Search results for: whole-body vibration
271 Clarifications on the Damping Mechanism Related to the Hunting Motion of the Wheel Axle of a High-Speed Railway Vehicle
Authors: Barenten Suciu
Abstract:
In order to explain the damping mechanism, related to the hunting motion of the wheel axle of a high-speed railway vehicle, a generalized dynamic model is proposed. Based on such model, analytic expressions for the damping coefficient and damped natural frequency are derived, without imposing restrictions on the ratio between the lateral and vertical creep coefficients. Influence of the travelling speed, wheel conicity, dimensionless mass of the wheel axle, ratio of the creep coefficients, ratio of the track span to the yawing diameter, etc. on the damping coefficient and damped natural frequency, is clarified.Keywords: high-speed railway vehicle, hunting motion, wheel axle, damping, creep, vibration model, analysis.
Procedia PDF Downloads 291270 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition
Authors: Theddeus T. Akano, Omotayo A. Fakinlede
Abstract:
The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm-Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solutions of classical Sturm–Liouville problems are presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems
Procedia PDF Downloads 362269 Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters
Authors: G. Krishna Mohana Rao, P. Ravi Kumar
Abstract:
Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters.Keywords: damping inserts, end milling, vibrations, nonlinear dynamic analysis, number of fingers
Procedia PDF Downloads 525268 Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability
Authors: Ahmed A. D. Sarhan, S. R. Besharaty, Javad Akbaria, M. Hamdi
Abstract:
The capability of CNC gantry milling machines in manufacturing long components has caused the expanded use of such machines. On the other hand, the machines’ gantry rigidity can reduce under severe loads or vibration during operation. Indeed, the quality of machining is dependent on the machine’s dynamic behavior throughout the operating process. For this reason, this type of machines has always been used prudently and are non efficient. Therefore, they can usually be employed for rough machining and may not produce adequate surface finishing. In this paper, a CNC gantry milling machine with the potential to produce good surface finish has been designed and analyzed. The lowest natural frequency of this machine is 202 Hz at all motion amplitudes with a full range of suitable frequency responses. Meanwhile, the maximum deformation under dead loads for the gantry machine is 0.565µm, indicating that this machine tool is capable of producing higher product quality.Keywords: frequency response, finite element, gantry machine, gantry design, static and dynamic analysis
Procedia PDF Downloads 358267 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”
Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari
Abstract:
Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads
Procedia PDF Downloads 299266 A Post-Occupancy Evaluation of the Impact of Indoor Environmental Quality on Health and Well-Being in Office Buildings
Authors: Suyeon Bae, Abimbola Asojo, Denise Guerin, Caren Martin
Abstract:
Post-occupancy evaluations (POEs) have been recognized for documenting occupant well-being and responses to indoor environmental quality (IEQ) factors such as thermal, lighting, and acoustic conditions. Sustainable Post-Occupancy evaluation survey (SPOES) developed by an interdisciplinary team at a Midwest University provides an evidence-based quantitative analysis of occupants’ satisfaction in office, classroom, and residential spaces to help direct attention to successful areas and areas that need improvement in buildings. SPOES is a self-administered and Internet-based questionnaire completed by building occupants. In this study, employees in three different office buildings rated their satisfaction on a Likert-type scale about 12 IEQ criteria including thermal condition, indoor air quality, acoustic quality, daylighting, electric lighting, privacy, view conditions, furnishings, appearance, cleaning and maintenance, vibration and movement, and technology. Employees rated their level of satisfaction on a Likert-type scale from 1 (very dissatisfied) to 7 (very satisfied). They also rate the influence of their physical environment on their perception of their work performance and the impact of their primary workspaces on their health on a scale from 1 (hinders) to 7 (enhances). Building A is a three-story building that includes private and group offices, classrooms, and conference rooms and amounted to 55,000 square-feet for primary workplace (N=75). Building B, a six-story building, consisted of private offices, shared enclosed office, workstations, and open desk areas for employees and amounted to 14,193 square-feet (N=75). Building C is a three-story 56,000 square-feet building that included classrooms, therapy rooms, an outdoor playground, gym, restrooms, and training rooms for clinicians (N=76). The results indicated that 10 IEQs for Building A except acoustic quality and privacy showed statistically significant correlations on the impact of the primary workspace on health. In Building B, 11 IEQs except technology showed statistically significant correlations on the impact of the primary workspace on health. Building C had statistically significant correlations between all 12 IEQ and the employees’ perception of the impact of their primary workspace on their health in two-tailed correlations (P ≤ 0.05). Out of 33 statistically significant correlations, 25 correlations (76%) showed at least moderate relationship (r ≥ 0.35). For the three buildings, daylighting, furnishings, and indoor air quality IEQs ranked highest on the impact on health. IEQs about vibration and movement, view condition, and electric lighting ranked second, followed by IEQs about cleaning and maintenance and appearance. These results imply that 12 IEQs developed in SPOES are highly related to employees’ perception of how their primary workplaces impact their health. The IEQs in this study offer an opportunity for improving occupants’ well-being and the built environment.Keywords: post-occupancy evaluation, built environment, sustainability, well-being, indoor air quality
Procedia PDF Downloads 290265 Active Flutter Suppression of Sports Aircraft Tailplane by Supplementary Control Surface
Authors: Aleš Kratochvíl, Svatomír Slavík
Abstract:
The paper presents an aircraft flutter suppression by active damping of supplementary control surface at trailing edge. The mathematical model of thin oscillation airfoil with control surface driven by pilot is developed. The supplementary control surface driven by control law is added. Active damping of flutter by several control law is present. The structural model of tailplane with an aerodynamic strip theory based on the airfoil model is developed by a finite element method. The optimization process of stiffens parameters is carried out to match the structural model with results from a ground vibration test of a small sport airplane. The implementation of supplementary control surface driven by control law is present. The active damping of tailplane model is shown.Keywords: active damping, finite element method, flutter, tailplane model
Procedia PDF Downloads 292264 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators
Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi
Abstract:
The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.Keywords: automatic bias control, optical fiber communication, optical modulation, optical devices
Procedia PDF Downloads 190263 Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect
Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara
Abstract:
This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.Keywords: air viscosity, design parameters, loudspeaker, optimization
Procedia PDF Downloads 513262 Physicochemical and Optical Characterization of Rutile TiO2 Thin Films Grown by APCVD Technique
Authors: Dalila Hocine, Mohammed Said Belkaid, Abderahmane Moussi
Abstract:
In this study, pure rutile TiO2 thin films were directly synthesized on silicon substrates by Atmospheric Pressure Chemical Vapor Deposition technique (APCVD) using TiCl4 as precursor. We studied the physicochemical properties and the optical properties of the produced coatings by means of standard characterization techniques of Fourier Transform Infrared Spectroscopy (FTIR) combined with UV-Vis Reflectance Spectrophotometry. The absorption peaks at 423 cm-1 and 610 cm-1 were observed for the rutile TiO2 thin films, by FTIR measurements. The absorption peak at 739 cm-1 due to the vibration of the Ti-O bonds, was also detected. UV-Vis Reflectance Spectrophotometry is employed for measuring the optical band gap from the measurements of the TiO2 films reflectance. The optical band gap was then extracted from the reflectance data for the TiO2 sample. It was estimated to be 3.05 eV which agrees with the band gap of commercial rutile TiO2 sample.Keywords: titanium dioxide, physicochemical properties, APCVD, FTIR, band gap
Procedia PDF Downloads 397261 Enhancement of Material Removal Rate of Complex Featured Surfaces in Vibratory Finishing
Authors: Kunal Ahluwalia, Ampara Aramcharoen, Chan Wai Luen, Swee Hock Yeo
Abstract:
The different process engineering applications of vibratory finishing technology have led to its versatile use in the development of aviation components. The most noteworthy applications of vibratory finishing include deburring and imparting the required surface finish. In this paper, vibratory finishing has been used to study its effectiveness in removal of laser shock peened (LSP) layers from Titanium workpieces. A vibratory trough operating at a frequency of 25 Hz, amplitude 3.5 mm and titanium specimens (Ti-6Al-4V, Grade 5) of dimensions 50 x 50 x 10 mm³ were utilized for the experiments. A vibrating fixture operating at 200 Hz was used to provide vibration to the test piece and was immersed in the vibratory trough. It was evident that there is an increase in efficiency of removal of the complex featured layer and smoother surface finish with the introduction of the vibrating fixture in the vibratory finishing setup as compared to the conventional vibratory finishing setup wherein the fixture is not vibrating.Keywords: laser shock peening, material removal, surface roughness, vibrating fixture, vibratory finishing
Procedia PDF Downloads 222260 Permanent Magnet Synchronous Generator: Unsymmetrical Point Operation
Authors: P. Pistelok
Abstract:
The article presents the concept of an electromagnetic circuit generator with permanent magnets mounted on the surface rotor core designed for single phase work. Computation field-circuit model was shown. The spectrum of time course of voltages in the idle work was presented. The cross section with graphically presentation of magnetic induction in particular parts of electromagnetic circuits was presented. Distribution of magnetic induction at the rated load point for each phase were shown. The time course of voltages and currents for each phases for rated power were displayed. An analysis of laboratory results and measurement of load characteristics of the generator was discussed. The work deals with three electromagnetic circuits of generators with permanent magnet where output voltage characteristics versus rated power were expressed.Keywords: permanent magnet generator, permanent magnets, vibration, course of torque, single phase work, asymmetrical three phase work
Procedia PDF Downloads 289259 Heat Pipe Production and Life Performance Tests in Geosynchronous Telecom Satellites
Authors: Erkam Arslantas
Abstract:
Heat pipes one of the thermal control elements are used in communication satellites. A selection of the heat pipes of satellite thermal design will be emphasized how important and effective it is. In this article, manufacturing and performance control tests of heat pipes are reviewed from the current literature. The heat pipe is expected to function efficiently during all missions of the spacecraft from Beginning of Life (BOL) to End of Life (EOL). There are many parameters that are evaluated in manufacturing and performance control tests of the heat pipes which are used in satellites. These parameters are pressure design, leakage, noncondensable gas level (N.C.G), sine vibration, shock and static load capabilities, aging, bending, proof, final test etc. These parameters will be explained separately for the heat pipes in this review article and young researches working on the thermal control system of Geosynchronous Satellites systems can find easily related information in this article.Keywords: communication satellite, heat pipe, performance test, thermal control
Procedia PDF Downloads 169258 Optimization of a Cone Loudspeaker Parameter of Design Parameters by Analysis of a Narrow Acoustic Sound Pathway
Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara
Abstract:
This study tried optimization of design parameter of a cone loudspeaker unit as an example of the high flexibility of the products design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to each design the parameter of the loudspeaker. To overcome the limitation of the design problem in practice, this paper proposes a new an acoustic analysis algorithm to optimize design the parameter of the loudspeaker. The material character of cone paper and the loudspeaker edge was the design parameter, and the vibration displacement of the cone paper was the objective function. The results of the analysis were compared with the predicted value. They had high accuracy to the predicted value. These results suggest that, though the parameter design is difficult by experience and intuition, it can be performed comparatively easily using the optimization design by the developed acoustic analysis software.Keywords: air viscosity, loudspeaker, cone paper, edge, optimization
Procedia PDF Downloads 401257 Mistuning in Radial Inflow Turbines
Authors: Valentina Futoryanova, Hugh Hunt
Abstract:
One of the common failure modes of the diesel engine turbochargers is high cycle fatigue of the turbine wheel blades. Mistuning of the blades due to the casting process is believed to contribute to the failure mode. Laser vibrometer is used to characterize mistuning for a population of turbine wheels through the analysis of the blade response to piezo speaker induced noise. The turbine wheel design under investigation is radial and is typically used in 6-12 L diesel engine applications. Amplitudes and resonance frequencies are reviewed and summarized. The study also includes test results for a paddle wheel that represents a perfectly tuned system and acts as a reference. Mass spring model is developed for the paddle wheel and the model suitability is tested against the actual data. Randomization is applied to the stiffness matrix to model the mistuning effect in the turbine wheels. Experimental data is shown to have good agreement with the model.Keywords: vibration, radial turbines, mistuning, turbine blades, modal analysis, periodic structures, finite element
Procedia PDF Downloads 434256 An Investigation of Water Atomizer in Ejected Gas of a Vehicle Engine
Authors: Chun-Wei Liu, Feng-Tsai Weng
Abstract:
People faced pollution threaten in modern age although the standard of exhaust gas of vehicles has been established. The goal of this study is to investigate the effect of water atomizer in a vehicle emission system. Diluted 20% ammonia water was used in spraying system. Micro particles produced by exhausted gas from engine of vehicle which were cumulated through atomized spray in a self-development collector. In experiments, a self-designed atomization model plate and a gas tank controlled by the micro-processor using Pulse Width Modulation (PWM) logic was prepared for exhaust test. The gas from gasoline-engine of vehicle was purified with the model panel collector. A soft well named ANSYS was utilized for analyzing the distribution condition of rejected gas. Micro substance and percentage of CO, HC, CO2, NOx in exhausted gas were investigated at different engine speed, and atomizer vibration frequency. Exceptional results in the vehicle engine emissions measurement were obtained. The temperature of exhausted gas can be decreased 3oC. Micro substances PM10 can be decreased and the percentage of CO can be decreased more than 55% at 2500RPM by proposed system. Value of CO, HC, CO2 and NOX was all decreased when atomizers were used with water.Keywords: atomizer, CO, HC, NOx, PM2.5
Procedia PDF Downloads 457255 Analysis of Building Response from Vertical Ground Motions
Authors: George C. Yao, Chao-Yu Tu, Wei-Chung Chen, Fung-Wen Kuo, Yu-Shan Chang
Abstract:
Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be.Keywords: vertical ground motion, vertical amplification factor, natural frequency, component
Procedia PDF Downloads 315254 Revising the Student Experiment Materials and Practices at the National University of Laos
Authors: Syhalath Xaphakdy, Toshio Nagata, Saykham Phommathat, Pavy Souwannavong, Vilayvanh Srithilat, Phoxay Sengdala, Bounaom Phetarnousone, Boualay Siharath, Xaya Chemcheng
Abstract:
The National University of Laos (NUOL) invited a group of volunteers from the Japan International Cooperation Agency (JICA) to revise the physics experiments to utilize the materials that were already available to students. The intension was to review and revise the materials regularly utilized in physics class. The project had access to limited materials and a small budget for the class in the unit; however, by developing experimental textbooks related to mechanics, electricity, and wave and vibration, the group found a way to apply them in the classroom and enhance the students teaching activities. The aim was to introduce a way to incorporate the materials and practices in the classroom to enhance the students learning and teaching skills, particularly when they graduate and begin working as high school teachers.Keywords: NUOL, JICA, physics experiment materials, small budget, mechanics, electricity
Procedia PDF Downloads 236253 Study of Effect of Steering Column Orientation and Operator Platform Position on the Hand Vibration in Compactors
Authors: Sunil Bandaru, Suresh Yv, Srinivas Vanapalli
Abstract:
Heavy machinery especially compactors has more vibrations induced from the compactor mechanism than the engines. Since the operator’s comfort is most important in any of the machines, this paper shows interest in studying the vibrations on the steering wheel for a double drum compactor. As there are no standard procedures available for testing vibrations on the steering wheel of double drum compactors, this paper tries to evaluate the vibrations on the steering wheel by considering most of the possibilities. In addition to the feasibility for the operator to adjust the steering wheel tilt as in the case of automotive, there is an option for the operator to change the orientation of the operator platform for the complete view of the road’s edge on both the ends of the front and rear drums. When the orientation is either +/-180°, the operator will be closer to the compactor mechanism; also there is a possibility for the shuffle in the modes with respect to the operator. Hence it is mandatory to evaluate the vibrations levels in both cases. This paper attempts to evaluate the vibrations on the steering wheel by considering the two operator platform positions and three steering wheel tilting angles.Keywords: FEA, CAE, steering column, steering column orientation position
Procedia PDF Downloads 225252 Thermomechanical Processing of a CuZnAl Shape-Memory Alloy
Authors: Pedro Henrique Alves Martins, Paulo Guilherme Ferreira De Siqueira, Franco De Castro Bubani, Maria Teresa Paulino Aguilar, Paulo Roberto Cetlin
Abstract:
Cu-base shape-memory alloys (CuZnAl, CuAlNi, CuAlBe, etc.) are promising engineering materials for several unconventional devices, such as sensors, actuators, and mechanical vibration dampers. Brittleness is one of the factors that limit the commercial use of these alloys, as it makes thermomechanical processing difficult. In this work, a method for the hot extrusion of a 75.50% Cu, 16,74% Zn, 7,76% Al (weight %) alloy is presented. The effects of the thermomechanical processing in the microstructure and the pseudoelastic behavior of the alloy are assessed by optical metallography, compression and hardness tests. Results show that hot extrusion is a suitable method to obtain severe cross-section reductions in the CuZnAl shape-memory alloy studied. The alloy maintained its pseudoelastic effect after the extrusion and the modifications in the mechanical behavior caused by precipitation during hot extrusion can be minimized by a suitable precipitate dissolution heat treatment.Keywords: hot extrusion, pseudoelastic, shape-memory alloy, thermomechanical processing
Procedia PDF Downloads 374251 Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine
Authors: C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar
Abstract:
In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.Keywords: customer friendly washing machine, drier design, quick cloth cleaning, variable tub volume washing machine, variable spinning speed washing machine
Procedia PDF Downloads 257250 Study of the Buckling of Sandwich Beams Consider Stretching Effect
Authors: R. Bennai, H. Ait Atmane, H. Fourne, B. Ayache
Abstract:
In this work, an analytical approach using a refined theory of hyperbolic shear deformation of a beam was developed to study the buckling of graduated sandwiches beams under different boundary conditions. The effects of transverse shear strains and the transverse normal deformation are considered. The constituent materials of the beam are supposed gradually variable depending on the height direction based on a simple power distribution law in terms of the volume fractions of the constituents; the two materials with which we worked are metals and ceramics. The core layer is taken homogeneous and made of an isotropic material; while the banks layers consist of functionally graded materials with a homogeneous fraction compared to the middle layer. In the end, illustrative examples are presented to show the effects of changes in different parameters such as (material graduation, the stretching effect of the thickness, boundary conditions and thickness ratio-length) on the vibration free of an FGM sandwich beams.Keywords: FGM materials, refined shear deformation theory, stretching effect, buckling
Procedia PDF Downloads 178249 Temperature-Dependent Structural Characterization of Type-II Dirac Semi-Metal nite₂ From Bulk to Exfoliated Thin Flakes Using Raman Spectroscopy
Authors: Minna Theres James, Nirmal K Sebastian, Shoubhik Mandal, Pramita Mishra, R Ganesan, P S Anil Kumar
Abstract:
We report the temperature-dependent evolution of Raman spectra of type-II Dirac semimetal (DSM) NiTe2 (001) in the form of bulk single crystal and a nanoflake (200 nm thick) for the first time. A physical model that can quantitatively explain the evolution of out of plane A1g and in-plane E1g Raman modes is used. The non-linear variation of peak positions of the Raman modes with temperature is explained by anharmonic three-phonon and four-phonon processes along with thermal expansion of the lattice. We also observe prominent effect of electron-phonon coupling from the variation of FWHM of the peaks with temperature, indicating the metallicity of the samples. Raman mode E1 1g corresponding to an in plane vibration disappears on decreasing the thickness from bulk to nanoflake.Keywords: raman spectroscopy, type 2 dirac semimetal, nickel telluride, phonon-phonon coupling, electron phonon coupling, transition metal dichalcogonide
Procedia PDF Downloads 115248 Vibration Propagation in Structures Through Structural Intensity Analysis
Authors: Takhchi Jamal, Ouisse Morvan, Sadoulet-Reboul Emeline, Bouhaddi Noureddine, Gagliardini Laurent, Bornet Frederic, Lakrad Faouzi
Abstract:
Structural intensity is a technique that can be used to indicate both the magnitude and direction of power flow through a structure from the excitation source to the dissipation sink. However, current analysis is limited to the low frequency range. At medium and high frequencies, a rotational component appear in the field, masking the energy flow and make its understanding difficult or impossible. The objective of this work is to implement a methodology to filter out the rotational components of the structural intensity field in order to fully understand the energy flow in complex structures. The approach is based on the Helmholtz decomposition. It allows to decompose the structural intensity field into rotational, irrotational, and harmonic components. Only the irrotational component is needed to describe the net power flow from a source to a dissipative zone in the structure. The methodology has been applied on academic structures, and it allows a good analysis of the energy transfer paths.Keywords: structural intensity, power flow, helmholt decomposition, irrotational intensity
Procedia PDF Downloads 180247 Viability of Slab Sliding System for Single Story Structure
Authors: C. Iihoshi, G. A. MacRae, G. W. Rodgers, J. G. Chase
Abstract:
Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure.Keywords: earthquake, isolation, slab, sliding
Procedia PDF Downloads 252246 A Statistical Energy Analysis Model of an Automobile for the Prediction of the Internal Sound Pressure Level
Authors: El Korchi Ayoub, Cherif Raef
Abstract:
Interior noise in vehicles is an essential factor affecting occupant comfort. Over recent decades, much work has been done to develop simulation tools for vehicle NVH. At the medium high-frequency range, the statistical energy analysis method (SEA) shows significant effectiveness in predicting noise and vibration responses of mechanical systems. In this paper, the evaluation of the sound pressure level (SPL) inside an automobile cabin has been performed numerically using the statistical energy analysis (SEA) method. A test car cabin was performed using a monopole source as a sound source. The decay rate method was employed to obtain the damping loss factor (DLF) of each subsystem of the developed SEA model. These parameters were then used to predict the sound pressure level in the interior cabin. The results show satisfactory agreement with the directly measured SPL. The developed SEA vehicle model can be used in early design phases and allows the engineer to identify sources contributing to the total noise and transmission paths. Procedia PDF Downloads 91245 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 206244 Ductility Reduction Factors for Displacement Spectra Corresponding to Soft Soil Zone of the Valley of Mexico
Authors: Noé D. Lazos-Gallardo, Sonia E. Ruiz, Federico Valenzuela-Beltran
Abstract:
A simplified mathematical expression to estimate ductility reduction factors of the displacement spectra corresponding to the soft soil zone of Mexico City is proposed. The aim is to allow a better characterization of the displacement spectra and provide a simple expression to be used in displacement based design (DBD). Emphasis is on the Mexico City Building Code. The study is based on the analysis of single degree of freedom (SDOF) systems with elasto-plastic hysteretic behavior. Several seismic ground motions corresponding to subduction events with magnitudes equal to or greater than 6 and recorded in different stations of Mexico City are used. The proposed expression involves the ratio of elastic and inelastic pseudo-aceleration spectra, and depends on factors such the ductility demand and the vibration period of the structural system. The resulting ductility reduction factors obtained in this study are compared with others existing in the literature, and their advantages and disadvantages are discussed.Keywords: displacement based design, displacements spectrum, ductility reduction factors, soft soil
Procedia PDF Downloads 175243 Comparison of Dynamic Characteristics of Railway Bridge Spans to Know the Health of Elastomeric Bearings Using Tri Axial Accelerometer Sensors
Authors: Narayanakumar Somasundaram, Venkat Nihit Chirivella, Venkata Dilip Kumar Pasupuleti
Abstract:
Ajakool, India, has a multi-span bridge that is constructed for rail transport with a maximum operating speed of 100 km/hr. It is a standard RDSO design of a PSC box girder carrying a single railway track. The Structural Health Monitoring System (SHM) is designed and installed to compare and analyze the vibrations and displacements on the bridge due to different live loads from moving trains. The study is conducted for three different spans of the same bridge to understand the health of the elastomeric bearings. Also, to validate the same, a three-dimensional finite element model is developed, and modal analysis is carried out. The proposed methodology can help in detecting deteriorated elastomeric bearings using only wireless tri-accelerometer sensors. Detailed analysis and results are presented in terms of mode shapes, accelerations, displacements, and their importance to each other. This can be implemented with a lot of ease and can be more accurate.Keywords: dynamic effects, vibration analysis, accelerometer sensors, finite element analysis, structural health monitoring, elastomeric bearing
Procedia PDF Downloads 136242 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 514