Search results for: smooth hysteretic model
16696 Experimental and Numerical Analyses of Tehran Research Reactor
Authors: A. Lashkari, H. Khalafi, H. Khazeminejad, S. Khakshourniya
Abstract:
In this paper, a numerical model is presented. The model is used to analyze a steady state thermo-hydraulic and reactivity insertion transient in TRR reference cores respectively. The model predictions are compared with the experiments and PARET code results. The model uses the piecewise constant and lumped parameter methods for the coupled point kinetics and thermal-hydraulics modules respectively. The advantages of the piecewise constant method are simplicity, efficiency and accuracy. A main criterion on the applicability range of this model is that the exit coolant temperature remains below the saturation temperature, i.e. no bulk boiling occurs in the core. The calculation values of power and coolant temperature, in steady state and positive reactivity insertion scenario, are in good agreement with the experiment values. However, the model is a useful tool for the transient analysis of most research reactor encountered in practice. The main objective of this work is using simple calculation methods and benchmarking them with experimental data. This model can be used for training proposes.Keywords: thermal-hydraulic, research reactor, reactivity insertion, numerical modeling
Procedia PDF Downloads 40116695 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India
Authors: Ajai Singh
Abstract:
Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation
Procedia PDF Downloads 37016694 Sliding Mode Control of a Bus Suspension System
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.Keywords: active suspension system, air suspension, bus model, sliding mode control
Procedia PDF Downloads 38816693 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction
Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey
Abstract:
In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization
Procedia PDF Downloads 34416692 How to Applicate Knowledge Management in Security Environment within the Scope of Optimum Balance Model
Authors: Hakan Erol, Altan Elibol, Ömer Eryılmaz, Mehmet Şimşek
Abstract:
Organizations aim to manage information in a most possible effective way for sustainment and development. In doing so, they apply various procedures and methods. The very same situation is valid for each service of Armed Forces. During long-lasting endeavors such as shaping and maintaining security environment, supporting and securing peace, knowledge management is a crucial asset. Optimum Balance Model aims to promote the system from a decisive point to a higher decisive point. In this context, this paper analyses the application of optimum balance model to knowledge management in Armed Forces and tries to find answer to the question how Optimum Balance Model is integrated in knowledge management.Keywords: optimum balance model, knowledge management, security environment, supporting peace
Procedia PDF Downloads 39816691 A Sustainable Design Model by Integrated Evaluation of Closed-loop Design and Supply Chain Using a Mathematical Model
Authors: Yuan-Jye Tseng, Yi-Shiuan Chen
Abstract:
The paper presented a sustainable design model for integrated evaluation of the design and supply chain of a product for the sustainable objectives. To design a product, there can be alternative ways to assign the detailed specifications to fulfill the same design objectives. In the design alternative cases, different material and manufacturing processes with various supply chain activities may be required for the production. Therefore, it is required to evaluate the different design cases based on the sustainable objectives. In this research, a closed-loop design model is developed by integrating the forward design model and reverse design model. From the supply chain point of view, the decisions in the forward design model are connected with the forward supply chain. The decisions in the reverse design model are connected with the reverse supply chain considering the sustainable objectives. The purpose of this research is to develop a mathematical model for analyzing the design cases by integrated evaluating the criteria in the closed-loop design and the closed-loop supply chain. The decision variables are built to represent the design cases of the forward design and reverse design. The cost parameters in a forward design include the costs of material and manufacturing processes. The cost parameters in a reverse design include the costs of recycling, disassembly, reusing, remanufacturing, and disposing. The mathematical model is formulated to minimize the total cost under the design constraints. In practical applications, the decisions of the mathematical model can be used for selecting a design case for the purpose of sustainable design of a product. An example product is demonstrated in the paper. The test result shows that the sustainable design model is useful for integrated evaluation of the design and the supply chain to achieve the sustainable objectives.Keywords: closed-loop design, closed-loop supply chain, design evaluation, supply chain management, sustainable design model
Procedia PDF Downloads 42516690 Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness
Authors: Nitish Kumar Vaja, Oumar Barry, Brian DeJong
Abstract:
Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper.Keywords: equivalent stiffness, finite element model, free vibration response, Stockbridge damper
Procedia PDF Downloads 28616689 Port Governance Model by International Freight Forwarders’ Point of View: A Study at Port of Santos - Brazil
Authors: Guilherme B. B. Vieira, Rafael M. da Silva, Eliana T. P. Senna, Luiz A. S. Senna, Francisco J. Kliemann Neto
Abstract:
Due to the importance of ports to trade and economic development of the regions in which they are inserted, in recent decades the number of studies devoted to this subject has increased. Part of these studies consider the ports as business agglomerations and focuses on port governance. This is an important approach since the port performance is the result of activities performed by actors belonging to the port-logistics chain, which need to be properly coordinated. This coordination takes place through a port governance model. Given this context, this study aims to analyze the governance model of the port of Santos from the perspective of port customers. To do this, a closed-ended questionnaire based on a conceptual model that considers the key dimensions associated with port governance was applied to the international freight forwarders that operate in the port. The results show the applicability of the considered model and highlight improvement opportunities to be implemented at the port of Santos.Keywords: port governance, model, Port of Santos, customers’ perception
Procedia PDF Downloads 45216688 The Effectiveness of Goldstein's Social Skillstreaming Model on Social Skills of Special Education Pre-Service Teachers
Authors: Ragea Alqahtani
Abstract:
The purpose of the study was to measure the effectiveness of the Goldstein’s social skill streaming model based on the special and general pre-service teachers’ knowledge about controlling their emotions in conflict situations. A review of previous pieces of literature guided the design and measurement of the effectiveness of the approach to the control of emotions. The teachers were assessed using the coping strategy, adult anger, and Goldstein’s skill streaming inventories. Lastly, the paper provides various recommendations on the sensitization of the Goldstein’s Social Skill streaming model to both the special and pre-service teachers to promote their knowledge about controlling emotions in conflicts.Keywords: emotional control, Goldstein social skill streaming model, modeling technique, self- as-a-model, self-efficacy, self-regulation
Procedia PDF Downloads 2016687 Operating Model of Obstructive Sleep Apnea Patients in North Karelia Central Hospital
Authors: L. Korpinen, T. Kava, I. Salmi
Abstract:
This study aimed to describe the operating model of obstructive sleep apnea. Due to the large number of patients, the role of nurses in the diagnosis and treatment of sleep apnea was important. Pulmonary physicians met only a minority of the patients. The sleep apnea study in 2018 included about 800 patients, of which about 28% were normal and 180 patients were classified as severe (apnea-hypopnea index [AHI] over 30). The operating model has proven to be workable and appropriate. The patients understand well that they may not be referred to a pulmonary doctor. However, specialized medical follow-up on professional drivers continues every year.Keywords: sleep, apnea patient, operating model, hospital
Procedia PDF Downloads 13116686 Generating Music with More Refined Emotions
Authors: Shao-Di Feng, Von-Wun Soo
Abstract:
To generate symbolic music with specific emotions is a challenging task due to symbolic music datasets that have emotion labels are scarce and incomplete. This research aims to generate more refined emotions based on the training datasets that are only labeled with four quadrants in Russel’s 2D emotion model. We focus on the theory of Music Fadernet and map arousal and valence to the low-level attributes, and build a symbolic music generation model by combining transformer and GM-VAE. We adopt an in-attention mechanism for the model and improve it by allowing modulation by conditional information. And we show the music generation model could control the generation of music according to the emotions specified by users in terms of high-level linguistic expression and by manipulating their corresponding low-level musical attributes. Finally, we evaluate the model performance using a pre-trained emotion classifier against a pop piano midi dataset called EMOPIA, and by subjective listening evaluation, we demonstrate that the model could generate music with more refined emotions correctly.Keywords: music generation, music emotion controlling, deep learning, semi-supervised learning
Procedia PDF Downloads 8916685 Active Flutter Suppression of Sports Aircraft Tailplane by Supplementary Control Surface
Authors: Aleš Kratochvíl, Svatomír Slavík
Abstract:
The paper presents an aircraft flutter suppression by active damping of supplementary control surface at trailing edge. The mathematical model of thin oscillation airfoil with control surface driven by pilot is developed. The supplementary control surface driven by control law is added. Active damping of flutter by several control law is present. The structural model of tailplane with an aerodynamic strip theory based on the airfoil model is developed by a finite element method. The optimization process of stiffens parameters is carried out to match the structural model with results from a ground vibration test of a small sport airplane. The implementation of supplementary control surface driven by control law is present. The active damping of tailplane model is shown.Keywords: active damping, finite element method, flutter, tailplane model
Procedia PDF Downloads 29216684 Generic Model for Timetabling Problems by Integer Linear Programmimg Approach
Authors: Nur Aidya Hanum Aizam, Vikneswary Uvaraja
Abstract:
The agenda of showing the scheduled time for performing certain tasks is known as timetabling. It widely used in many departments such as transportation, education, and production. Some difficulties arise to ensure all tasks happen in the time and place allocated. Therefore, many researchers invented various programming model to solve the scheduling problems from several fields. However, the studies in developing the general integer programming model for many timetabling problems are still questionable. Meanwhile, this thesis describe about creating a general model which solve different types of timetabling problems by considering the basic constraints. Initially, the common basic constraints from five different fields are selected and analyzed. A general basic integer programming model was created and then verified by using the medium set of data obtained randomly which is much similar to realistic data. The mathematical software, AIMMS with CPLEX as a solver has been used to solve the model. The model obtained is significant in solving many timetabling problems easily since it is modifiable to all types of scheduling problems which have same basic constraints.Keywords: AIMMS mathematical software, integer linear programming, scheduling problems, timetabling
Procedia PDF Downloads 43616683 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 27816682 Effects of Research-Based Blended Learning Model Using Adaptive Scaffolding to Enhance Graduate Students' Research Competency and Analytical Thinking Skills
Authors: Panita Wannapiroon, Prachyanun Nilsook
Abstract:
This paper is a report on the findings of a Research and Development (R&D) aiming to develop the model of Research-Based Blended Learning Model Using Adaptive Scaffolding (RBBL-AS) to enhance graduate students’ research competency and analytical thinking skills, to study the result of using such model. The sample consisted of 10 experts in the fields during the model developing stage, while there were 23 graduate students of KMUTNB for the RBBL-AS model try out stage. The research procedures included 4 phases: 1) literature review, 2) model development, 3) model experiment, and 4) model revision and confirmation. The research results were divided into 3 parts according to the procedures as described in the following session. First, the data gathering from the literature review were reported as a draft model; followed by the research finding from the experts’ interviews indicated that the model should be included 8 components to enhance graduate students’ research competency and analytical thinking skills. The 8 components were 1) cloud learning environment, 2) Ubiquitous Cloud Learning Management System (UCLMS), 3) learning courseware, 4) learning resources, 5) adaptive Scaffolding, 6) communication and collaboration tolls, 7) learning assessment, and 8) research-based blended learning activity. Second, the research finding from the experimental stage found that there were statistically significant difference of the research competency and analytical thinking skills posttest scores over the pretest scores at the .05 level. The Graduate students agreed that learning with the RBBL-AS model was at a high level of satisfaction. Third, according to the finding from the experimental stage and the comments from the experts, the developed model was revised and proposed in the report for further implication and references.Keywords: research based learning, blended learning, adaptive scaffolding, research competency, analytical thinking skills
Procedia PDF Downloads 41816681 Investigation on Machine Tools Energy Consumptions
Authors: Shiva Abdoli, Daniel T.Semere
Abstract:
Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)
Procedia PDF Downloads 49916680 Development of EREC IF Model to Increase Critical Thinking and Creativity Skills of Undergraduate Nursing Students
Authors: Kamolrat Turner, Boontuan Wattanakul
Abstract:
Critical thinking and creativity are prerequisite skills for working professionals in the 21st century. A survey conducted in 2014 at the Boromarajonani College of Nursing, Chon Buri, Thailand, revealed that these skills within students across all academic years was at a low to moderate level. An action research study was conducted to develop the EREC IF Model, a framework which includes the concepts of experience, reflection, engagement, culture and language, ICT, and flexibility and fun, to guide pedagogic activities for 75 sophomores of the undergraduate nursing science program at the college. The model was applied to all professional nursing courses. Prior to implementation, workshops were held to prepare lecturers and students. Both lecturers and students initially expressed their discomfort and pointed to the difficulties with the model. However, later they felt more comfortable, and by the end of the project they expressed their understanding and appreciation of the model. A survey conducted four and eight months after implementation found that the critical thinking and creativity skills of the sophomores were significantly higher than those recorded in the pretest. It could be concluded that the EREC IF model is efficient for fostering critical thinking and creativity skills in the undergraduate nursing science program. This model should be used for other levels of students.Keywords: critical thinking, creativity, undergraduate nursing students, EREC IF model
Procedia PDF Downloads 32216679 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 48716678 Regression of Fibrosis by Apigenin in Thioacetamide-Induced Liver Fibrosis Rat Model through Suppression of HIF-1/FAK Pathway
Authors: Hany M. Fayed, Rehab F. Abdel-Rahman, Alyaa F. Hessin, Hanan A. Ogaly, Gihan F. Asaad, Abeer A. A. Salama, Sahar Abdelrahman, Mahmoud S. Arbid, Marwan Abd Elbaset Mohamed
Abstract:
Liver fibrosis is a serious global health problem that occurs as a result of a variety of chronic liver disorders. Apigenin, a flavonoid found in many plants, has several pharmacological properties. The aim of this study was to evaluate the antifibrotic efficacy of apigenin (APG) against experimentally induced hepatic fibrosis in rats via using thioacetamide (TAA) and to explore the possible underlying mechanisms. TAA (100 mg/kg, i.p.) was given three times each week for two weeks to induce liver fibrosis. After TAA injections, APG was given orally (5 and 10 mg/kg) daily for two weeks. Biochemical, molecular, histological and immunohistochemical analyses were performed on blood and liver tissue samples. The functioning of the liver, oxidative stress, inflammation, and liver fibrosis indicators were all evaluated. The findings showed that TAA markedly increased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as the levels of malondialdehyde (MDA), focal adhesion kinase (FAK), hypoxia-inducible factor-1 (HIF-1), nuclear factor-κB (NF-κB), transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) with a reduction in albumin, total protein, A/G ratio, GSH content and interleukin-10 (IL-10). Moreover, TAA elevated the content of collagen I, α -smooth muscle actin (α-SMA), and hydroxyproline in the liver. The treatment with APG in a dose-dependent manner has obviously prevented these alterations and amended the harmful effects induced by TAA. The histopathological and immunohistochemical observations supported this biochemical evidence. The higher dose of APG produced the most significant antifibrotic effect. As a result of these data, APG appears to be a promising antifibrotic drug and could be used as a new herbal medication or dietary supplement in the future for the treatment of liver fibrosis. This effect might be related to the inhibition of the HIF-1/FAK signaling pathway.Keywords: apigenin, FAK, HIF-1, liver fibrosis, rat, thioacetamide
Procedia PDF Downloads 13416677 Software Assessment Using Ant Colony Optimization Algorithm
Authors: Saad M. Darwish
Abstract:
Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However,these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.Keywords: optimization technique, quality assurance, software certification model, software assessment
Procedia PDF Downloads 48716676 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events
Procedia PDF Downloads 26116675 Mathematical Model for Output Yield Obtained by Single Slope Solar Still
Authors: V. Nagaraju, G. Murali, Nagarjunavarma Ganna, Atluri Pavan Kalyan, N. Sree Sai Ganesh, V. S. V. S. Badrinath
Abstract:
The present work focuses on the development of a mathematical model for the yield obtained by single slope solar still incorporated with cylindrical pipes filled with sand. The mathematical results obtained were validated with the experimental results for the 3 cm of water level at the basin. The mathematical model and results obtained with the experimental investigation are within 11% of deviation. The theoretical model to predict the yield obtained due to the capillary effect was proposed first. And then, to predict the total yield obtained, the thermal effect model was integrated with the capillary effect model. With the obtained results, it is understood that the yield obtained is more in the case of solar stills with sand-filled cylindrical pipes when compared to solar stills without sand-filled cylindrical pipes. And later model was used for predicting yield for 1 cm and 2 cm of water levels at the basin. And it is observed that the maximum yield was obtained for a 1 cm water level at the basin. It means solar still produces better yield with the lower depth of water level at the basin; this may be because of the availability of more space in the sand for evaporation.Keywords: solar still, cylindrical pipes, still efficiency, mathematical modeling, capillary effect model, yield, solar desalination
Procedia PDF Downloads 11916674 Iterative Panel RC Extraction for Capacitive Touchscreen
Authors: Chae Hoon Park, Jong Kang Park, Jong Tae Kim
Abstract:
Electrical characteristics of capacitive touchscreen need to be accurately analyzed to result in better performance for multi-channel capacitance sensing. In this paper, we extracted the panel resistances and capacitances of the touchscreen by comparing measurement data and model data. By employing a lumped RC model for driver-to-receiver paths in touchscreen, we estimated resistance and capacitance values according to the physical lengths of channel paths which are proportional to the RC model. As a result, we obtained the model having 95.54% accuracy of the measurement data.Keywords: electrical characteristics of capacitive touchscreen, iterative extraction, lumped RC model, physical lengths of channel paths
Procedia PDF Downloads 33416673 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 40516672 A Numerical Study of Seismic Effects on Slope Stability Using Node-Based Smooth Finite Element Method
Authors: H. C. Nguyen
Abstract:
This contribution considers seismic effects on the stability of slope and footing resting on a slope. The seismic force is simply treated as static inertial force through the values of acceleration factor. All domains are assumed to be plasticity deformations approximated using node-based smoothed finite element method (NS-FEM). The failure mechanism and safety factor were then explored using numerical procedure based on upper bound approach in which optimization problem was formed as second order cone programming (SOCP). The data obtained confirm that upper bound procedure using NS-FEM and SOCP can give stable and rapid convergence results of seismic stability factors.Keywords: upper bound analysis, safety factor, slope stability, footing resting on slope
Procedia PDF Downloads 11716671 Prediction of Thermodynamic Properties of N-Heptane in the Critical Region
Authors: Sabrina Ladjama, Aicha Rizi, Azzedine Abbaci
Abstract:
In this work, we use the crossover model to formulate a comprehensive fundamental equation of state for the thermodynamic properties for several n-alkanes in the critical region that extends to the classical region. This equation of state is constructed on the basis of comparison of selected measurements of pressure-density-temperature data, isochoric and isobaric heat capacity. The model can be applied in a wide range of temperatures and densities around the critical point for n-heptane. It is found that the developed model represents most of the reliable experimental data accurately.Keywords: crossover model, critical region, fundamental equation, n-heptane
Procedia PDF Downloads 47516670 Markov Characteristics of the Power Line Communication Channels in China
Authors: Ming-Yue Zhai
Abstract:
Due to the multipath and pulse noise nature, power line communications(PLC) channel can be modelled as a memory one with the finite states Markov model(FSMC). As the most important parameter modelling a Markov channel,the memory order in an FSMC is not solved in PLC systems yet. In the paper, the mutual information is used as a measure of the dependence between the different symbols, treated as the received SNA or amplitude of the current channel symbol or that of previous symbols. The joint distribution probabilities of the envelopes in PLC systems are computed based on the multi-path channel model, which is commonly used in PLC. we confirm that given the information of the symbol immediately preceding the current one, any other previous symbol is independent of the current one in PLC systems, which means the PLC channels is a Markov chain with the first-order. The field test is also performed to model the received OFDM signals with the help of AR model. The results show that the first-order AR model is enough to model the fading channel in PLC systems, which means the amount of uncertainty remaining in the current symbol should be negligible, given the information corresponding to the immediately preceding one.Keywords: power line communication, channel model, markovian, information theory, first-order
Procedia PDF Downloads 41216669 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series
Procedia PDF Downloads 39516668 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis
Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan
Abstract:
This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis
Procedia PDF Downloads 22716667 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model
Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović
Abstract:
Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve
Procedia PDF Downloads 334