Search results for: resource optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5647

Search results for: resource optimization

5137 A New Block Cipher for Resource-Constrained Internet of Things Devices

Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam

Abstract:

In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a new layer between the encryption and decryption processes.

Keywords: internet of things, cryptography block cipher, S-box, key management, security, network

Procedia PDF Downloads 114
5136 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells

Authors: Soumitra Satapathi, Anubhav Raghav

Abstract:

Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.

Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells

Procedia PDF Downloads 166
5135 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 378
5134 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis

Authors: Iannick Gagnon, Alain April

Abstract:

The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.

Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis

Procedia PDF Downloads 154
5133 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization

Procedia PDF Downloads 520
5132 Optimal Allocation of Distributed Generation Sources for Loss Reduction and Voltage Profile Improvement by Using Particle Swarm Optimization

Authors: Muhammad Zaheer Babar, Amer Kashif, Muhammad Rizwan Javed

Abstract:

Nowadays distributed generation integration is best way to overcome the increasing load demand. Optimal allocation of distributed generation plays a vital role in reducing system losses and improves voltage profile. In this paper, a Meta heuristic technique is proposed for allocation of DG in order to reduce power losses and improve voltage profile. The proposed technique is based on Multi Objective Particle Swarm optimization. Fewer control parameters are needed in this algorithm. Modification is made in search space of PSO. The effectiveness of proposed technique is tested on IEEE 33 bus test system. Single DG as well as multiple DG scenario is adopted for proposed method. Proposed method is more effective as compared to other Meta heuristic techniques and gives better results regarding system losses and voltage profile.

Keywords: Distributed generation (DG), Multi Objective Particle Swarm Optimization (MOPSO), particle swarm optimization (PSO), IEEE standard Test System

Procedia PDF Downloads 455
5131 Approaches and Implications of Working on Gender Equality under Corporate Social Responsibility: A Case Study of Two Corporate Social Responsibilities in India

Authors: Shilpa Vasavada

Abstract:

One of the 17 SustainableDevelopmentGoals focuses on gender equality. The paper is based on the learning derived from working with two Corporate Social Responsibility cases in India: one, CSR of an International Corporate and the other, CSR of a multi state national level corporate -on their efforts to integrate gender perspective in their agriculture and livestock based rural livelihood programs. The author tries to dissect how ‘gender equality’ is seen by these two CSRs, where the goals are different. The implications of a CSR’sunderstandingon ‘gender equality’ as a goal; versus CSR’s understanding of working 'with women for enhancing quantity or quality of production’ gets reflected in their orientation to staff, resource allocation, strategic level and in processes followed at the rural grassroots level. The paper comes up with examples of changes made at programmatic front when CSR understands and works with the focus on gender equality as a goal. On the other hand, the paper also explores the differential, at times, the negative impact on women and the programmes;- when the goals differ. The paper concludes with recommendations for CSRs to take up at their resource allocation and strategic level if gender equality is the goal- which has direct implication at their grassroots programmatic work. The author argues that if gender equality has to be implemented actually in spirit by a CSR, it requires change in mindset and thus an openness to changes in strategies and resource allocation pattern of the CSR and not simply adding on women in the way intervention has been going on.

Keywords: gender equality, approaches, differential impact, resource allocation

Procedia PDF Downloads 196
5130 Collaborative Energy Optimization for Multi-Microgrid Distribution System Based on Two-Stage Game Approach

Authors: Hanmei Peng, Yiqun Wang, Mao Tan, Zhuocen Dai, Yongxin Su

Abstract:

Efficient energy management in multi-microgrid distribution systems holds significant importance for enhancing the economic benefits of regional power grids. To better balance conflicts among various stakeholders, a two-stage game-based collaborative optimization approach is proposed in this paper, effectively addressing the realistic scenario involving both competition and collaboration among stakeholders. The first stage, aimed at maximizing individual benefits, involves constructing a non-cooperative tariff game model for the distribution network and surplus microgrid. In the second stage, considering power flow and physical line capacity constraints we establish a cooperative P2P game model for the multi-microgrid distribution system, and the optimization involves employing the Lagrange method of multipliers to handle complex constraints. Simulation results demonstrate that the proposed approach can effectively improve the system economics while harmonizing individual and collective rationality.

Keywords: cooperative game, collaborative optimization, multi-microgrid distribution system, non-cooperative game

Procedia PDF Downloads 71
5129 Bi-objective Network Optimization in Disaster Relief Logistics

Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann

Abstract:

Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.

Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks

Procedia PDF Downloads 80
5128 A New Conjugate Gradient Method with Guaranteed Descent

Authors: B. Sellami, M. Belloufi

Abstract:

Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed.

Keywords: unconstrained optimization, conjugate gradient method, line search, global convergence

Procedia PDF Downloads 454
5127 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach

Authors: Shital Suresh Borse, Vijayalaxmi Kadroli

Abstract:

E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.

Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN

Procedia PDF Downloads 113
5126 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 129
5125 A Task Scheduling Algorithm in Cloud Computing

Authors: Ali Bagherinia

Abstract:

Efficient task scheduling method can meet users' requirements, and improve the resource utilization, then increase the overall performance of the cloud computing environment. Cloud computing has new features, such as flexibility, virtualization and etc., in this paper we propose a two levels task scheduling method based on load balancing in cloud computing. This task scheduling method meet user's requirements and get high resource utilization, that simulation results in CloudSim simulator prove this.

Keywords: cloud computing, task scheduling, virtualization, SLA

Procedia PDF Downloads 403
5124 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Authors: Ahcene Habbi, Yassine Boudouaoui

Abstract:

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization

Procedia PDF Downloads 439
5123 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 304
5122 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method

Authors: Omer Oral, Y. Emre Yilmaz

Abstract:

Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.

Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization

Procedia PDF Downloads 138
5121 Factors Affecting Human Resource Managers Information Behavior

Authors: Sevim Oztimurlenk

Abstract:

This is an exploratory study on the information behavior of human resource managers. This study is conducted by using a questionnaire survey and an interview. The data is gathered from 140 HR managers who are members of the People Management Association of Turkey (PERYÖN), and the 15 interviewees were chosen among those 140 survey participants randomly. The goal of this exploratory study is to investigate the impact of some factors (i.e., gender, age, work experience, number of employee reporting, company size, industry type) on HR managers’ information behavior. More specifically, it examines if there is a relationship between those factors and HR managers’ information behavior in terms of what kind of information sources they consult and reviews and whom they prefer to communicate with for information sharing. It also aims to find out additional factors influencing the information behavior of HR managers. The results of the study show that age and industry type are the two factors affecting the information behavior of HR managers, among other factors investigated in terms of information source, use and share. Moreover, personality, technology, education, organizational culture, and culture are the top five factors among the 24 additional factors suggested by HR managers who participated in this study.

Keywords: information behavior, information use, information source, information share, human resource managers

Procedia PDF Downloads 145
5120 A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem

Authors: Shunichi Ohmori, Sirawadee Arunyanart, Kazuho Yoshimoto

Abstract:

We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case.

Keywords: robust optimization, inventory control, supply chain managment, second-order programming

Procedia PDF Downloads 410
5119 Upward Millennium: Enterprise Resource Planning (ERP) Development and Implementation in Pakistani Organizations

Authors: Sara Aziz, Madiha Arooj, Hira Rizwani, Wasim Irshad

Abstract:

Enterprise Resource Planning (ER) as component of Information Resource System has turned up as one of the most demanding software in market for the new millennium. ERP system automates the core activities of any organization such as finance, manufacturing and supply chain management, human resource etc. to generate an access to the information in real time environment. Despite this fact many of the organizations globally particularly in developing country Pakistan are unaware and avoid adopting it. The development and implementation of ERP system is a complex and challenging process. This research was aimed to explore the benefits and coping strategies (with reference to end user reaction) of organizations those have implemented ERP. The problems addressed in this study focused the challenges and key success factors regarding implementing ERP Pakistani Organizations. Secondly, it has explored the stumbling blocks and business integration of those organizations that are not implementing ERP. The public and corporate sector organizations in Pakistan were selected to collect the data. The research finding shows that the organizational culture, openness towards adoption and learning, deployment and development, top management commitment and change systems, business processes and compatibility and user acceptance and reaction are contributing factors for successful implementation and development of ERP system. This research is thus an addition to enhance knowledge and understanding of implementation of ERP system in Pakistan.

Keywords: ERP system, user acceptance and involvement, change management, organizational culture

Procedia PDF Downloads 283
5118 Waste Prevention and Economic Policy: Policy Tools for Increasing Resource Efficiency and Savings

Authors: Sylvia Graczka

Abstract:

Waste related environmental problems are not only exploding but are also spotlighted for capacity shortages in recycling, as China announced its ban on waste imports. According to the waste hierarchy, prevention is the primary solution for waste, and also the cheapest. Waste related environmental pollution as externality puts an ever-growing burden on communities bearing the social costs. Economic policies often claim to be pro-environment, this often appears only theoretically, or at the level of principles. There are few concrete occurrences of tools in economic policies, such as green taxes, that are truly effective in stimulating the shift towards waste reduction. The paper presents theoretical economic policy tools based on literature review, and case studies on applied economic policy tools by analyzing policy papers, strategies in force, in line with ‘polluter pays’ and ‘extended producer responsibility’ principles. The study also emphasizes the differences between the broader notion of waste reduction and that of waste minimization, parallel to the difference between resource efficiency and resource savings. It also puts the issue in the context of neoclassical environmental economics and ecological economics, to present alternatives in approach. The research concludes in identifying effective economic policy tools that support the reduction of material use, and the prevention of waste. Consumer and producer awareness of waste problems and consciousness related to their choices are inevitable to make economic policy tools work effectively.

Keywords: economic policy, producer responsibility, resource efficiency, waste prevention

Procedia PDF Downloads 150
5117 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 491
5116 Proactive Change or Adaptive Response: A Study on the Impact of Digital Transformation Strategy Modes on Enterprise Profitability From a Configuration Perspective

Authors: Jing-Ma

Abstract:

Digital transformation (DT) is an important way for manufacturing enterprises to shape new competitive advantages, and how to choose an effective DT strategy is crucial for enterprise growth and sustainable development. Rooted in strategic change theory, this paper incorporates the dimensions of managers' digital cognition, organizational conditions, and external environment into the same strategic analysis framework and integrates the dynamic QCA method and PSM method to study the antecedent grouping of the DT strategy mode of manufacturing enterprises and its impact on corporate profitability based on the data of listed manufacturing companies in China from 2015 to 2019. We find that the synergistic linkage of different dimensional elements can form six equivalent paths of high-level DT, which can be summarized as the proactive change mode of resource-capability dominated as well as adaptive response mode such as industry-guided resource replenishment. Capacity building under complex environments, market-industry synergy-driven, forced adaptation under peer pressure, and the managers' digital cognition play a non-essential but crucial role in this process. Except for individual differences in the market industry collaborative driving mode, other modes are more stable in terms of individual and temporal changes. However, it is worth noting that not all paths that result in high levels of DT can contribute to enterprise profitability, but only high levels of DT that result from matching the optimization of internal conditions with the external environment, such as industry technology and macro policies, can have a significant positive impact on corporate profitability.

Keywords: digital transformation, strategy mode, enterprise profitability, dynamic QCA, PSM approach

Procedia PDF Downloads 25
5115 Adapting the Tweeting Factory Concept for Universal Production Optimization in Industry 5.0

Authors: Sławomir Lasota, Tomasz Kajdanowicz

Abstract:

This paper delves into adapting the Tweeting Factory paradigm to achieve universal production optimization under the Industry 5.0 framework. The proposed system creates a dynamic decision-making environment by collecting and analyzing structured telemetry data (”tweets”) from production lines. A hybrid recommendation engine combines rule-based systems with machine learning models to enhance real-time responsiveness and operator engagement. The research evaluates the system’s ability to optimize diverse industrial processes through predictive KPIs and real-time feedback loops. Results indicate significant advancements in eco-efficiency and operator productivity, showcasing the versatility of the Tweeting Factory approach in meeting the demands of human-centric and sustainable production.

Keywords: tweeting factory, production optimization, industry 5.0, recommendation

Procedia PDF Downloads 4
5114 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd

Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic

Abstract:

Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.

Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization

Procedia PDF Downloads 110
5113 Effects of Exhibition Firms' Resource Investment Behavior on Their Booth Staffs' Role Perceptions, Goal Acceptance and Work Effort during the Exhibition Period

Authors: Po-Chien Li

Abstract:

Despite the extant literature has hosted a wide-range of knowledge about trade shows, this knowledge base deserves to be further expanded and extended because there exist many unclear issues and overlooked topics. One area that needs much research attention is regarding the behavior and performance of booth workers at the exhibition site. Booth staffs play many key roles in interacting with booth visitors. Their exhibiting-related attitudes and motivations might have significant consequences on a firm’s exhibition results. However, to date, little research, if any, has studied how booth workers are affected and behave in the context of trade fair. The primary purpose of the current study is to develop and test a research model, derived from role theory and resource-based viewpoint, that depicts the effects of a firm’s pre-exhibition resource investment behavior on booth staff’s role perceptions and work behavior during the exhibition period. The author collects data with two survey questionnaires at two trade shows in 2016. One questionnaire is given to the booth head of an exhibiting company, asking about the firm’s resource commitment behavior prior to the exhibition period. In contrast, another questionnaire is provided for a booth worker of the same firm, requesting the individual staff to report his/her own role perceptions, degree of exhibition goal acceptance, and level of work effort during the exhibition period. The study has utilized the following analytic methods, including descriptive statistics, exploratory factor analysis, reliability analysis, and regression analysis. The results of a set of regression analyses show that a firm’s pre-exhibition resource investment behavior has significant effects on a booth staff’s exhibiting perceptions and attitudes. Specifically, an exhibitor’s resource investment behavior has impacts on the factors of booth staff’s role clarity and role conflict. In addition, a booth worker’s role clarity is related to the degree of exhibition goal acceptance, but his/her role conflict is not. Finally, a booth worker’s exhibiting effort is significantly related to the individual’s role clarity, role conflict and goal acceptance. In general, the major contribution of the current research is that it offers insight into and early evidence on the links between an exhibiting firm’s resource commitment behavior and the work perceptions and attitudes of booth staffs during the exhibition period. The current research’s results can benefit the extant literature of exhibition marketing.

Keywords: exhibition resource investment, role perceptions, goal acceptance, work effort

Procedia PDF Downloads 218
5112 A System Framework for Dynamic Service Deployment in Container-Based Computing Platform

Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

Abstract:

Cloud computing and virtualization technology have brought an innovative way for people to develop and use software nowadays. However, conventional virtualization comes at the expense of performance loss for applications. Container-based virtualization could be an option as it potentially reduces overhead and minimizes performance decline of the service platform. In this paper, we introduce a system framework and present an implementation of resource broker for dynamic cloud service deployment on the container-based platform to facilitate the efficient execution and improve the utilization. We target the load-aware service deployment approach for task ranking scenario. This proposed effort can collaborate with resource management system to adaptively deploy services according to the different requests. In particular, our approach relies on composing service immediately onto appropriate container according to user’s requirement in order to conserve the waiting time. Our evaluation shows how efficient of the service deployment is and how to expand its applicability to support the variety of cloud service.

Keywords: cloud computing, container-based virtualization, resource broker, service deployment

Procedia PDF Downloads 174
5111 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Authors: Himanshu Shekhar Maharana, S. K .Dash

Abstract:

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)

Procedia PDF Downloads 382
5110 Solving Flowshop Scheduling Problems with Ant Colony Optimization Heuristic

Authors: Arshad Mehmood Ch, Riaz Ahmad, Imran Ali Ch, Waqas Durrani

Abstract:

This study deals with the application of Ant Colony Optimization (ACO) approach to solve no-wait flowshop scheduling problem (NW-FSSP). ACO algorithm so developed has been coded on Matlab computer application. The paper covers detailed steps to apply ACO and focuses on judging the strength of ACO in relation to other solution techniques previously applied to solve no-wait flowshop problem. The general purpose approach was able to find reasonably accurate solutions for almost all the problems under consideration and was able to handle a fairly large spectrum of problems with far reduced CPU effort. Careful scrutiny of the results reveals that the algorithm presented results better than other approaches like Genetic algorithm and Tabu Search heuristics etc; earlier applied to solve NW-FSSP data sets.

Keywords: no-wait, flowshop, scheduling, ant colony optimization (ACO), makespan

Procedia PDF Downloads 435
5109 Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy

Authors: Varsha Singh, Kishan Fuse

Abstract:

This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test.

Keywords: ANOVA, CNC milling, grey relational analysis, multi-response optimization

Procedia PDF Downloads 309
5108 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry

Authors: Vivek Upadhayay, Siddharth Deshmukh

Abstract:

In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.

Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization

Procedia PDF Downloads 525