Search results for: uncorrected refractive error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2061

Search results for: uncorrected refractive error

1551 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 322
1550 The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of a-C:H Films

Authors: X. L. Zhou, S. Tunmee, I. Toda, K. Komatsu, S. Ohshio, H. Saitoh

Abstract:

Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photo electron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased.

Keywords: negative bias voltage, a-C:H film, oxygen contamination, optical properties

Procedia PDF Downloads 482
1549 The Effects of Nanoemulsions Based on Commercial Oils: Sunflower, Canola, Corn, Olive, Soybean, and Hazelnut Oils for the Quality of Farmed Sea Bass at 2±2°C

Authors: Yesim Ozogul, Mustafa Durmuş, Fatih Ozogul, Esmeray Kuley Boğa, Yılmaz Uçar, Hatice Yazgan

Abstract:

The effects of oil-in-water nanoemulsions on the sensory, chemical (total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), peroxide value (PV) and free fatty acids (FFA), and microbiological qualities (total viable count (TVC), total psychrophilic bacteria, and total Enterbactericaea bacteria) of sea bream fillets stored at 2 ± 2°C were investigated. Physical properties of emulsions (viscosity, the particle size of droplet, thermodynamic stability, refractive index and surface tension) were determined. The results showed that the use of nanoemulsion extended the shelf life of fish 2 days when compared with the control. Treatment with nanoemulsions significantly (p<0.05) decreased the values of biochemical parameters during storage period. Bacterial growth was inhibited by the use of nanoemulsions. Based on the results, it can be concluded that nanoemulsions based on commercial oils extended the shelf life and improved the quality of sea bass fillets during storage period.

Keywords: lipid oxidation, nanoemulsion, sea bass, quality parameters

Procedia PDF Downloads 479
1548 The Effect of Exposure to High Noise Level on the Performance and Rate of Error in Manual Activities

Authors: Zahra Zamanian, Alireza Zamanian, Jafar Hasanzadeh

Abstract:

Background: Unwanted sound, as one of the most important physical factors in the majority of production units, imposes a great number of problems on the industrial workers. Sound is one of the environmental factors which can cause physical as well as psychological damages and also affects the individuals’ performance and productivity. Therefore, the present study aimed to determine the effect of noise exposure on human performance. Methods: The present study assessed the effect of noise on the performance of 50 students of Shiraz University of Medical Sciences (25 males and 25 females) at the sound pressures of 70, 90, and 110 dB by using two factors of physical features and the creation of different conditions of sound pressure source as well as applying Two-Arm coordination Test. Results: The results of the present study revealed no significant difference between male and female subjects as well as different conditions of creating sound pressure regarding the length of performance (p> 0.05). In addition, as the sound pressure increased, the length of performance increased, as well. According to the results, no significant difference was found between the performance at 70 and 90 dB. On the other hand, the performance at 110 dB was significantly different from the performance at 70 and 90 dB (p<0.05 and p<0.001). Conclusion: In general, as the sound pressure increases, the performance decreases which results in a considerable increase in the individuals’ rate of error.

Keywords: physical factors, two-arm coordination test, Shiraz University of Medical Sciences, noise

Procedia PDF Downloads 305
1547 Proposal of Optimality Evaluation for Quantum Secure Communication Protocols by Taking the Average of the Main Protocol Parameters: Efficiency, Security and Practicality

Authors: Georgi Bebrov, Rozalina Dimova

Abstract:

In the field of quantum secure communication, there is no evaluation that characterizes quantum secure communication (QSC) protocols in a complete, general manner. The current paper addresses the problem concerning the lack of such an evaluation for QSC protocols by introducing an optimality evaluation, which is expressed as the average over the three main parameters of QSC protocols: efficiency, security, and practicality. For the efficiency evaluation, the common expression of this parameter is used, which incorporates all the classical and quantum resources (bits and qubits) utilized for transferring a certain amount of information (bits) in a secure manner. By using criteria approach whether or not certain criteria are met, an expression for the practicality evaluation is presented, which accounts for the complexity of the QSC practical realization. Based on the error rates that the common quantum attacks (Measurement and resend, Intercept and resend, probe attack, and entanglement swapping attack) induce, the security evaluation for a QSC protocol is proposed as the minimum function taken over the error rates of the mentioned quantum attacks. For the sake of clarity, an example is presented in order to show how the optimality is calculated.

Keywords: quantum cryptography, quantum secure communcation, quantum secure direct communcation security, quantum secure direct communcation efficiency, quantum secure direct communcation practicality

Procedia PDF Downloads 184
1546 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online

Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal

Abstract:

This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.

Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion

Procedia PDF Downloads 62
1545 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.

Keywords: wavelet transform, computational error, computational duration, strong ground motion data

Procedia PDF Downloads 378
1544 Localized Dynamic Lensing with Extended Depth of Field via Enhanced Light Sound Interaction

Authors: Hamid R. Chabok, Demetrios N. Christodoulides, Mercedeh Khajavikhan

Abstract:

In recent years, acousto-optic (AO) lenses with tunable foci have emerged as a powerful tool for optical beam shaping, imaging, and particle manipulation. In most current AO lenses, the incident light that propagates orthogonally to a standing ultrasonic wave converts to a Bessel-like beam pattern due to the Raman-Nath effect, thus forming annular fringes that result in compromised focus response. Here, we report a new class of AO dynamic lensing based on generating a 3D-variable refractive index profile via a z-axis-scan ultrasound transducer. By utilizing the co- /counter propagation of light and acoustic waves that interact over a longer distance, the laser beam can be strongly focused in a fully controllable manner. Using this approach, we demonstrate AO lenses with instantaneous extended depth of field (DoF) and laterally localized dynamic focusing. This new light-sound interaction scheme may pave the way towards applications that require remote focusing, 3D micromanipulation, and deep tissue therapy/imaging.

Keywords: acousto-optic, optical beam shaping, dynamic lensing, ultrasound

Procedia PDF Downloads 101
1543 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 241
1542 Developing an ANN Model to Predict Anthropometric Dimensions Based on Real Anthropometric Database

Authors: Waleed A. Basuliman, Khalid S. AlSaleh, Mohamed Z. Ramadan

Abstract:

Applying the anthropometric dimensions is considered one of the important factors when designing any human-machine system. In this study, the estimation of anthropometric dimensions has been improved by developing artificial neural network that aims to predict the anthropometric measurements of the male in Saudi Arabia. A total of 1427 Saudi males from age 6 to 60 participated in measuring twenty anthropometric dimensions. These anthropometric measurements are important for designing the majority of work and life applications in Saudi Arabia. The data were collected during 8 months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining fifteen dimensions were set to be the measured variables (outcomes). The hidden layers have been varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was significantly able to predict the body dimensions for the population of Saudi Arabia. The network mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found 0.0348 and 3.225 respectively. The accuracy of the developed neural network was evaluated by compare the predicted outcomes with a multiple regression model. The ANN model performed better and resulted excellent correlation coefficients between the predicted and actual dimensions.

Keywords: artificial neural network, anthropometric measurements, backpropagation, real anthropometric database

Procedia PDF Downloads 576
1541 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology

Authors: Ugwu O. C., Mamah R. O., Awudu W. S.

Abstract:

This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.

Keywords: beamforming algorithm, adaptive beamforming, simulink, reception

Procedia PDF Downloads 41
1540 Measuring the Height of a Person in Closed Circuit Television Video Footage Using 3D Human Body Model

Authors: Dojoon Jung, Kiwoong Moon, Joong Lee

Abstract:

The height of criminals is one of the important clues that can determine the scope of the suspect's search or exclude the suspect from the search target. Although measuring the height of criminals by video alone is limited by various reasons, the 3D data of the scene and the Closed Circuit Television (CCTV) footage are matched, the height of the criminal can be measured. However, it is still difficult to measure the height of CCTV footage in the non-contact type measurement method because of variables such as position, posture, and head shape of criminals. In this paper, we propose a method of matching the CCTV footage with the 3D data on the crime scene and measuring the height of the person using the 3D human body model in the matched data. In the proposed method, the height is measured by using 3D human model in various scenes of the person in the CCTV footage, and the measurement value of the target person is corrected by the measurement error of the replay CCTV footage of the reference person. We tested for 20 people's walking CCTV footage captured from an indoor and an outdoor and corrected the measurement values with 5 reference persons. Experimental results show that the measurement error (true value-measured value) average is 0.45 cm, and this method is effective for the measurement of the person's height in CCTV footage.

Keywords: human height, CCTV footage, 2D/3D matching, 3D human body model

Procedia PDF Downloads 248
1539 A Weighted Sum Particle Swarm Approach (WPSO) Combined with a Novel Feasibility-Based Ranking Strategy for Constrained Multi-Objective Optimization of Compact Heat Exchangers

Authors: Milad Yousefi, Moslem Yousefi, Ricarpo Poley, Amer Nordin Darus

Abstract:

Design optimization of heat exchangers is a very complicated task that has been traditionally carried out based on a trial-and-error procedure. To overcome the difficulties of the conventional design approaches especially when a large number of variables, constraints and objectives are involved, a new method based on a well-stablished evolutionary algorithm, particle swarm optimization (PSO), weighted sum approach and a novel constraint handling strategy is presented in this study. Since, the conventional constraint handling strategies are not effective and easy-to-implement in multi-objective algorithms, a novel feasibility-based ranking strategy is introduced which is both extremely user-friendly and effective. A case study from industry has been investigated to illustrate the performance of the presented approach. The results show that the proposed algorithm can find the near pareto-optimal with higher accuracy when it is compared to conventional non-dominated sorting genetic algorithm II (NSGA-II). Moreover, the difficulties of a trial-and-error process for setting the penalty parameters is solved in this algorithm.

Keywords: Heat exchanger, Multi-objective optimization, Particle swarm optimization, NSGA-II Constraints handling.

Procedia PDF Downloads 555
1538 Analytical Performance of Cobas C 8000 Analyzer Based on Sigma Metrics

Authors: Sairi Satari

Abstract:

Introduction: Six-sigma is a metric that quantifies the performance of processes as a rate of Defects-Per-Million Opportunities. Sigma methodology can be applied in chemical pathology laboratory for evaluating process performance with evidence for process improvement in quality assurance program. In the laboratory, these methods have been used to improve the timeliness of troubleshooting, reduce the cost and frequency of quality control and minimize pre and post-analytical errors. Aim: The aim of this study is to evaluate the sigma values of the Cobas 8000 analyzer based on the minimum requirement of the specification. Methodology: Twenty-one analytes were chosen in this study. The analytes were alanine aminotransferase (ALT), albumin, alkaline phosphatase (ALP), Amylase, aspartate transaminase (AST), total bilirubin, calcium, chloride, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, lactate dehydrogenase (LDH), magnesium, potassium, protein, sodium, triglyceride, uric acid and urea. Total error was obtained from Clinical Laboratory Improvement Amendments (CLIA). The Bias was calculated from end cycle report of Royal College of Pathologists of Australasia (RCPA) cycle from July to December 2016 and coefficient variation (CV) from six-month internal quality control (IQC). The sigma was calculated based on the formula :Sigma = (Total Error - Bias) / CV. The analytical performance was evaluated based on the sigma, sigma > 6 is world class, sigma > 5 is excellent, sigma > 4 is good and sigma < 4 is satisfactory and sigma < 3 is poor performance. Results: Based on the calculation, we found that, 96% are world class (ALT, albumin, ALP, amylase, AST, total bilirubin, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, LDH, magnesium, potassium, triglyceride and uric acid. 14% are excellent (calcium, protein and urea), and 10% ( chloride and sodium) require more frequent IQC performed per day. Conclusion: Based on this study, we found that IQC should be performed frequently for only Chloride and Sodium to ensure accurate and reliable analysis for patient management.

Keywords: sigma matrics, analytical performance, total error, bias

Procedia PDF Downloads 171
1537 Spatial Climate Changes in the Province of Macerata, Central Italy, Analyzed by GIS Software

Authors: Matteo Gentilucci, Marco Materazzi, Gilberto Pambianchi

Abstract:

Climate change is an increasingly central issue in the world, because it affects many of human activities. In this context regional studies are of great importance because they sometimes differ from the general trend. This research focuses on a small area of central Italy which overlooks the Adriatic Sea, the province of Macerata. The aim is to analyze space-based climate changes, for precipitation and temperatures, in the last 3 climatological standard normals (1961-1990; 1971-2000; 1981-2010) through GIS software. The data collected from 30 weather stations for temperature and 61 rain gauges for precipitation were subject to quality controls: validation and homogenization. These data were fundamental for the spatialization of the variables (temperature and precipitation) through geostatistical techniques. To assess the best geostatistical technique for interpolation, the results of cross correlation were used. The co-kriging method with altitude as independent variable produced the best cross validation results for all time periods, among the methods analysed, with 'root mean square error standardized' close to 1, 'mean standardized error' close to 0, 'average standard error' and 'root mean square error' with similar values. The maps resulting from the analysis were compared by subtraction between rasters, producing 3 maps of annual variation and three other maps for each month of the year (1961/1990-1971/2000; 1971/2000-1981/2010; 1961/1990-1981/2010). The results show an increase in average annual temperature of about 0.1°C between 1961-1990 and 1971-2000 and 0.6 °C between 1961-1990 and 1981-2010. Instead annual precipitation shows an opposite trend, with an average difference from 1961-1990 to 1971-2000 of about 35 mm and from 1961-1990 to 1981-2010 of about 60 mm. Furthermore, the differences in the areas have been highlighted with area graphs and summarized in several tables as descriptive analysis. In fact for temperature between 1961-1990 and 1971-2000 the most areally represented frequency is 0.08°C (77.04 Km² on a total of about 2800 km²) with a kurtosis of 3.95 and a skewness of 2.19. Instead, the differences for temperatures from 1961-1990 to 1981-2010 show a most areally represented frequency of 0.83 °C, with -0.45 as kurtosis and 0.92 as skewness (36.9 km²). Therefore it can be said that distribution is more pointed for 1961/1990-1971/2000 and smoother but more intense in the growth for 1961/1990-1981/2010. In contrast, precipitation shows a very similar shape of distribution, although with different intensities, for both variations periods (first period 1961/1990-1971/2000 and second one 1961/1990-1981/2010) with similar values of kurtosis (1st = 1.93; 2nd = 1.34), skewness (1st = 1.81; 2nd = 1.62 for the second) and area of the most represented frequency (1st = 60.72 km²; 2nd = 52.80 km²). In conclusion, this methodology of analysis allows the assessment of small scale climate change for each month of the year and could be further investigated in relation to regional atmospheric dynamics.

Keywords: climate change, GIS, interpolation, co-kriging

Procedia PDF Downloads 127
1536 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: deep learning, long short term memory, energy, renewable energy load forecasting

Procedia PDF Downloads 266
1535 Subpixel Corner Detection for Monocular Camera Linear Model Research

Authors: Guorong Sui, Xingwei Jia, Fei Tong, Xiumin Gao

Abstract:

Camera calibration is a fundamental issue of high precision noncontact measurement. And it is necessary to analyze and study the reliability and application range of its linear model which is often used in the camera calibration. According to the imaging features of monocular cameras, a camera model which is based on the image pixel coordinates and three dimensional space coordinates is built. Using our own customized template, the image pixel coordinate is obtained by the subpixel corner detection method. Without considering the aberration of the optical system, the feature extraction and linearity analysis of the line segment in the template are performed. Moreover, the experiment is repeated 11 times by constantly varying the measuring distance. At last, the linearity of the camera is achieved by fitting 11 groups of data. The camera model measurement results show that the relative error does not exceed 1%, and the repeated measurement error is not more than 0.1 mm magnitude. Meanwhile, it is found that the model has some measurement differences in the different region and object distance. The experiment results show this linear model is simple and practical, and have good linearity within a certain object distance. These experiment results provide a powerful basis for establishment of the linear model of camera. These works will have potential value to the actual engineering measurement.

Keywords: camera linear model, geometric imaging relationship, image pixel coordinates, three dimensional space coordinates, sub-pixel corner detection

Procedia PDF Downloads 277
1534 The Mirage of Progress? a Longitudinal Study of Japanese Students’ L2 Oral Grammar

Authors: Robert Long, Hiroaki Watanabe

Abstract:

This longitudinal study examines the grammatical errors of Japanese university students’ dialogues with a native speaker over an academic year. The L2 interactions of 15 Japanese speakers were taken from the JUSFC2018 corpus (April/May 2018) and the JUSFC2019 corpus (January/February). The corpora were based on a self-introduction monologue and a three-question dialogue; however, this study examines the grammatical accuracy found in the dialogues. Research questions focused on a possible significant difference in grammatical accuracy from the first interview session in 2018 and the second one the following year, specifically regarding errors in clauses per 100 words, global errors and local errors, and with specific errors related to parts of speech. The investigation also focused on which forms showed the least improvement or had worsened? Descriptive statistics showed that error-free clauses/errors per 100 words decreased slightly while clauses with errors/100 words increased by one clause. Global errors showed a significant decline, while local errors increased from 97 to 158 errors. For errors related to parts of speech, a t-test confirmed there was a significant difference between the two speech corpora with more error frequency occurring in the 2019 corpus. This data highlights the difficulty in having students self-edit themselves.

Keywords: clause analysis, global vs. local errors, grammatical accuracy, L2 output, longitudinal study

Procedia PDF Downloads 132
1533 Determinants of Aggregate Electricity Consumption in Ghana: A Multivariate Time Series Analysis

Authors: Renata Konadu

Abstract:

In Ghana, electricity has become the main form of energy which all sectors of the economy rely on for their businesses. Therefore, as the economy grows, the demand and consumption of electricity also grow alongside due to the heavy dependence on it. However, since the supply of electricity has not increased to match the demand, there has been frequent power outages and load shedding affecting business performances. To solve this problem and advance policies to secure electricity in Ghana, it is imperative that those factors that cause consumption to increase be analysed by considering the three classes of consumers; residential, industrial and non-residential. The main argument, however, is that, export of electricity to other neighbouring countries should be included in the electricity consumption model and considered as one of the significant factors which can decrease or increase consumption. The author made use of multivariate time series data from 1980-2010 and econometric models such as Ordinary Least Squares (OLS) and Vector Error Correction Model. Findings show that GDP growth, urban population growth, electricity exports and industry value added to GDP were cointegrated. The results also showed that there is unidirectional causality from electricity export and GDP growth and Industry value added to GDP to electricity consumption in the long run. However, in the short run, there was found to be a directional causality among all the variables and electricity consumption. The results have useful implication for energy policy makers especially with regards to electricity consumption, demand, and supply.

Keywords: electricity consumption, energy policy, GDP growth, vector error correction model

Procedia PDF Downloads 437
1532 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks

Authors: Waleed Basuliman

Abstract:

Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.

Keywords: artificial neural network, anthropometric measurements, back-propagation

Procedia PDF Downloads 487
1531 Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed

Authors: Amr AbdelAzim Ali, G. A. Elsheikh, Moutaz M. Hegazy

Abstract:

Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity.

Keywords: friction torque, reaction wheels modeling, software in the loop, spacecraft attitude control

Procedia PDF Downloads 266
1530 Examining the Changes in Complexity, Accuracy, and Fluency in Japanese L2 Writing Over an Academic Semester

Authors: Robert Long

Abstract:

The results of a one-year study on the evolution of complexity, accuracy, and fluency (CAF) in the compositions of Japanese L2 university students throughout a semester are presented in this study. One goal was to determine if any improvement in writing abilities over this academic term had occurred, while another was to examine methods of editing. Participants had 30 minutes to write each essay with an additional 10 minutes allotted for editing. As for editing, participants were divided into two groups, one of which utilized an online grammar checker, while the other half self-edited their initial manuscripts. From the three different institutions, there was a total of 159 students. Research questions focused on determining if the CAF had evolved over the previous year, identifying potential variations in editing techniques, and describing the connections between the CAF dimensions. According to the findings, there was some improvement in accuracy (fewer errors) in all three of the measures), whereas there was a marked decline in complexity and fluency. As for the second research aim relating to the interaction among the three dimensions (CAF) and of possible increases in fluency being offset by decreases in grammatical accuracy, results showed (there is a logical high correlation with clauses and word counts, and mean length of T-unit (MLT) and (coordinate phrase of T-unit (CP/T) as well as MLT and clause per T-unit (C/T); furthermore, word counts and error/100 ratio correlated highly with error-free clause totals (EFCT). Issues of syntactical complexity had a negative correlation with EFCT, indicating that more syntactical complexity relates to decreased accuracy. Concerning a difference in error correction between those who self-edited and those who used an online grammar correction tool, results indicated that the variable of errors-free clause ratios (EFCR) had the greatest difference regarding accuracy, with fewer errors noted with writers using an online grammar checker. As for possible differences between the first and second (edited) drafts regarding CAF, results indicated there were positive changes in accuracy, the most significant change seen in complexity (CP/T and MLT), while there were relatively insignificant changes in fluency. Results also indicated significant differences among the three institutions, with Fujian University of Technology having the most fluency and accuracy. These findings suggest that to raise students' awareness of their overall writing development, teachers should support them in developing more complex syntactic structures, improving their fluency, and making more effective use of online grammar checkers.

Keywords: complexity, accuracy, fluency, writing

Procedia PDF Downloads 39
1529 Performance of High Efficiency Video Codec over Wireless Channels

Authors: Mohd Ayyub Khan, Nadeem Akhtar

Abstract:

Due to recent advances in wireless communication technologies and hand-held devices, there is a huge demand for video-based applications such as video surveillance, video conferencing, remote surgery, Digital Video Broadcast (DVB), IPTV, online learning courses, YouTube, WhatsApp, Instagram, Facebook, Interactive Video Games. However, the raw videos posses very high bandwidth which makes the compression a must before its transmission over the wireless channels. The High Efficiency Video Codec (HEVC) (also called H.265) is latest state-of-the-art video coding standard developed by the Joint effort of ITU-T and ISO/IEC teams. HEVC is targeted for high resolution videos such as 4K or 8K resolutions that can fulfil the recent demands for video services. The compression ratio achieved by the HEVC is twice as compared to its predecessor H.264/AVC for same quality level. The compression efficiency is generally increased by removing more correlation between the frames/pixels using complex techniques such as extensive intra and inter prediction techniques. As more correlation is removed, the chances of interdependency among coded bits increases. Thus, bit errors may have large effect on the reconstructed video. Sometimes even single bit error can lead to catastrophic failure of the reconstructed video. In this paper, we study the performance of HEVC bitstream over additive white Gaussian noise (AWGN) channel. Moreover, HEVC over Quadrature Amplitude Modulation (QAM) combined with forward error correction (FEC) schemes are also explored over the noisy channel. The video will be encoded using HEVC, and the coded bitstream is channel coded to provide some redundancies. The channel coded bitstream is then modulated using QAM and transmitted over AWGN channel. At the receiver, the symbols are demodulated and channel decoded to obtain the video bitstream. The bitstream is then used to reconstruct the video using HEVC decoder. It is observed that as the signal to noise ratio of channel is decreased the quality of the reconstructed video decreases drastically. Using proper FEC codes, the quality of the video can be restored up to certain extent. Thus, the performance analysis of HEVC presented in this paper may assist in designing the optimized code rate of FEC such that the quality of the reconstructed video is maximized over wireless channels.

Keywords: AWGN, forward error correction, HEVC, video coding, QAM

Procedia PDF Downloads 149
1528 Investigation of Thickness Dependent Optical Properties of Bi₂Sb(₃-ₓ):Te ₓ (where x = 0.1, 0.2, 0.3) Thin Films

Authors: Reena Panchal, Maunik Jani, S. M. Vyas, G. R. Pandya

Abstract:

Group V-VI compounds have a narrow bandgap, which makes them useful in many electronic devices. In bulk form, BiSbTe alloys are semi-metals or semi-conductors. They are used in thermoelectric and thermomagnetic devices, fabrication of ionizing, radiation detectors, LEDs, solid-state electrodes, photosensitive heterostructures, solar cells, ionic batteries, etc. Thin films of Bi₂Sb(₃-ₓ):Tex (where x = 0.1, 0.2, 0.3) of various thicknesses were grown by the thermal evaporation technique on a glass substrate at room temperature under a pressure of 10-₄ mbar for different time periods such as 10s, 15s, and 20s. The thickness of these thin films was also obtained by using the swaneopeol envelop method and compared those values with instrumental values. The optical absorption (%) data of thin films was measured in the wave number range of 650 cm-¹ to 4000 cm-¹. The band gap has been evaluated from these optical absorption data, and the results indicate that absorption occurred by a direct interband transition. It was discovered that when thickness decreased, the band gap increased; this dependency was inversely related to the square of thickness, which is explained by the quantum size effect. Using the values of bandgap, found the values of optical electronegativity (∆χ) and optical refractive index (η) using various relations.

Keywords: thin films, band gap, film thickness, optical study, size effect

Procedia PDF Downloads 18
1527 The Influence of Using Soft Knee Pads on Static and Dynamic Balance among Male Athletes and Non-Athletes

Authors: Yaser Kazemzadeh, Keyvan Molanoruzy, Mojtaba Izady

Abstract:

The balance is the key component of motor skills to maintain postural control and the execution of complex skills. The present study was designed to evaluate the impact of soft knee pads on static and dynamic balance of male athletes. For this aim, thirty young athletes in different sport fields with 3 years professional sport training background and thirty healthy young men nonathletic (age: 24.5 ± 2.9, 24.3 ± 2.4, weight: 77.2 ± 4.3 and 80/9 ± 6/3 and height: 175 ± 2/84, 172 ± 5/44 respectively) as subjects selected. Then, subjects in two manner (without knee and with soft knee pads made of neoprene) execute standard error test (BESS) to assess static balance and star test to assess dynamic balance. For analyze of data, t-tests and one-way ANOVA were significant 05/0 ≥ α statistical analysis. The results showed that the use of soft knee significantly reduced error rate in static balance test (p ≥ 0/05). Also, use a soft knee pads decreased score of athlete group and increased score of nonathletic group in star test (p ≥ 0/05). These findings, indicates that use of knees affects static and dynamic balance in athletes and nonathletic in different manner and may increased athletic performance in sports that rely on static balance and decreased performance in sports that rely on dynamic balance.

Keywords: static balance, dynamic balance, soft knee, athletic men, non athletic men

Procedia PDF Downloads 290
1526 Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity

Authors: Mishu Gupta, Rama Gupta

Abstract:

It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium.

Keywords: B-E-Bose-Einstein, DNLSE-Discrete non linear schrodinger equation, NLSE-non linear schrodinger equation, SDNLSE - saturable discrete non linear Schrodinger equation

Procedia PDF Downloads 155
1525 The Impact of Natural Resources on Financial Development: The Global Perspective

Authors: Remy Jonkam Oben

Abstract:

Using a time series approach, this study investigates how natural resources impact financial development from a global perspective over the 1980-2019 period. Some important determinants of financial development (economic growth, trade openness, population growth, and investment) have been added to the model as control variables. Unit root tests have revealed that all the variables are integrated into order one. Johansen's cointegration test has shown that the variables are in a long-run equilibrium relationship. The vector error correction model (VECM) has estimated the coefficient of the error correction term (ECT), which suggests that the short-run values of natural resources, economic growth, trade openness, population growth, and investment contribute to financial development converging to its long-run equilibrium level by a 23.63% annual speed of adjustment. The estimated coefficients suggest that global natural resource rent has a statistically-significant negative impact on global financial development in the long-run (thereby validating the financial resource curse) but not in the short-run. Causality test results imply that neither global natural resource rent nor global financial development Granger-causes each other.

Keywords: financial development, natural resources, resource curse hypothesis, time series analysis, Granger causality, global perspective

Procedia PDF Downloads 170
1524 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 260
1523 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model

Procedia PDF Downloads 228
1522 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: adaptive algorithm, fuzzy systems, membership functions, observer

Procedia PDF Downloads 206