Search results for: vacuum packed
117 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms
Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic
Abstract:
Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.Keywords: adsorption, diffusion, non-linear flow, shale gas production
Procedia PDF Downloads 166116 Effect of Laser Ablation OTR Films and High Concentration Carbon Dioxide for Maintaining the Freshness of Strawberry ‘Maehyang’ for Export in Modified Atmosphere Condition
Authors: Hyuk Sung Yoon, In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang
Abstract:
This study was conducted to improve storability by using suitable laser ablation oxygen transmission rate (OTR) films and effectiveness of high carbon dioxide at strawberry 'Maehyang' for export. Strawberries were grown by hydroponic system in Gyeongsangnam-do province. These strawberries were packed by different laser ablation OTR films (Daeryung Co., Ltd.) such as 1,300 cc, 20,000 cc, 40,000 cc, 80,000 cc, and 100,000 cc•m-2•day•atm. And CO2 injection (30%) treatment was used 20,000 cc•m-2•day•atm OTR film and perforated film was as a control. Temperature conditions were applied simulated shipping and distribution conditions from Korea to Singapore, there were stored at 3 ℃ (13 days), 10 ℃ (an hour), and 8 ℃ (7 days) for 20 days. Fresh weight loss rate was under 1% as maximum permissible weight loss in treated OTR films except perforated film as a control during storage. Carbon dioxide concentration within a package for the storage period showed a lower value than the maximum CO2 concentration tolerated range (15 %) in treated OTR films and even the concentration of high OTR film treatment; from 20,000cc to 100,000cc were less than 3%. 1,300 cc had a suitable carbon dioxide range as over 5 % under 15 % at 5 days after storage until finished experiments and CO2 injection treatment was quickly drop the 15 % at storage after 1 day, but it kept around 15 % during storage. Oxygen concentration was maintained between 10 to 15 % in 1,300 cc and CO2 injection treatments, but other treatments were kept in 19 to 21 %. Ethylene concentration was showed very higher concentration at the CO2 injection treatment than OTR treatments. In the OTR treatments, 1,300 cc showed the highest concentration in ethylene and 20,000 cc film had lowest. Firmness was maintained highest in 1,300cc, but there was not shown any significant differences among other OTR treatments. Visual quality had shown the best result in 20,000 cc that showed marketable quality until 20 days after storage. 20,000 cc and perforated film had better than other treatments in off-odor and the 1,300 cc and CO2 injection treatments have occurred strong off-odor even after 10 minutes. As a result of the difference between Hunter ‘L’ and ‘a’ values of chroma meter, the 1,300cc and CO2 injection treatments were delayed color developments and other treatments did not shown any significant differences. The results indicate that effectiveness for maintaining the freshness was best achieved at 20,000 cc•m-2•day•atm. Although 1,300 cc and CO2 injection treatments were in appropriate MA condition, it showed darkening of strawberry calyx and excessive reduction of coloring due to high carbon dioxide concentration during storage. While 1,300cc and CO2 injection treatments were considered as appropriate treatments for exports to Singapore, but the result was shown different. These results are based on cultivar characteristics of strawberry 'Maehyang'.Keywords: carbon dioxide, firmness, shelf-life, visual quality
Procedia PDF Downloads 399115 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds
Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia
Abstract:
Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.Keywords: α-Alumina, combustion, phase transformation, seeding
Procedia PDF Downloads 395114 Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide
Authors: Takahiro Saida, Takahiro Kogiso, Takahiro Maruyama
Abstract:
The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide.Keywords: carbon sphere, graphene oxide, reduction, layer by layer
Procedia PDF Downloads 141113 Volume Estimation of Trees: An Exploratory Study on Rosewood Logging Within Forest Transition and Savannah Ecological Zones of Ghana
Authors: Albert Kwabena Osei Konadu
Abstract:
One of the endemic forest species of the savannah transition zones enlisted by the Convention of International Treaty for Endangered Species (CITES) in Appendix II is the Rosewood, also known as Pterocarpus erinaceus or Krayie. Its economic viability has made it increasingly popular and in high demand. Ghana’s forest resource management regime for these ecozones is mainly on conservation and very little on resource utilization. Consequently, commercial logging management standards are at teething stage and not fully developed, leading to a deficiency in the monitoring of logging operations and quantification of harvested trees volumes. Tree information form (TIF); a volume estimation and tracking regime, has proven to be an effective sustainable management tool for regulating timber resource extraction in the high forest zones of the country. This work aims to generate TIF that can track and capture requisite parameters to accurately estimate the volume of harvested rosewood within forest savannah transition zones. Tree information forms were created on three scenarios of individual billets, stacked billets and conveying vessel basis. The study was limited by the usage of regulators assigned volume as benchmark and also fraught with potential volume measurement error in the stacked billet scenario due to the existence of spaces within packed billets. These TIFs were field-tested to deduce the most viable option for the tracking and estimation of harvested volumes of rosewood using the smallian and cubic volume estimation formula. Overall, four districts were covered with individual billets, stacked billets and conveying vessel scenarios registering mean volumes of 25.83m3,45.08m3 and 32.6m3, respectively. These adduced volumes were validated by benchmarking to assigned volumes of the Forestry Commission of Ghana and known standard volumes of conveying vessels. The results did indicate an underestimation of extracted volumes under the quotas regime, a situation that could lead to unintended overexploitation of the species. The research revealed conveying vessels route is the most viable volume estimation and tracking regime for the sustainable management of the Pterocarpous erinaceus species as it provided a more practical volume estimate and data extraction protocol.Keywords: cubic volume formula, smallian volume formula, pterocarpus erinaceus, tree information form, forest transition and savannah zones, harvested tree volume
Procedia PDF Downloads 44112 Development of Extruded Prawn Snack Using Prawn Flavor Powder from Prawn Head Waste
Authors: S. K. Sharma, P. Kumar, Pratibha Singh
Abstract:
Consumption of SNACK is growing its popularity every day in India and a broad range of these items are available in the market. The end user interest in ready-to-eat snack foods is constantly growing mainly due to their ease, ample accessibility, appearance, taste and texture. Food extrusion has been practiced for over fifty years. Its role was initially limited to mixing and forming cereal products. Although thermoplastic extrusion has been successful for starch products, extrusion of proteins has achieved only limited success. In this study, value-added extruded prawn product was prepared with prawn flavor powder and corn flour using a twin-screw extruder. Prawn flavor concentrates prepared from fresh prawn head (Solenocera indica). To prepare flavor concentrate prawn head washed with potable water and blended with 200ml 3% salt solution per 250gm head weight to make the slurry, which was further put in muslin cloth and boiled with salt and starch solution for 10 minutes, cooled to room temperature and filtered, starch added to the filtrate and made into powder in an electrically drier at 43-450c. The mixture was passed through the twin-screw extruder (co-rotating twin screw extruder - basic technology Pvt. Ltd., Kolkata) which was operated at a particular speed of rotation, die diameter, temperature, moisture, and fish powder concentration. Many trial runs were conducted to set up the process variables. The different extrudes produced after each trail were examined for the quality and characteristics. The effect of temperature, moisture, screw speed, protein, fat, ash and thiobarbituric acid (TBA) number and expansion ratio were studied. In all the four trials, moisture, temperature, speed and die diameter used was 20%, 100°C, 350 rpm and 4 mm, respectively. The ratio of prawn powder and cornstarch used in different trials ranged between 2:98 and 10:90. The storage characteristics of the final product were studied using three different types of packaging under nitrogen flushing, i.e. a- 12-pm polyester, 12-pm metalized polyester, 60-11m polyethylene (metalized polyester a), b- 12-11m metalized polyester, 37.5-11m polyethylene (metalized polyester b), c- 12-11m polyethylene, 9-11m aluminium foil, 37.5-11m polyethylene (aluminium foil). The organoleptic analysis was carried out on a 9-point hedonic scale. The study revealed that the fried product packed in aluminum foil under nitrogen flushing would remain acceptable for more than three months.Keywords: extruded product, prawn flavor, twin-screw extruder, storage characteristics
Procedia PDF Downloads 141111 Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes
Authors: Ozan Kahraman, Hao Feng
Abstract:
Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time.Keywords: MTS, HTST, ESEM, TEM, E.COLI O157:H7
Procedia PDF Downloads 285110 Formulation and Characterization of Active Edible Films from Cassava Starch for Snacks and Savories
Authors: P. Raajeswari, S. M. Devatha, S. Yuvajanani, U. Rashika
Abstract:
Edible food packaging are the need of the hour to save life on land and under water by eliminating waste cycle and replacing Single Use Plastics at grass root level as it can be eaten or composted as such. Cassava (Manihot esculenta) selected for making edible films are rich source of starch, and also it exhibit good sheeting propertiesdue to the high amylose: amylopectin content. Cassava starch was extracted by manual method at a laboratory scale and yielded 65 per cent. Edible films were developed by adding food grade plasticizers and water. Glycerol showed good plasticizing property as compared to sorbitol and polylactic acid in both manual (petri dish) and machine (film making machine) production. The thickness of the film is 0.25±0.03 mm. Essential oil and components from peels like pomegranate, orange, pumpkin, onion, and banana brat, and herbs like tulsi and country borage was extracted through the standardized aqueous and alkaline method. In the standardized film, the essential oil and components from selected peel and herbs were added to the casting solution separately and casted the film. It was added to improve the anti-oxidant, anti-microbial and optical properties. By inclusion of extracts, it reduced the bubble formation while casting. FTIR, Water Vapor and Oxygen Transmission Rate (WVTR and OTR), tensile strength, microbial load, shelf life, and degradability of the films were done to analyse the mechanical property of the standardized films. FTIR showed the presence of essential oil. WVTR and OTR of the film was improved after inclusion of essential oil and extracts from 1.312 to 0.811 cm₃/m₂ and 15.12 to 17.81 g/ m₂.d. Inclusion of essential oil from herbs showed better WVTR and OTR than the inclusion of peel extract and standard. Tensile strength and Elongation at break has not changed by essential oil and extracts at 0.86 ± 0.12 mpa and 14 ± 2 at 85 N force. By inclusion of extracts, an optical property of the film enhanced, and it increases the appearance of the packaging material. The films were completely degraded on 84thdays and partially soluble in water. Inclusion of essential oil does not have impact on degradability and solubility. The microbial loads of the active films were decreased from 15 cfu/gm to 7 cfu/gm. The films can be stored at frozen state for 24 days and 48 days at atmospheric temperature when packed with South Indian snacks and savories.Keywords: active films, cassava starch, plasticizer, characterization
Procedia PDF Downloads 81109 Nanowire Substrate to Control Differentiation of Mesenchymal Stem Cells
Authors: Ainur Sharip, Jose E. Perez, Nouf Alsharif, Aldo I. M. Bandeas, Enzo D. Fabrizio, Timothy Ravasi, Jasmeen S. Merzaban, Jürgen Kosel
Abstract:
Bone marrow-derived human mesenchymal stem cells (MSCs) are attractive candidates for tissue engineering and regenerative medicine, due to their ability to differentiate into osteoblasts, chondrocytes or adipocytes. Differentiation is influenced by biochemical and biophysical stimuli provided by the microenvironment of the cell. Thus, altering the mechanical characteristics of a cell culture scaffold can directly influence a cell’s microenvironment and lead to stem cell differentiation. Mesenchymal stem cells were cultured on densely packed, vertically aligned magnetic iron nanowires (NWs) and the effect of NWs on the cell cytoskeleton rearrangement and differentiation were studied. An electrochemical deposition method was employed to fabricate NWs into nanoporous alumina templates, followed by a partial release to reveal the NW array. This created a cell growth substrate with free-standing NWs. The Fe NWs possessed a length of 2-3 µm, with each NW having a diameter of 33 nm on average. Mechanical stimuli generated by the physical movement of these iron NWs, in response to a magnetic field, can stimulate osteogenic differentiation. Induction of osteogenesis was estimated using an osteogenic marker, osteopontin, and a reduction of stem cell markers, CD73 and CD105. MSCs were grown on the NWs, and fluorescent microscopy was employed to monitor the expression of markers. A magnetic field with an intensity of 250 mT and a frequency of 0.1 Hz was applied for 12 hours/day over a period of one week and two weeks. The magnetically activated substrate enhanced the osteogenic differentiation of the MSCs compared to the culture conditions without magnetic field. Quantification of the osteopontin signal revealed approximately a seven-fold increase in the expression of this protein after two weeks of culture. Immunostaining staining against CD73 and CD105 revealed the expression of antibodies at the earlier time point (two days) and a considerable reduction after one-week exposure to a magnetic field. Overall, these results demonstrate the application of a magnetic NW substrate in stimulating the osteogenic differentiation of MSCs. This method significantly decreases the time needed to induce osteogenic differentiation compared to commercial biochemical methods, such as osteogenic differentiation kits, that usually require more than two weeks. Contact-free stimulation of MSC differentiation using a magnetic field has potential uses in tissue engineering, regenerative medicine, and bone formation therapies.Keywords: cell substrate, magnetic nanowire, mesenchymal stem cell, stem cell differentiation
Procedia PDF Downloads 197108 Organic Thin-Film Transistors with High Thermal Stability
Authors: Sibani Bisoyi, Ute Zschieschang, Alexander Hoyer, Hagen Klauk
Abstract:
Abstract— Organic thin-film transistors (TFTs) have great potential to be used for various applications such as flexible displays or sensors. For some of these applications, the TFTs must be able to withstand temperatures in excess of 100 °C, for example to permit the integration with devices or components that require high process temperatures, or to make it possible that the devices can be subjected to the standard sterilization protocols required for biomedical applications. In this work, we have investigated how the thermal stability of low-voltage small-molecule semiconductor dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) TFTs is affected by the encapsulation of the TFTs and by the ambient in which the thermal stress is performed. We also studied to which extent the thermal stability of the TFTs depends on the channel length. Some of the TFTs were encapsulated with a layer of vacuum-deposited Teflon, while others were left without encapsulation, and the thermal stress was performed either in nitrogen or in air. We found that the encapsulation with Teflon has virtually no effect on the thermal stability of our TFTs. In contrast, the ambient in which the thermal stress is conducted was found to have a measurable effect, but in a surprising way: When the thermal stress is carried out in nitrogen, the mobility drops to 70% of its initial value at a temperature of 160 °C and to close to zero at 170 °C, whereas when the stress is performed in air, the mobility remains at 75% of its initial value up to a temperature of 160 °C and at 60% up to 180 °C. To understand this behavior, we studied the effect of the thermal stress on the semiconductor thin-film morphology by scanning electron microscopy. While the DNTT films remain continuous and conducting when the heating is carried out in air, the semiconductor morphology undergoes a dramatic change, including the formation of large, thick crystals of DNTT and a complete loss of percolation, when the heating is conducted in nitrogen. We also found that when the TFTs are heated to a temperature of 200 °C in air, all TFTs with a channel length greater than 50 µm are destroyed, while TFTs with a channel length of less than 50 µm survive, whereas when the TFTs are heated to the same temperature (200 °C) in nitrogen, only the TFTs with a channel smaller than 8 µm survive. This result is also linked to the thermally induced changes in the semiconductor morphology.Keywords: organic thin-film transistors, encapsulation, thermal stability, thin-film morphology
Procedia PDF Downloads 349107 Tax Criminal Case Settlement Through Obligative Justice Approach to Increase the State Revenue
Authors: Pujiyono, Reda Manthovani, Deny Tri Ardianto, Rabani Halawa, Isharyanto
Abstract:
This research has background that the taxpayer (defendant) who has paid off the tax payable and the tax penalty payable after the tax case file has been transferred to the court, while the legality of stopping the prosecution of tax cases on the grounds that in the interest of state revenue is not regulated in the provisions of Law Number 8 of 1981 concerning The Criminal Procedure Code and Law Number 28 of 2007 concerning the Third Amendment to Law Number 6 of 1983 concerning General Provisions and Tax Procedures as amended several times, most recently by Law Number 16 of 2009 concerning Stipulation of Government Regulation in Lieu of Law Number 5 of 2008 concerning Fourth Amendment to Law Number 6 0f 1983 concerning General Provisions and Tax Procedures to become Law, even though at the investigation stage it regulates the mechanism for stopping the investigation for the sake of the interest of acceptance ne this is because before the case file is transferred to the court where at the request of the Minister of Finance of The Republic of Indonesia can stop the investigation in the interest of state revenue so that based on this phenomenon a legal vacuum is found. Therefore, a non-penal policy is needed from the public prosecutor to resolve tax crime cases without going through litigation in court through the penal mediation method using the Plea Bargaining System which adheres to the principles of restorative justice and obligative justice based on the ultimum remedium principle and the principle of opportunity in order to realize the principle of fast, simple and low cost justice (content principle). This research is a normative legal research, using a statutory approach, conceptual approach, and comparative law approach. Regulations that is used in many countries, include America, The Netherlands and Singapore. The results of this study indicate that there is a reformulation of the tax criminal justice system which regulates the mechanism, qualifications and authority to terminate the prosecution of tax cases in the interest of state revenues in order to achieve legal goals which are not only for legal certainty but more that, namely providing benefits and legal justice for people seeking justice.Keywords: obligative justice, regulation, state reveneus, tax criminal
Procedia PDF Downloads 85106 Renewable Natural Gas Production from Biomass and Applications in Industry
Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis
Abstract:
For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel
Procedia PDF Downloads 121105 Railway Ballast Volumes Automated Estimation Based on LiDAR Data
Authors: Bahar Salavati Vie Le Sage, Ismaïl Ben Hariz, Flavien Viguier, Sirine Noura Kahil, Audrey Jacquin, Maxime Convert
Abstract:
The ballast layer plays a key role in railroad maintenance and the geometry of the track structure. Ballast also holds the track in place as the trains roll over it. Track ballast is packed between the sleepers and on the sides of railway tracks. An imbalance in ballast volume on the tracks can lead to safety issues as well as a quick degradation of the overall quality of the railway segment. If there is a lack of ballast in the track bed during the summer, there is a risk that the rails will expand and buckle slightly due to the high temperatures. Furthermore, the knowledge of the ballast quantities that will be excavated during renewal works is important for efficient ballast management. The volume of excavated ballast per meter of track can be calculated based on excavation depth, excavation width, volume of track skeleton (sleeper and rail) and sleeper spacing. Since 2012, SNCF has been collecting 3D points cloud data covering its entire railway network by using 3D laser scanning technology (LiDAR). This vast amount of data represents a modelization of the entire railway infrastructure, allowing to conduct various simulations for maintenance purposes. This paper aims to present an automated method for ballast volume estimation based on the processing of LiDAR data. The estimation of abnormal volumes in ballast on the tracks is performed by analyzing the cross-section of the track. Further, since the amount of ballast required varies depending on the track configuration, the knowledge of the ballast profile is required. Prior to track rehabilitation, excess ballast is often present in the ballast shoulders. Based on 3D laser scans, a Digital Terrain Model (DTM) was generated and automatic extraction of the ballast profiles from this data is carried out. The surplus in ballast is then estimated by performing a comparison between this ballast profile obtained empirically, and a geometric modelization of the theoretical ballast profile thresholds as dictated by maintenance standards. Ideally, this excess should be removed prior to renewal works and recycled to optimize the output of the ballast renewal machine. Based on these parameters, an application has been developed to allow the automatic measurement of ballast profiles. We evaluated the method on a 108 kilometers segment of railroad LiDAR scans, and the results show that the proposed algorithm detects ballast surplus that amounts to values close to the total quantities of spoil ballast excavated.Keywords: ballast, railroad, LiDAR , cloud point, track ballast, 3D point
Procedia PDF Downloads 112104 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite
Authors: Georgios Koronis, Arlindo Silva
Abstract:
This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites
Procedia PDF Downloads 204103 Experimental Investigation of Nano-Enhanced-PCM-Based Heat Sinks for Passive Thermal Management of Small Satellites
Authors: Billy Moore, Izaiah Smith, Dominic Mckinney, Andrew Cisco, Mehdi Kabir
Abstract:
Phase-change materials (PCMs) are considered one of the most promising substances to be engaged passively in thermal management and storage systems for spacecraft, where it is critical to diminish the overall mass of the onboard thermal storage system while minimizing temperature fluctuations upon drastic changes in the environmental temperature within the orbit stage. This makes the development of effective thermal management systems more challenging since there is no atmosphere in outer space to take advantage of natural and forced convective heat transfer. PCM can store or release a tremendous amount of thermal energy within a small volume in the form of latent heat of fusion in the phase-change processes of melting and solidification from solid to liquid or, conversely, during which temperature remains almost constant. However, the existing PCMs pose very low thermal conductivity, leading to an undesirable increase in total thermal resistance and, consequently, a slow thermal response time. This often turns into a system bottleneck from the thermal performance perspective. To address the above-mentioned drawback, the present study aims to design and develop various heat sinks featured by nano-structured graphitic foams (i.e., carbon foam), expanded graphite (EG), and open-cell copper foam (OCCF) infiltrated with a conventional paraffin wax PCM with a melting temperature of around 35 °C. This study focuses on the use of passive thermal management techniques to develop efficient heat sinks to maintain the electronics circuits’ and battery module’s temperature within the thermal safety limit for small spacecraft and satellites such as the Pumpkin and OPTIMUS battery modules designed for CubeSats with a cross-sectional area of approximately 4˝×4˝. Thermal response times for various heat sinks are assessed in a vacuum chamber to simulate space conditions.Keywords: heat sink, porous foams, phase-change material (PCM), spacecraft thermal management
Procedia PDF Downloads 18102 Lattice Twinning and Detwinning Processes in Phase Transformation in Shape Memory Alloys
Authors: Osman Adiguzel
Abstract:
Shape memory effect is a peculiar property exhibited by certain alloy systems and based on martensitic transformation, and shape memory properties are closely related to the microstructures of the material. Shape memory effect is linked with martensitic transformation, which is a solid state phase transformation and occurs with the cooperative movement of atoms by means of lattice invariant shears on cooling from high-temperature parent phase. Lattice twinning and detwinning can be considered as elementary processes activated during the transformation. Thermally induced martensite occurs as martensite variants, in self-accommodating manner and consists of lattice twins. Also, this martensite is called the twinned martensite or multivariant martensite. Deformation of shape memory alloys in martensitic state proceeds through a martensite variant reorientation. The martensite variants turn into the reoriented single variants with deformation, and the reorientation process has great importance for the shape memory behavior. Copper based alloys exhibit this property in metastable β- phase region, which has DO3 –type ordered lattice in ternary case at high temperature, and these structures martensiticaly turn into the layered complex structures with lattice twinning mechanism, on cooling from high temperature parent phase region. The twinning occurs as martensite variants with lattice invariant shears in two opposite directions, <110 > -type directions on the {110}- type plane of austenite matrix. Lattice invariant shear is not uniform in copper based ternary alloys and gives rise to the formation of unusual layered structures, like 3R, 9R, or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. The unit cell and periodicity are completed through 18 atomic layers in case of 18R-structure. On the other hand, the deformed material recovers the original shape on heating above the austenite finish temperature. Meanwhile, the material returns to the twinned martensite structures (thermally induced martensite structure) in one way (irreversible) shape memory effect on cooling below the martensite finish temperature, whereas the material returns to the detwinned martensite structure (deformed martensite) in two-way (reversible) shape memory effect. Shortly one can say that the microstructural mechanisms, responsible for the shape memory effect are the twinning and detwinning processes as well as martensitic transformation. In the present contribution, x-ray diffraction, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies were carried out on two copper-based ternary alloys, CuZnAl, and CuAlMn.Keywords: shape memory effect, martensitic transformation, twinning and detwinning, layered structures
Procedia PDF Downloads 429101 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism
Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin
Abstract:
In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation
Procedia PDF Downloads 64100 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites
Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan
Abstract:
All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite
Procedia PDF Downloads 10099 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests
Authors: R. S. Giraddi, C. M. Poleshi
Abstract:
Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture. Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control. The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.Keywords: humic acid, azadirachtin, vermicompost, insect-pest
Procedia PDF Downloads 27798 The Effect of Acute Muscular Exercise and Training Status on Haematological Indices in Adult Males
Authors: Ibrahim Musa, Mohammed Abdul-Aziz Mabrouk, Yusuf Tanko
Abstract:
Introduction: Long term physical training affect the performance of athletes especially the females. Soccer which is a team sport, played in an outdoor field, require adequate oxygen transport system for the maximal aerobic power during exercise in order to complete 90 minutes of competitive play. Suboptimal haematological status has often been recorded in athletes with intensive physical activity. It may be due to the iron depletion caused by hemolysis or haemodilution results from plasma volume expansion. There is lack of data regarding the dynamics of red blood cell variables, in male football players. We hypothesized that, a long competitive season involving frequent matches and intense training could influence red blood cell variables, as a consequence of applying repeated physical loads when compared with sedentary. Methods: This cross sectional study was carried on 40 adult males (20 athletes and 20 non athletes) between 18-25 years of age. The 20 apparently healthy male non athletes were taken as sedentary and 20 male footballers comprise the study group. The university institutional review board (ABUTH/HREC/TRG/36) gave approval for all procedures in accordance with the Declaration of Helsinki. Red blood cell (RBC) concentration, packed cell volume (PCV), and plasma volume were measured in fasting state and immediately after exercise. Statistical analysis was done by using SPSS/ win.20.0 for comparison within and between the groups, using student’s paired and unpaired “t” test respectively. Results: The finding from our study shows that, immediately after termination of exercise, the mean RBC counts and PCV significantly (p<0.005) decreased with significant increased (p<0.005) in plasma volume when compared with pre-exercised values in both group. In addition the post exercise RBC was significantly higher in untrained (261.10±8.5) when compared with trained (255.20±4.5). However, there was no significant differences in the post exercise hematocrit and plasma volume parameters between the sedentary and the footballers. Moreover, beside changes in pre-exercise values among the sedentary and the football players, the resting red blood cell counts and Plasma volume (PV %) was significantly (p < 0.05) higher in the sedentary group (306.30±10.05 x 104 /mm3; 58.40±0.54%) when compared with football players (293.70±4.65 x 104 /mm3; 55.60±1.18%). On the other hand, the sedentary group exhibited significant (p < 0.05) decrease in PCV (41.60±0.54%) when compared with the football players (44.40±1.18%). Conclusions: It is therefore proposed that the acute football exercise induced reduction in RBC and PCV is entirely due to plasma volume expansion, and not of red blood cell hemolysis. In addition, the training status also influenced haematological indices of male football players differently from the sedentary at rest due to adaptive response. This is novel.Keywords: Haematological Indices, Performance Status, Sedentary, Male Football Players
Procedia PDF Downloads 25897 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption
Authors: M. François, L. Sigot, C. Vallières
Abstract:
Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence
Procedia PDF Downloads 23996 Studies on Biojetfuel Obtained from Vegetable Oil: Process Characteristics, Engine Performance and Their Comparison with Mineral Jetfuel
Authors: F. Murilo T. Luna, Vanessa F. Oliveira, Alysson Rocha, Expedito J. S. Parente, Andre V. Bueno, Matheus C. M. Farias, Celio L. Cavalcante Jr.
Abstract:
Aviation jetfuel used in aircraft gas-turbine engines is customarily obtained from the kerosene distillation fraction of petroleum (150-275°C). Mineral jetfuel consists of a hydrocarbon mixture containing paraffins, naphthenes and aromatics, with low olefins content. In order to ensure their safety, several stringent requirements must be met by jetfuels, such as: high energy density, low risk of explosion, physicochemical stability and low pour point. In this context, aviation fuels eventually obtained from biofeedstocks (which have been coined as ‘biojetfuel’), must be used as ‘drop in’, since adaptations in aircraft engines are not desirable, to avoid problems with their operation reliability. Thus, potential aviation biofuels must present the same composition and physicochemical properties of conventional jetfuel. Among the potential feedtstocks for aviation biofuel, the babaçu oil, extracted from a palm tree extensively found in some regions of Brazil, contains expressive quantities of short chain saturated fatty acids and may be an interesting choice for biojetfuel production. In this study, biojetfuel was synthesized through homogeneous transesterification of babaçu oil using methanol and its properties were compared with petroleum-based jetfuel through measurements of oxidative stability, physicochemical properties and low temperature properties. The transesterification reactions were carried out using methanol and after decantation/wash procedures, the methyl esters were purified by molecular distillation under high vacuum at different temperatures. The results indicate significant improvement in oxidative stability and pour point of the products when compared to the fresh oil. After optimization of operational conditions, potential biojetfuel samples were obtained, consisting mainly of C8 esters, showing low pour point and high oxidative stability. Jet engine tests are being conducted in an automated test bed equipped with pollutant emissions analysers to study the operational performance of the biojetfuel that was obtained and compare with a mineral commercial jetfuel.Keywords: biojetfuel, babaçu oil, oxidative stability, engine tests
Procedia PDF Downloads 25995 On a Determination of Residual Stresses and Wear Resistance of Thermally Sprayed Stainless Steel Coating
Authors: Merzak Laribi, Abdelmadjid Kasser
Abstract:
Thermal spraying processes are widely used to produce coatings on original constructions as well as in repair and maintenance of long standing structures. A lot of efforts forwarding to develop thermal spray coatings technology have been focused on improving mechanical characteristics, minimizing residual stress level and reducing porosity of the coatings. The specific aim of this paper is to determine either residual stresses distribution or wear resistance of stainless steel coating thermally sprayed on a carbon steel substrate. Internal stresses determination was performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The procedure consists of measuring micro-deformations using a bi-directional extensometric gauges glued on the substrate side of the materials. Very thin layers of the deposits are removed by electrochemical polishing across the sample surface. Micro-deformations are instantaneously measured, leading to residual stresses calculation after each removal. Wear resistance of the coating has been determined using a ball-on-plate tribometer. Friction coefficient is instantaneously measured during the tribological test. Attention was particularly focused on the influence of a post-annealing at 850 °C for one hour in vacuum either on the residual stresses distribution or on the wear resistance behavior under specific wear and lubrication conditions. The obtained results showed that the microstructure of the obtained arc sprayed stainless steel coating is classical. It is homogeneous and contains un-melted particles, metallic oxides and also pores and micro-cracks. The internal stresses are in compression in the coating. They are more or less scattered between -50 and -270 MPa on the surface and decreased more at the interface. The value at the surface of the substrate is about –700 MPa, partially due to the molten particles impact with the substrate. The post annealing has reduced the residual stresses in both coating and surface of the steel substrate so that the hole material becomes more relaxed. Friction coefficient has an average value of 0.3 and 0.4 respectively for non annealed and annealed specimen. It is rather oil lubrication which is really benefit so that friction coefficient is decreased to about 0.06.Keywords: residual stresses, wear resistance, stainless steel, coating, thermal spraying, annealing, lubrication
Procedia PDF Downloads 12694 Effect of Wolffia globosa Incorporation on the Physical, Phytochemical and Antioxidant Properties of Breadsticks
Authors: May Phyo Wai, Tanyawan Suantawee
Abstract:
The positive correlation between unhealthy diets (high in fats, sugars, carbohydrates, and low fibers) and the risk of non-communicable diseases (NCDs) like obesity, hypertension, diabetes, and heart diseases has led to a growing interest in healthier lifestyles and diets. Consequently, people are opting for foods rich in fiber and phytochemicals. Wolffia globosa, also known as duckweed or watermeal, is the smallest plant with high nutritional value, including protein, fiber, phytochemicals, and antioxidant properties. It offers numerous health benefits, such as improving gut health and lowering blood glucose levels, and it is widely available in Thailand. The purpose of this study was to develop nutritionally enhanced breadsticks utilizing vacuum heat-dried Wolffia globosa power (WP). Various concentrations of WP (0% as control, 5%, 10%, and 15 % w/w/) were added, and then the breadsticks’ physical properties (hardness, fracturability, and color), phytochemicals (total phenolic compounds: TPC and total flavonoid contents: TFC), and antioxidant properties (DPPH radical scavenging activity (DPPH) and ferric reducing antioxidant power (FRAP) assay) were investigated. Experiments were done by triplicates and data was analyzed by one-way ANOVA. The results showed that the hardness, measured by a texture analyzer, increased significantly (p<0.05) with higher WP concentrations, reaching 2,897.01 ± 77.31 g at 15% WP from 1,314.41 ± 32.52 g of the control. In contrast, the lightness (L*), redness (a*), and yellowness (b*) of the breadsticks significantly decreased (p < 0.05) in a dose-dependent manner with added WP. Incorporating WP, rich in phytochemicals and antioxidants, into the flour significantly enhanced the TPC and TFC of the breadsticks (p<0.05), with TPC and TFC increasing dose-dependently rising to 1.8-fold and 3.5-fold at 15% WP, respectively. The antioxidant power, assessed by DPPH and FRAP assays, also showed a similar trend, with significantly higher values at 10% and 15% WP (p<0.05). These results indicate that adding WP significantly boosted the TPC, TFC, DPPH, and FRAP values of the developed breadsticks. Therefore, incorporating WP into breadsticks might be a promising strategy for creating food products enriched with phytochemicals and antioxidants, offering consumers healthier options in the market.Keywords: antioxidant properties, breadsticks, phytochemicals, Wolffia globosa
Procedia PDF Downloads 3793 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium
Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas
Abstract:
Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides
Procedia PDF Downloads 43592 Enhanced Kinetic Solubility Profile of Epiisopiloturine Solid Solution in Hipromellose Phthalate
Authors: Amanda C. Q. M. Vieira, Cybelly M. Melo, Camila B. M. Figueirêdo, Giovanna C. R. M. Schver, Salvana P. M. Costa, Magaly A. M. de Lyra, Ping I. Lee, José L. Soares-Sobrinho, Pedro J. Rolim-Neto, Mônica F. R. Soares
Abstract:
Epiisopiloturine (EPI) is a drug candidate that is extracted from Pilocarpus microphyllus and isolated from the waste of Pilocarpine. EPI has demonstrated promising schistosomicidal, leishmanicide, anti-inflammatory and antinociceptive activities, according to in vitro studies that have been carried out since 2009. However, this molecule shows poor aqueous solubility, which represents a problem for the release of the drug candidate and its absorption by the organism. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of a solid solution (SS) of EPI in hipromellose phthalate HP-55 (HPMCP), an enteric polymer carrier. SS was obtained by the solvent evaporation methodology, using acetone/methanol (60:40) as solvent system. Both EPI and polymer (drug loading 10%) were dissolved in this solvent until a clear solution was obtained, and then dried in oven at 60ºC during 12 hours, followed by drying in a vacuum oven for 4 h. The results show a considerable modification in the crystalline structure of the drug candidate. For instance, X-ray diffraction (XRD) shows a crystalline behavior for the EPI, which becomes amorphous for the SS. Polarized light microscopy, a more sensitive technique than XRD, also shows completely absence of crystals in SS sample. Differential Scanning Calorimetric (DSC) curves show no signal of EPI melting point in SS curve, indicating, once more, no presence of crystal in this system. Interaction between the drug candidate and the polymer were found in Infrared microscopy, which shows a carbonyl 43.3 cm-1 band shift, indicating a moderate-strong interaction between them, probably one of the reasons to the SS formation. Under sink conditions (pH 6.8), EPI SS had its dissolution performance increased in 2.8 times when compared with the isolated drug candidate. EPI SS sample provided a release of more than 95% of the drug candidate in 15 min, whereas only 45% of EPI (alone) could be dissolved in 15 min and 70% in 90 min. Thus, HPMCP demonstrates to have a good potential to enhance the kinetic solubility profile of EPI. Future studies to evaluate the stability of SS are required to conclude the benefits of this system.Keywords: epiisopiloturine, hipromellose phthalate HP-55, pharmaceuticaltechnology, solubility
Procedia PDF Downloads 60891 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation
Authors: Zhaoyang Liu
Abstract:
It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions
Procedia PDF Downloads 17490 A Statistical-Algorithmic Approach for the Design and Evaluation of a Fresnel Solar Concentrator-Receiver System
Authors: Hassan Qandil
Abstract:
Using a statistical algorithm incorporated in MATLAB, four types of non-imaging Fresnel lenses are designed; spot-flat, linear-flat, dome-shaped and semi-cylindrical-shaped. The optimization employs a statistical ray-tracing methodology of the incident light, mainly considering effects of chromatic aberration, varying focal lengths, solar inclination and azimuth angles, lens and receiver apertures, and the optimum number of prism grooves. While adopting an equal-groove-width assumption of the Poly-methyl-methacrylate (PMMA) prisms, the main target is to maximize the ray intensity on the receiver’s aperture and therefore achieving higher values of heat flux. The algorithm outputs prism angles and 2D sketches. 3D drawings are then generated via AutoCAD and linked to COMSOL Multiphysics software to simulate the lenses under solar ray conditions, which provides optical and thermal analysis at both the lens’ and the receiver’s apertures while setting conditions as per the Dallas-TX weather data. Once the lenses’ characterization is finalized, receivers are designed based on its optimized aperture size. Several cavity shapes; including triangular, arc-shaped and trapezoidal, are tested while coupled with a variety of receiver materials, working fluids, heat transfer mechanisms, and enclosure designs. A vacuum-reflective enclosure is also simulated for an enhanced thermal absorption efficiency. Each receiver type is simulated via COMSOL while coupled with the optimized lens. A lab-scale prototype for the optimum lens-receiver configuration is then fabricated for experimental evaluation. Application-based testing is also performed for the selected configuration, including that of a photovoltaic-thermal cogeneration system and solar furnace system. Finally, some future research work is pointed out, including the coupling of the collector-receiver system with an end-user power generator, and the use of a multi-layered genetic algorithm for comparative studies.Keywords: COMSOL, concentrator, energy, fresnel, optics, renewable, solar
Procedia PDF Downloads 15589 Mg Doped CuCrO₂ Thin Oxides Films for Thermoelectric Properties
Authors: I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé
Abstract:
The thermoelectricity is a promising technique to overcome the issues in recovering waste heat to electricity without using moving parts. In fact, the thermoelectric (TE) effect defines as the conversion of a temperature gradient directly into electricity and vice versa. To optimize TE materials, the power factor (PF = σS² where σ is electrical conductivity and S is Seebeck coefficient) must be increased by adjusting the carrier concentration, and/or the lattice thermal conductivity Kₜₕ must be reduced by introducing scattering centers with point defects, interfaces, and nanostructuration. The PF does not show the advantages of the thin film because it does not take into account the thermal conductivity. In general, the thermal conductivity of the thin film is lower than the bulk material due to their microstructure and increasing scattering effects with decreasing thickness. Delafossite type oxides CuᴵMᴵᴵᴵO₂ received main attention for their optoelectronic properties as a p-type semiconductor they exhibit also interesting thermoelectric (TE) properties due to their high electrical conductivity and their stability in room atmosphere. As there are few proper studies on the TE properties of Mg-doped CuCrO₂ thin films, we have investigated, the influence of the annealing temperature on the electrical conductivity and the Seebeck coefficient of Mg-doped CuCrO₂ thin films and calculated the PF in the temperature range from 40 °C to 220 °C. For it, we have deposited Mg-doped CuCrO₂ thin films on fused silica substrates by RF magnetron sputtering. This study was carried out on 300 nm thin films. The as-deposited Mg doped CuCrO₂ thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum. Electrical conductivity and Seebeck coefficient of the thin films have been measured from 40 to 220 °C. The highest electrical conductivity of 0.60 S.cm⁻¹ with a Seebeck coefficient of +329 µV.K⁻¹ at 40 °C have been obtained for the sample annealed at 550 °C. The calculated power factor of optimized CuCrO₂:Mg thin film was 6 µW.m⁻¹K⁻² at 40 °C. Due to the constant Seebeck coefficient and the increasing electrical conductivity with temperature it reached 38 µW.m⁻¹K⁻² at 220 °C that was a quite good result for an oxide thin film. Moreover, the degenerate behavior and the hopping mechanism of CuCrO₂:Mg thin film were elucidated. Their high and constant Seebeck coefficient in temperature and their stability in room atmosphere could be a great advantage for an application of this material in a high accuracy temperature measurement devices.Keywords: thermoelectric, oxides, delafossite, thin film, power factor, degenerated semiconductor, hopping mode
Procedia PDF Downloads 19988 Direct Laser Fabrication and Characterization of Cu-Al-Ni Shape Memory Alloy for Seismic Damping Applications
Authors: Gonzalo Reyes, Magdalena Walczak, Esteban Ramos-Moore, Jorge Ramos-Grez
Abstract:
Metal additive manufacture technologies have gained strong support and acceptance as a promising and alternative method to manufacture high performance complex geometry products. The main purpose of the present work is to study the microstructure and phase transformation temperatures of Cu-Al-Ni shape memory alloys fabricated from a direct laser additive process using metallic powders as precursors. The potential application is to manufacture self-centering seismic dampers for earthquake protection of buildings out of a copper based alloy by an additive process. In this process, the Cu-Al-Ni alloy is melted, inside of a high temperature and vacuum chamber with the aid of a high power fiber laser under inert atmosphere. The laser provides the energy to melt the alloy powder layer. The process allows fabricating fully dense, oxygen-free Cu-Al-Ni specimens using different laser power levels, laser powder interaction times, furnace ambient temperatures, and cooling rates as well as modifying concentration of the alloying elements. Two sets of specimens were fabricated with a nominal composition of Cu-13Al-3Ni and Cu-13Al-4Ni in wt.%, however, semi-quantitative chemical analysis using EDX examination showed that the specimens’ resulting composition was closer to Cu-12Al-5Ni and Cu-11Al-8Ni, respectively. In spite of that fact, it is expected that the specimens should still possess shape memory behavior. To confirm this hypothesis, phase transformation temperatures will be measured using DSC technique, to look for martensitic and austenitic phase transformations at 150°C. So far, metallographic analysis of the specimens showed defined martensitic microstructures. Moreover, XRD technique revealed diffraction peaks corresponding to (0 0 18) and (1 2 8) planes, which are too associated with the presence of martensitic phase. We conclude that it would be possible to obtain fully dense Cu-Al-Ni alloys having shape memory effect behavior by direct laser fabrication process, and to advance into fabrication of self centering seismic dampers by a controllable metal additive manufacturing process.Keywords: Cu-Al-Ni alloys, direct laser fabrication, shape memory alloy, self-centering seismic dampers
Procedia PDF Downloads 516