism in its management plan as a strategic axis for better management of the park. The growing importance of ecotourism as a strategy for the sustainable management of CMNP and its environs requires adequate information to bolster the sector. This study was carried out between November 2018 and September 2021, with the main objective to contribute to the sustainable management of the CMNP through suggestions for enhancing the capacity of ecotourism in and around the park. More specifically, the study aimed at; 1) Analyse the governance of ecotourism in the CMNP and its surrounding; 2) Assessing the impact of ecotourism on local livelihood around the CMNP; 3) Evaluating the contribution of ecotourism to biodiversity conservation in and around the CMNP; 4) Evaluate the determinants of ecotourism possibilities in achieving sustainable livelihood and biodiversity conservation in and around the CMNP. Data were collected from both primary and secondary sources. Primary data were obtained from household surveys (N=124), focus group discussions (N=8), and key informant interviews (N=16). Data collected were coded and imputed into SPSS (version 19.0) software and Microsoft Excel spreadsheet for both quantitative and qualitative analysis. Findings from the Chi-square test revealed overall poor ecotourism governance in and around the CMNP, with benefit sharing (X2 = 122.774, p <0.01) and conflict management (X2 = 90.839, p<0.01) viewed to be very poor. For the majority of the local population sampled, 65% think ecotourism does not contribute to local livelihood around CMNP. The main factors influencing the impact of ecotourism around the CMNP on the local population’s livelihood were gender (logistic regression (β) = 1.218; p = 0.000); and level of education (logistic regression (β) = 0.442; p = 0.000). Furthermore, 55.6% of the local population investigated believed ecotourism activities do not contribute to the biodiversity conservation of CMNP. Spearman correlation between socio-economic variables and ecotourism impact on biodiversity conservation indicated relationships with gender (r = 0.200, p = 0.032), main occupation (r = 0.300 p = 0.012), time spent in the community (r = 0.287 p = 0.017), and number of children (r =-0.286 p = 0.018). Variables affecting ecotourism impact on biodiversity conservation were age (logistic regression (β) = -0.683; p = 0.037) and gender (logistic regression (β) = 0.917; p = 0.045). This study recommends the development of ecotourism-friendly policies that can accelerate Public Private Partnership for the sustainable management of the CMNP as a commitment toward good governance. It also recommends the development of gender-sensitive ecotourism packages, with fair opportunities for rural women and more parity in benefit sharing to improve livelihood and contribute more to biodiversity conservation in and around the Park.Keywords: biodiversity conservation, Campo Ma’an national park, ecotourism, ecotourism governance, rural livelihoods, protected area management
Procedia PDF Downloads 1201830 A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error
Authors: Qianhua He, Weili Zhou, Aiwu Chen
Abstract:
A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.Keywords: speech denoising, sparse representation, k-singular value decomposition, orthogonal matching pursuit
Procedia PDF Downloads 4991829 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm
Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll
Abstract:
This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.Keywords: concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC
Procedia PDF Downloads 2801828 Agile Real-Time Field Programmable Gate Array-Based Image Processing System for Drone Imagery in Digital Agriculture
Authors: Sabiha Shahid Antora, Young Ki Chang
Abstract:
Along with various farm management technologies, imagery is an important tool that facilitates crop assessment, monitoring, and management. As a consequence, drone imaging technology is playing a vital role to capture the state of the entire field for yield mapping, crop scouting, weed detection, and so on. Although it is essential to inspect the cultivable lands in real-time for making rapid decisions regarding field variable inputs to combat stresses and diseases, drone imagery is still evolving in this area of interest. Cost margin and post-processing complexions of the image stream are the main challenges of imaging technology. Therefore, this proposed project involves the cost-effective field programmable gate array (FPGA) based image processing device that would process the image stream in real-time as well as providing the processed output to support on-the-spot decisions in the crop field. As a result, the real-time FPGA-based image processing system would reduce operating costs while minimizing a few intermediate steps to deliver scalable field decisions.Keywords: real-time, FPGA, drone imagery, image processing, crop monitoring
Procedia PDF Downloads 1131827 Measurement of Qashqaeian Sheep Fetus Parameters by Ultrasonography
Authors: Aboozar Dehghan, S. Sharifi, S. A. Dehghan, Ali Aliabadi, Arash Esfandiari
Abstract:
Ultrasonography is a safe, available and particular method in diagnostic imaging science. In ultrasonography most of body soft tissue imaged in B mode display. Iranian Qashqaeian sheep is an old and domestic breed in Zagros mountain area in central plateau of Iran. Population of this breed in Fars state (study location) is 250000 animals. Gestation age detection in sheep was performed by ultarasonography in Kivircik breed in 2010 in turkey. In this study 5 adult, clinically healthy, Iranian ewes and 1 Iranian ram were selected. We measured biparital diameter that thickened part of fetal skull include (BPD), trunk diameter (TD), fetal heart diameter(FHD), intercostals space of fetus (ICS) and fetal heart rate per minute (FHR) weekly after day 60 after pregnancy. Inguinal area in both sides shaved and cleaned by alcohol 70 degree and covered by enough copulating gel. Trans abdominal Ultarasonography was performed by a convex multi frequency transducer with 2.5-5 MHz frequency. Data were collected and analyzed by on way Annova method in Spss15 software. Mean of BPD, TD, FHD and ICS in day 60 were 14.58, 25.92, 3.53, 2.3mm. FHR can measure on day 109 to 150. TD after day 109 cannot displayed in 1 frame in scanning. Ultrasonography in sheep pregnancy is a particular method. Using this study can help in theriogeniologic disease that affected fetal growth. Differentiating between various sheep breed is a functional result of this study.Keywords: qashqaeian sheep, fetometry, ultrasonography
Procedia PDF Downloads 5451826 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses
Authors: William Huang
Abstract:
Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization
Procedia PDF Downloads 1531825 Production of Hydroxy Marilone C as a Bioactive Compound from Streptomyces badius
Authors: Osama H. Elsayed, Mohsen M. S. Asker, Mahmoud A. Swelim, Ibrahim H. Abbas, Aziza I. Attwa, Mohamed E. El Awady
Abstract:
Hydroxy marilone C is a bioactive metabolite was produced from the culture broth of Streptomyces badius isolated from Egyptian soil. hydroxy marilone C was purified and fractionated by silica gel column with a gradient mobile phase dicloromethane (DCM) : Methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many instruments as Infrared (IR), nuclear magnetic resonance (NMR), Mass spectroscopy (MS) and UV spectroscopy to the elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549) and human breast adenocarcinoma cell line (MCF-7) and antiviral activities; showed that the maximum antioxidant activity was 78.8 % at 3000 µg/ml after 90 min. and the IC50 value against DPPH radical found about 1500 µg/ml after 60 min. By Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells were 443 µg/ml and 147.9 µg/ml, respectively. While for detection of antiviral activity using Madin-Darby canine kidney (MDCK) cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1µg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50) was 33.25% for 80 µg/ml. This results indicated that the hydroxy marilone C has a potential antitumor and antiviral activities.Keywords: hydroxy marilone C, production, bioactive compound, Streptomyces badius
Procedia PDF Downloads 2531824 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding
Procedia PDF Downloads 3631823 A Combined Error Control with Forward Euler Method for Dynamical Systems
Authors: R. Vigneswaran, S. Thilakanathan
Abstract:
Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.Keywords: adaptivity, fixed point, long time simulations, stability, linear system
Procedia PDF Downloads 3121822 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm
Procedia PDF Downloads 1501821 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 2741820 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption
Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed
Abstract:
In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.Keywords: optimization, neural networks, real-time scheduling, low-power consumption
Procedia PDF Downloads 3711819 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments
Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing
Abstract:
Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.Keywords: central composite design, CO2 liquefaction, latin hypercube sampling, simulation-based optimization
Procedia PDF Downloads 1661818 Using the Simple Fixed Rate Approach to Solve Economic Lot Scheduling Problem under the Basic Period Approach
Authors: Yu-Jen Chang, Yun Chen, Hei-Lam Wong
Abstract:
The Economic Lot Scheduling Problem (ELSP) is a valuable mathematical model that can support decision-makers to make scheduling decisions. The basic period approach is effective for solving the ELSP. The assumption for applying the basic period approach is that a product must use its maximum production rate to be produced. However, a product can lower its production rate to reduce the average total cost when a facility has extra idle time. The past researches discussed how a product adjusts its production rate under the common cycle approach. To the best of our knowledge, no studies have addressed how a product lowers its production rate under the basic period approach. This research is the first paper to discuss this topic. The research develops a simple fixed rate approach that adjusts the production rate of a product under the basic period approach to solve the ELSP. Our numerical example shows our approach can find a better solution than the traditional basic period approach. Our mathematical model that applies the fixed rate approach under the basic period approach can serve as a reference for other related researches.Keywords: economic lot, basic period, genetic algorithm, fixed rate
Procedia PDF Downloads 5631817 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul
Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini
Abstract:
The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.Keywords: decision tree, breast cancer, probability, data mining
Procedia PDF Downloads 1381816 A Comparative Analysis of Geometric and Exponential Laws in Modelling the Distribution of the Duration of Daily Precipitation
Authors: Mounia El Hafyani, Khalid El Himdi
Abstract:
Precipitation is one of the key variables in water resource planning. The importance of modeling wet and dry durations is a crucial pointer in engineering hydrology. The objective of this study is to model and analyze the distribution of wet and dry durations. For this purpose, the daily rainfall data from 1967 to 2017 of the Moroccan city of Kenitra’s station are used. Three models are implemented for the distribution of wet and dry durations, namely the first-order Markov chain, the second-order Markov chain, and the truncated negative binomial law. The adherence of the data to the proposed models is evaluated using Chi-square and Kolmogorov-Smirnov tests. The Akaike information criterion is applied to assess the most effective model distribution. We go further and study the law of the number of wet and dry days among k consecutive days. The calculation of this law is done through an algorithm that we have implemented based on conditional laws. We complete our work by comparing the observed moments of the numbers of wet/dry days among k consecutive days to the calculated moment of the three estimated models. The study shows the effectiveness of our approach in modeling wet and dry durations of daily precipitation.Keywords: Markov chain, rainfall, truncated negative binomial law, wet and dry durations
Procedia PDF Downloads 1261815 Determination of Stresses in Vlasov Beam Sections
Authors: Semih Erdogan
Abstract:
In this paper, the normal and shear stress distributions in Vlasov beams are determined by two-dimensional triangular finite element formulations. The proposed formulations take into account the warping effects along the beam axis. The shape of the considered beam sections may be arbitrary and varied throughout its length. The stiffness matrices and force vectors are derived for transversal forces, uniform torsion, and nonuniform torsion. The proposed finite element algorithm is validated by comparing the analytical solutions, structural engineering books, and related articles. The numerical examples include beams with different cross-section types such as solid, thick-walled, closed-thin-walled, and open-thin-walled sections. Materials defined in the examples are homogeneous, isotropic, and linearly elastic. Through these examples, the study demonstrates the capability of the proposed method to address a wide range of practical engineering scenarios.Keywords: Vlasov beams, warping function, nonuniform torsion, finite element method, normal and shear stresses, cross-section properties
Procedia PDF Downloads 641814 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions
Procedia PDF Downloads 2741813 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme
Authors: Cavidan Yakupoglu, Kurt Rohloff
Abstract:
In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE
Procedia PDF Downloads 1571812 Insecticide Resistance Detection on Dengue Vector, Aedes albopictus Obtained from Kapit, Kuching and Sibu Districts in Sarawak State, Malaysia
Authors: Koon Weng Lau, Chee Dhang Chen, Abdul Aziz Azidah, Mohd Sofian-Azirun
Abstract:
Recently, Sarawak state of Malaysia encounter an outbreak of dengue fever. Aedes albopictus has incriminated as one of the important vectors of dengue transmission. Without an effective vaccine, approaches to control or prevent dengue will be a focus on the vectors. The control of Aedes mosquitoes is still dependent on the use of chemical insecticides and insecticide resistance represents a threat to the effectiveness of vector control. This study was conducted to determine the resistance status of 11 active ingredients representing four major insecticide classes: DDT, dieldrin, malathion, fenitrothion, bendiocarb, propoxur, etofenprox, deltamethrin, lambda-cyhalothrin, cyfluthrin, and permethrin. Standard WHO test procedures were conducted to determine the insecticide susceptibility. Aedes albopictus collected from Kapit (resistance ratio, RR = 1.04–3.02), Kuching (RR = 1.17–4.61), and Sibu (RR = 1.06–3.59) exhibited low resistance toward all insecticides except dieldrin. This study reveled that dieldrin is still effective against Ae. albopictus, followed by fenitrothion, cyfluthrin, and deltamethrin. In conclusion, Ae. albopictus in Sarawak exhibited different resistance levels toward various insecticides and alternative solutions should be implemented to prevent further deterioration of the condition.Keywords: Aedes albopictus, dengue, insecticide resistance, Malaysia
Procedia PDF Downloads 354