Search results for: sampling algorithms
4480 Case Study of the Exercise Habits and Aging Anxiety of Taiwanese Insurance Agents
Authors: W. T. Hsu, H. L. Tsai
Abstract:
The rapid aging of the population is a common trend in the world. However, the progress of modern medical technology has increased the average life expectancy. The global population structure has changed dramatically, and the elderly population has risen rapidly. In the face of rapid population growth, it must be noted issues of the aging population must face up to, which are the physiological, psychological, and social problems associated with aging. This study aims to investigate how insurance agents are actively dealing with an aging society, their own aging anxiety, and their exercise habits. Purposive sampling was the sampling method of this study, a total of 204 respondents were surveyed and 204 valid surveys were returned. The returned valid ratio was 100%. Statistical method included descriptive statistics, t-test, and one-way ANOVA. The results of the study found that the insurance agent’s age, seniority, exercise habits to aging anxiety are significantly different.Keywords: insurance practitioners, aging anxiety, exercise habits, elderly
Procedia PDF Downloads 3104479 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 744478 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 1834477 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent
Procedia PDF Downloads 1284476 Analyzing the Perceptions of Emotions in Aesthetic Music
Authors: Abigail Wiafe, Charles Nutrokpor, Adelaide Oduro-Asante
Abstract:
The advancement of technology is rapidly making people more receptive to music as computer-generated music requires minimal human interventions. Though algorithms are applied to generate music, the human experience of emotions is still explored. Thus, this study investigates the emotions humans experience listening to computer-generated music that possesses aesthetic qualities. Forty-two subjects participated in the survey. The selection process was purely arbitrary since it was based on convenience. Subjects listened and evaluated the emotions experienced from the computer-generated music through an online questionnaire. The Likert scale was used to rate the emotional levels after the music listening experience. The findings suggest that computer-generated music possesses aesthetic qualities that do not affect subjects' emotions as long as they are pleased with the music. Furthermore, computer-generated music has unique creativity, and expressioneven though the music produced is meaningless, the computational models developed are unable to present emotional contents in music as humans do.Keywords: aesthetic, algorithms, emotions, computer-generated music
Procedia PDF Downloads 1364475 [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm
Authors: Dejan Tanikić, Miodrag Manić, Jelena Đoković, Saša Kalinović
Abstract:
This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions.Keywords: genetic algorithms, machining parameters, response surface methodology, turning process
Procedia PDF Downloads 1884474 Effect of Miconazole Nitrate on Immunological Response and Its Preventive Efficacy in Labeo rohita Fingerlings against Oomycetes Saprolegnia parasitica
Authors: Mukta Singh, Ratan Kumar Saha, Himadri Saha, Paramveer Singh
Abstract:
The present study evaluated the effect of sub-lethal doses of antifungal drug miconazole nitrate (MCZ) on immunological responses including immune-related gene expression and its role as a prophylactic drug against S. parasitica in Labeo rohita fingerlings. Fish were fed with sub lethal doses of MCZ i.e., T1- 6.30 mg MCZ kgBW⁻¹, T2- 12.61 mg MCZ kgBW⁻¹ and T3- 25.22 mg MCZ kgBW⁻¹ and sampling was done at different time intervals for 240 h. Immunological parameters viz. lysozyme activity, oxygen radical production and plasma anti-protease activity showed significant enhancement (p < 0.05) in fish fed with T2 and T3 doses. Significant reduction in plasma protein content was observed in all the dietary groups as compared to control. Expression of immune-relevant genes like TLR-22 and β2-M showed significantly higher expression at six h and 24 h of sampling in both liver and head-kidney. However, these genes showed a down-regulation after 120 h of sampling in both the tissues. Preventive efficacy study showed that single dose of MCZ provides protection against oomycetes up to the fourth day of infection. Significantly higher mortality was observed in control diet-fed fish as compared to fish fed with MCZ medicated diet. Thus, from the study, it can be concluded that the MCZ can act as a potent antifungal agent for preventing oomycetes infection as well as to enhance the immune response.Keywords: antifungal, immune gene, immunological, miconazole nitrate, prophylactic
Procedia PDF Downloads 2474473 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 704472 Monomial Form Approach to Rectangular Surface Modeling
Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong
Abstract:
Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications
Procedia PDF Downloads 1464471 Implementation and Comparative Analysis of PET and CT Image Fusion Algorithms
Authors: S. Guruprasad, M. Z. Kurian, H. N. Suma
Abstract:
Medical imaging modalities are becoming life saving components. These modalities are very much essential to doctors for proper diagnosis, treatment planning and follow up. Some modalities provide anatomical information such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-rays and some provides only functional information such as Positron Emission Tomography (PET). Therefore, single modality image does not give complete information. This paper presents the fusion of structural information in CT and functional information present in PET image. This fused image is very much essential in detecting the stages and location of abnormalities and in particular very much needed in oncology for improved diagnosis and treatment. We have implemented and compared image fusion techniques like pyramid, wavelet, and principal components fusion methods along with hybrid method of DWT and PCA. The performances of the algorithms are evaluated quantitatively and qualitatively. The system is implemented and tested by using MATLAB software. Based on the MSE, PSNR and ENTROPY analysis, PCA and DWT-PCA methods showed best results over all experiments.Keywords: image fusion, pyramid, wavelets, principal component analysis
Procedia PDF Downloads 2844470 African Culture and Youth Morality: A Critique of the On-Going Transitional Rites in Thulamela Municipality, South Africa
Authors: Bassey Rofem Inyang, Matshidze Pfarelo, Mabale Dolphin
Abstract:
Using a qualitative descriptive design, this study established the consequences of the on-going transitional rites on youth morality in the Thulamela Local Municipality, South Africa. The participants were sampled using a non-random sampling procedure, specifically, a purposive sampling technique and a snowball sampling technique. A semi-structured interview guide was recruited to collect data from the Indigenous Knowledge (IK) custodians, the parents of the youths and the youths until the point of saturation. The analysis was performed using a thematic content method. With the emergence of themes and sub-themes, broad categories were generated to differentiate and explain the thoughts expressed by the various respondents and the observations made in the field. The study findings suggest that the on-going transitional rites are depicted by weekend social activities with the practice of substance use and abuse among the youths at recreational spots. The transitional rites are structured under the guise of “freaks” as an evolving culture among the youths. The freaks culture is a counterculture of the usual initiation schools for transitional rites of passage which is believed to instill morality among youths. The findings comprehensively show that the on-going transitional rites influence inappropriate youth morality. This study concluded that the on-going transitional rites activities and practices evolved as a current socialization standard for quick maturity status; as a result, it will be challenging to provide a complete turnaround of this evolving culture. The study, however, recommends building on the exciting transitional rites of passage to moderate appropriate youths’ morality in Thulamela communities.Keywords: morality, transitional rites, youths, behaviour
Procedia PDF Downloads 954469 Airborne Particulate Matter Passive Samplers for Indoor and Outdoor Exposure Monitoring: Development and Evaluation
Authors: Kholoud Abdulaziz, Kholoud Al-Najdi, Abdullah Kadri, Konstantinos E. Kakosimos
Abstract:
The Middle East area is highly affected by air pollution induced by anthropogenic and natural phenomena. There is evidence that air pollution, especially particulates, greatly affects the population health. Many studies have raised a warning of the high concentration of particulates and their affect not just around industrial and construction areas but also in the immediate working and living environment. One of the methods to study air quality is continuous and periodic monitoring using active or passive samplers. Active monitoring and sampling are the default procedures per the European and US standards. However, in many cases they have been inefficient to accurately capture the spatial variability of air pollution due to the small number of installations; which eventually is attributed to the high cost of the equipment and the limited availability of users with expertise and scientific background. Another alternative has been found to account for the limitations of the active methods that is the passive sampling. It is inexpensive, requires no continuous power supply, and easy to assemble which makes it a more flexible option, though less accurate. This study aims to investigate and evaluate the use of passive sampling for particulate matter pollution monitoring in dry tropical climates, like in the Middle East. More specifically, a number of field measurements have be conducted, both indoors and outdoors, at Qatar and the results have been compared with active sampling equipment and the reference methods. The samples have been analyzed, that is to obtain particle size distribution, by applying existing laboratory techniques (optical microscopy) and by exploring new approaches like the white light interferometry to. Then the new parameters of the well-established model have been calculated in order to estimate the atmospheric concentration of particulates. Additionally, an extended literature review will investigate for new and better models. The outcome of this project is expected to have an impact on the public, as well, as it will raise awareness among people about the quality of life and about the importance of implementing research culture in the community.Keywords: air pollution, passive samplers, interferometry, indoor, outdoor
Procedia PDF Downloads 4004468 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1504467 A Study of Permission-Based Malware Detection Using Machine Learning
Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud
Abstract:
Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.Keywords: android malware detection, machine learning, malware, malware analysis
Procedia PDF Downloads 1704466 Influence of Physicochemical Water Quality Parameters on Abundance of Aquatic Insects in Rivers of Perak, Malaysia
Authors: Nur Atirah Hasmi, Nadia Nisha Musa, Hasnun Nita Ismail, Zulfadli Mahfodz
Abstract:
The effect of water quality parameters on the abundance of aquatic insects has been studied in Batu Berangkai, Dipang, Kuala Woh and Lata Kinjang Rivers, Perak, northern peninsular Malaysia. The focuses are to compare the abundance of aquatic insects in each sampling areas and to investigate the physical and chemical factors (water temperature, depth of water, canopy, water velocity, pH value, and dissolved oxygen) on the abundance of aquatic insects. The samples and data were collected by using aquatic net and multi-probe parameter. Physical parameters; water velocity, water temperature, depth, canopy cover, and two chemical parameters; pH value and dissolved oxygen have been measured in situ and recorded. A total of 631 individuals classified into 6 orders and 18 families of aquatic insects were identified from four sampling sites. The largest percentage of samples collected is from order Plecoptera 35.8%, followed by Ephemeroptera 32.6%, Trichoptera 17.0%, Hemiptera 8.1%, Coleoptera 4.8%, and the least is Odonata 1.7%. The aquatic insects collected from Dipang River have the highest abundance of 273 individuals from 6 orders and 13 families and the least insects trapped at Lata Kinjang which only have 64 individuals from 5 orders and 6 families. There is significant association between different sampling areas and abundance of aquatic insects (p<0.05). High abundance of aquatic insects was found in higher water temperature, low water velocity, deeper water, low pH, high amount of dissolved oxygen, and the area that is not covered by canopy.Keywords: aquatic insect, physicochemical parameter, river, water quality
Procedia PDF Downloads 2174465 Loss Allocation in Radial Distribution Networks for Loads of Composite Types
Authors: Sumit Banerjee, Chandan Kumar Chanda
Abstract:
The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.Keywords: composite type, deregulation, loss allocation, radial distribution networks
Procedia PDF Downloads 2874464 Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation
Authors: Admassu Addi, Sebesebe Demissew, Teshome Soromessa, Zemede Asfaw
Abstract:
This study measures the carbon stock of the Moist Afromontane Gesha-Sayilem forest found in Gesha and Sayilem District in southwest Ethiopia. A stratified sampling method was used to identify the number of sampling point through the Global Positioning System. A total of 90 plots having nested plots to collect tree species and soil data were demarcated. The results revealed that the total carbon stock of the forest was 362.4 t/ha whereas the above ground carbon stock was 174.95t/ha, below ground litter, herbs, soil, and dead woods were 34.3,1.27, 0.68, 128 and 23.2 t/ha (up to 30 cm depth) respectively. The Gesha- Sayilem Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. Thus conservation of the forest through introduction REDD+ activities is considered an appropriate action for mitigating climate change.Keywords: carbon sequestration, carbon stock, climate change, allometric, Ethiopia
Procedia PDF Downloads 1604463 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters
Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn
Abstract:
The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm
Procedia PDF Downloads 1134462 A Retrievable Genetic Algorithm for Efficient Solving of Sudoku Puzzles
Authors: Seyed Mehran Kazemi, Bahare Fatemi
Abstract:
Sudoku is a logic-based combinatorial puzzle game which is popular among people of different ages. Due to this popularity, computer softwares are being developed to generate and solve Sudoku puzzles with different levels of difficulty. Several methods and algorithms have been proposed and used in different softwares to efficiently solve Sudoku puzzles. Various search methods such as stochastic local search have been applied to this problem. Genetic Algorithm (GA) is one of the algorithms which have been applied to this problem in different forms and in several works in the literature. In these works, chromosomes with little or no information were considered and obtained results were not promising. In this paper, we propose a new way of applying GA to this problem which uses more-informed chromosomes than other works in the literature. We optimize the parameters of our GA using puzzles with different levels of difficulty. Then we use the optimized values of the parameters to solve various puzzles and compare our results to another GA-based method for solving Sudoku puzzles.Keywords: genetic algorithm, optimization, solving Sudoku puzzles, stochastic local search
Procedia PDF Downloads 4244461 An Efficient Separation for Convolutive Mixtures
Authors: Salah Al-Din I. Badran, Samad Ahmadi, Dylan Menzies, Ismail Shahin
Abstract:
This paper describes a new efficient blind source separation method; in this method we use a non-uniform filter bank and a new structure with different sub-bands. This method provides a reduced permutation and increased convergence speed comparing to the full-band algorithm. Recently, some structures have been suggested to deal with two problems: reducing permutation and increasing the speed of convergence of the adaptive algorithm for correlated input signals. The permutation problem is avoided with the use of adaptive filters of orders less than the full-band adaptive filter, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full-band, and can promote better rates of convergence.Keywords: Blind source separation, estimates, full-band, mixtures, sub-band
Procedia PDF Downloads 4454460 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed
Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot
Abstract:
Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning
Procedia PDF Downloads 3734459 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 1234458 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler
Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury
Abstract:
An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler
Procedia PDF Downloads 1504457 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.Keywords: Javascript, machine learning, artificial intelligence, web development
Procedia PDF Downloads 814456 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors
Authors: V. Rashtchi, H. Bizhani, F. R. Tatari
Abstract:
This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization
Procedia PDF Downloads 6344455 The Tourist Satisfaction on Logo Design of Huay Kon Border Market, Chaloemphrakiat District, Nan Province
Authors: Panupong Chanplin, Wilailuk Mepracha, Sathapath Kilaso
Abstract:
The aims of this research were twofold: 1) to logo design of Huay Kon Border Market, Chaloemphrakiat District, Nan Province and 2) to study the level of tourist satisfaction towards logo design of Huay Kon Border Market, Chaloemphrakiat District, Nan Province. Tourist satisfaction was measured using four criteria: a unique product identity, ease of remembrance, product utility, and beauty/impressiveness. The researcher utilized a probability sampling method via simple random sampling. The sample consisted of 30 tourists in the Huay Kon Border Market. Statistics utilized for data analysis were percentage, mean, and standard deviation. The results suggest that tourist had high levels of satisfaction towards all four criteria of the logo design that was designed to target them. This study proposes that specifically logo designed of Huay Kon Border Market could also be implemented with other real media already available on the market.Keywords: satisfaction, logo, design, Huay Kon border market
Procedia PDF Downloads 2244454 An Importance of Tourists’ Destination Loyalty: A Case Study of Inbound Tourists Visiting Bangkok, Thailand
Authors: Niyom Suwandej, Kevin Wongleedee
Abstract:
The objectives of this research were to study an importance of tourists’ destination loyalty from the perspective of inbound tourists visiting Bangkok and to study their level of interest to recommend as a tourist destination to others. A probability random sampling of 200 inbound tourists was utilized. The design of sampling was to collect half male and half female sample. A Likert-five-scale questionnaire was developed to collect the data. In addition, in-depth interviews were also used to obtain their perspective and experience of visiting Thailand. The findings disclosed that positive tourist perception influenced destination loyalty. Also, the majority of respondents had a high level of loyalty. When examined in detail, the destination loyalty indicators can be ranked according to the mean average from high to low as follows: to recommend the destination, to say positive thing about the destination, to plan to visit the destination in the near future, to acquire more information about the destination, and to spend more money at the destination.Keywords: destination loyalty, inbound tourists, impact, Thailand
Procedia PDF Downloads 2854453 Effect of Fertilization and Combined Inoculation with Azospirillum brasilense and Pseudomonas fluorescens on Rhizosphere Microbial Communities of Avena sativa (Oats) and Secale Cereale (Rye) Grown as Cover Crops
Authors: Jhovana Silvia Escobar Ortega, Ines Eugenia Garcia De Salamone
Abstract:
Cover crops are an agri-technological alternative to improve all properties of soils. Cover crops such as oats and rye could be used to reduce erosion and favor system sustainability when they are grown in the same agricultural cycle of the soybean crop. This crop is very profitable but its low contribution of easily decomposable residues, due to its low C/N ratio, leaves the soil exposed to erosive action and raises the need to reduce its monoculture. Furthermore, inoculation with the plant growth promoting rhizobacteria contributes to the implementation, development and production of several cereal crops. However, there is little information on its effects on forage crops which are often used as cover crops to improve soil quality. In order to evaluate the effect of combined inoculation with Azospirillum brasilense and Pseudomonas fluorescens on rhizosphere microbial communities, field experiments were conducted in the west of Buenos Aires province, Argentina, with a split-split plot randomized complete block factorial design with three replicates. The factors were: type of cover crop, inoculation and fertilization. In the main plot two levels of fertilization 0 and 7 40-0-5 (NPKS) were established at sowing. Rye (Secale cereale cultivar Quehué) and oats (Avena sativa var Aurora.) were sown in the subplots. In the sub-subplots two inoculation treatments are applied without and with application of a combined inoculant with A. brasilense and P. fluorescens. Due to the growth of cover crops has to be stopped usually with the herbicide glyphosate, rhizosphere soil of 0-20 and 20-40 cm layers was sampled at three sampling times which were: before glyphosate application (BG), a month after glyphosate application (AG) and at soybean harvest (SH). Community level of physiological profiles (CLPP) and Shannon index of microbial diversity (H) were obtained by multivariate analysis of Principal Components. Also, the most probable number (MPN) of nitrifiers and cellulolytics were determined using selective liquid media for each functional group. The CLPP of rhizosphere microbial communities showed significant differences between sampling times. There was not interaction between sampling times and both, types of cover crops and inoculation. Rhizosphere microbial communities of samples obtained BG had different CLPP with respect to the samples obtained in the sampling times AG and SH. Fertilizer and depth of sampling also caused changes in the CLPP. The H diversity index of rhizosphere microbial communities of rye in the sampling time BG were higher than those associated with oats. The MPN of both microbial functional types was lower in the deeper layer since these microorganisms are mostly aerobic. The MPN of nitrifiers decreased in rhizosphere of both cover crops only AG. At the sampling time BG, the NMP of both microbial types were larger than those obtained for AG and SH. This may mean that the glyphosate application could cause fairly permanent changes in these microbial communities which can be considered bio-indicators of soil quality. Inoculation and fertilizer inputs could be included to improve management of these cover crops because they can have a significant positive effect on the sustainability of the agro-ecosystem.Keywords: community level of physiological profiles, microbial diversity, plant growth promoting rhizobacteria, rhizosphere microbial communities, soil quality, system sustainability
Procedia PDF Downloads 4084452 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms
Authors: Alica Höpken, Hergen Pargmann
Abstract:
The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning
Procedia PDF Downloads 1294451 Image Compression on Region of Interest Based on SPIHT Algorithm
Authors: Sudeepti Dayal, Neelesh Gupta
Abstract:
Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently.Keywords: Compression ratio, DWT, SPIHT, DCT
Procedia PDF Downloads 349