Search results for: radiology images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2402

Search results for: radiology images

1892 Quantitative Characterization of Single Orifice Hydraulic Flat Spray Nozzle

Authors: Y. C. Khoo, W. T. Lai

Abstract:

The single orifice hydraulic flat spray nozzle was evaluated with two global imaging techniques to characterize various aspects of the resulting spray. The two techniques were high resolution flow visualization and Particle Image Velocimetry (PIV). A CCD camera with 29 million pixels was used to capture shadowgraph images to realize ligament formation and collapse as well as droplet interaction. Quantitative analysis was performed to give the sizing information of the droplets and ligaments. This camera was then applied with a PIV system to evaluate the overall velocity field of the spray, from nozzle exit to droplet discharge. PIV images were further post-processed to determine the inclusion angle of the spray. The results from those investigations provided significant quantitative understanding of the spray structure. Based on the quantitative results, detailed understanding of the spray behavior was achieved.

Keywords: spray, flow visualization, PIV, shadowgraph, quantitative sizing, velocity field

Procedia PDF Downloads 362
1891 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 119
1890 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 388
1889 "If It Bleeds It Leads” the Visual Witnessing Trauma Phenomenon among Journalists: An Analysis of Various Media Images from East Africa

Authors: Lydia Ouma Radoli

Abstract:

The paradox of documenting history through visuals that objectify gruesome images to depict the prominence of stories intrigues media researchers. In East Africa, the topic has been captured in a variety of media frames, but scantly in scholarly work. This paper adopts Visual Rhetoric and Framing Theories to tease out the drivers behind the criteria for the selection of violent visuals. The paper projects that quantitative and qualitative literature regarding journalists’ personal and work-related exposure to PSTD will give insights into the concept of trauma journalism - reporting of horrific events, e.g., violent crime and terror. The data will be collected through methods such as document analysis (photographs and videos) and in-depth interviews to summarize the informational contents with respect to the research objectives and questions. The study is hinged on the background that the criterion for news production is constructed from the idea that ‘if there’s violence, conflict, and death involved, the story gets top priority.’ The anticipated outcome is to establish trauma experiences of visual rhetors, suggest mitigations, and address gaps in academic research. The findings of the study will sustain the critical role of visual rhetors. Further, media practitioners may find the study useful in assessing the effects and values of visual witnessing. Historically, the criterion for visual news production has been that if there’s violence, conflict, and death involved, the story gets top priority. To capture the goriness of the images, media theorists and sociologists have used the expression: “If it bleeds, it leads.” The statement assumes that audiences are attracted to pictures that show violent images. Further, research on visual aspects of Television news has shown its ability to hold viewers’ attention and cause aggression. This paper samples images and narratives from Journalists who have covered trauma-related events. The samples are indicative of the problem under study, which depicts journalists exposed to traumatic events as not receiving any Psycho-social support within newsrooms. It is hoped that the study could inform policy and practice within developing countries through the interpretations of theoretical and empirical explanations of existing trauma phenomena among journalists.

Keywords: visual-witnessing, media culture, visual rhetoric, imaging violence in East Africa

Procedia PDF Downloads 98
1888 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 36
1887 Retrieving Similar Segmented Objects Using Motion Descriptors

Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou

Abstract:

The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.

Keywords: fuzzy object, fuzzy image segmentation, motion descriptors, MRI imaging, object-based image retrieval

Procedia PDF Downloads 355
1886 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN

Procedia PDF Downloads 105
1885 Edge Detection Using Multi-Agent System: Evaluation on Synthetic and Medical MR Images

Authors: A. Nachour, L. Ouzizi, Y. Aoura

Abstract:

Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.

Keywords: edge detection, medical MRImages, multi-agent systems, vector field convolution

Procedia PDF Downloads 369
1884 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 339
1883 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images

Procedia PDF Downloads 404
1882 Global Based Histogram for 3D Object Recognition

Authors: Somar Boubou, Tatsuo Narikiyo, Michihiro Kawanishi

Abstract:

In this work, we address the problem of 3D object recognition with depth sensors such as Kinect or Structure sensor. Compared with traditional approaches based on local descriptors, which depends on local information around the object key points, we propose a global features based descriptor. Proposed descriptor, which we name as Differential Histogram of Normal Vectors (DHONV), is designed particularly to capture the surface geometric characteristics of the 3D objects represented by depth images. We describe the 3D surface of an object in each frame using a 2D spatial histogram capturing the normalized distribution of differential angles of the surface normal vectors. The object recognition experiments on the benchmark RGB-D object dataset and a self-collected dataset show that our proposed descriptor outperforms two others descriptors based on spin-images and histogram of normal vectors with linear-SVM classifier.

Keywords: vision in control, robotics, histogram, differential histogram of normal vectors

Procedia PDF Downloads 256
1881 Imagology: The Study of Multicultural Imagery Reflected in the Heart of Elif Shafak’s 'The Bastard of Istanbul'

Authors: Mohammad Reza Haji Babai, Sepideh Ahmadkhan Beigi

Abstract:

Internationalization and modernization of the globe have played their roles in the process of cultural interaction between globalized societies and, consequently, found their way to the world of literature under the name of ‘imagology’. Imagology has made it possible for the reader to understand the author’s thoughts and judgments of others. The present research focuses on the intercultural images portrayed in the novel of a popular Turkish-French writer, Elif Shafak, about the lifestyle, traditions, habits, and social norms of Turkish, Americans, and Armenians. The novel seeks to articulate a more intricate multicultural memory of Turkishness by grieving over the Armenian massacre. This study finds that, as a mixture of multiple lifestyles and discourses, The Bastard of Istanbul reflects not only images of oriental culture but also occidental cultures. This means that the author has attempted to maintain selfhood through historical and cultural recollection, which resulted in constructing the self and another identity.

Keywords: imagology, Elif Shafak, The Bastard of Istanbul, self-image, other-image

Procedia PDF Downloads 119
1880 Modern Well Logs Technology to Improve Geological Model for Libyan Deep Sand Stone Reservoir

Authors: Tarek S. Duzan, Fisal Ben Ammer, Mohamed Sula

Abstract:

In some places within Sirt Basin-Libya, it has been noticed that seismic data below pre-upper cretaceous unconformity (PUK) is hopeless to resolve the large-scale structural features and is unable to fully determine reservoir delineation. Seismic artifacts (multiples) are observed in the reservoir zone (Nubian Formation) below PUK, which complicate the process of seismic interpretation. The nature of the unconformity and the structures below are still ambiguous and not fully understood which generates a significant gap in characterizing the geometry of the reservoir, the uncertainty accompanied with lack of reliable seismic data creates difficulties in building a robust geological model. High resolution dipmeter is highly useful in steeply dipping zones. This paper uses FMl and OBMl borehole images (dipmeter) to analyze the structures below the PUK unconformity from two wells drilled recently in the North Gialo field (a mature reservoir). In addition, borehole images introduce new evidences that the PUK unconformity is angular and the bedding planes within the Nubian formation (below PUK) are significantly titled. Structural dips extracted from high resolution borehole images are used to construct a new geological model by the utilization of latest software technology. Therefore, it is important to use the advance well logs technology such as FMI-HD for any future drilling and up-date the existing model in order to minimize the structural uncertainty.

Keywords: FMI (formation micro imager), OBMI (oil base mud imager), UBI (ultra sonic borehole imager), nub sandstone reservoir in North gialo

Procedia PDF Downloads 300
1879 Examining the Skills of Establishing Number and Space Relations of Science Students with the 'Integrative Perception Test'

Authors: Ni̇sa Yeni̇kalayci, Türkan Aybi̇ke Akarca

Abstract:

The ability of correlation the number and space relations, one of the basic scientific process skills, is being used in the transformation of a two-dimensional object into a three-dimensional image or in the expression of symmetry axes of the object. With this research, it is aimed to determine the ability of science students to establish number and space relations. The research was carried out with a total of 90 students studying in the first semester of the Science Education program of a state university located in the Turkey’s Black Sea Region in the fall semester of 2017-2018 academic year. An ‘Integrative Perception Test (IPT)’ was designed by the researchers to collect the data. Within the scope of IPT, the courses and workbooks specific to the field of science were scanned and the ones without symmetrical structure from the visual items belonging to the ‘Physics - Chemistry – Biology’ sub-fields were selected and listed. During the application, it was expected that students would imagine and draw images of the missing half of the visual items that were given incomplete in the first place. The data obtained from the test in which there are 30 images or pictures in total (f Physics = 10, f Chemistry = 10, f Biology = 10) were analyzed descriptively based on the drawings created by the students as ‘complete (2 points), incomplete/wrong (1 point), empty (0 point)’. For the teaching of new concepts in small aged groups, images or pictures showing symmetrical structures and similar applications can also be used.

Keywords: integrative perception, number and space relations, science education, scientific process skills

Procedia PDF Downloads 134
1878 Using Priority Order of Basic Features for Circumscribed Masses Detection in Mammograms

Authors: Minh Dong Le, Viet Dung Nguyen, Do Huu Viet, Nguyen Huu Tu

Abstract:

In this paper, we present a new method for circumscribed masses detection in mammograms. Our method is evaluated on 23 mammographic images of circumscribed masses and 20 normal mammograms from public Mini-MIAS database. The method is quite sanguine with sensitivity (SE) of 95% with only about 1 false positive per image (FPpI). To achieve above results we carry out a progression following: Firstly, the input images are preprocessed with the aim to enhance key information of circumscribed masses; Next, we calculate and evaluate statistically basic features of abnormal regions on training database; Then, mammograms on testing database are divided into equal blocks which calculated corresponding features. Finally, using priority order of basic features to classify blocks as an abnormal or normal regions.

Keywords: mammograms, circumscribed masses, evaluated statistically, priority order of basic features

Procedia PDF Downloads 311
1877 Image Instance Segmentation Using Modified Mask R-CNN

Authors: Avatharam Ganivada, Krishna Shah

Abstract:

The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.

Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision

Procedia PDF Downloads 55
1876 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images

Authors: Meenal Surawar, Rajashree Kotharkar

Abstract:

Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.

Keywords: land use/land cover, land surface temperature, remote sensing, urban heat island

Procedia PDF Downloads 265
1875 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 57
1874 Re-Presenting the Egyptian Informal Urbanism in Films between 1994 and 2014

Authors: R. Mofeed, N. Elgendy

Abstract:

Cinema constructs mind-spaces that reflect inherent human thoughts and emotions. As a representational art, Cinema would introduce comprehensive images of life phenomena in different ways. The term “represent” suggests verity of meanings; bring into presence, replace or typify. In that sense, Cinema may present a phenomenon through direct embodiment, or introduce a substitute image that replaces the original phenomena, or typify it by relating the produced image to a more general category through a process of abstraction. This research is interested in questioning the type of images that Egyptian Cinema introduces to informal urbanism and how these images were conditioned and reshaped in the last twenty years. The informalities/slums phenomenon first appeared in Egypt and, particularly, Cairo in the early sixties, however, this phenomenon was completely ignored by the state and society until the eighties, and furthermore, its evident representation in Cinema was by the mid-nineties. The Informal City represents the illegal housing developments, and it is a fast growing form of urbanization in Cairo. Yet, this expanding phenomenon is still depicted as the minority, exceptional and marginal through the Cinematic lenses. This paper aims at tracing the forms of representations of the urban informalities in the Egyptian Cinema between 1994 and 2014, and how did that affect the popular mind and its perception of these areas. The paper runs two main lines of inquiry; the first traces the phenomena through a chronological and geographical mapping of the informal urbanism has been portrayed in films. This analysis is based on an academic research work at Cairo University in Fall 2014. The visual tracing through maps and timelines allowed a reading of the phases of ignorance, presence, typifying and repetition in the representation of this huge sector of the city through more than 50 films that has been investigated. The analysis clearly revealed the “portrayed image” of informality by the Cinema through the examined period. However, the second part of the paper explores the “perceived image”. A designed questionnaire is applied to highlight the main features of that image that is perceived by both inhabitants of informalities and other Cairenes based on watching selected films. The questionnaire covers the different images of informalities proposed in the Cinema whether in a comic or a melodramatic background and highlight the descriptive terms used, to see which of them resonate with the mass perceptions and affected their mental images. The two images; “portrayed” and “perceived” are then to be encountered to reflect on issues of repetitions, stereotyping and reality. The formulated stereotype of informal urbanism is finally outlined and justified in relation to both production consumption mechanisms of films and the State official vision of informalities.

Keywords: cinema, informal urbanism, popular mind, representation

Procedia PDF Downloads 277
1873 The Automatic Transliteration Model of Images of the Book Hamong Tani Using Statistical Approach

Authors: Agustinus Rudatyo Himamunanto, Anastasia Rita Widiarti

Abstract:

Transliteration using Javanese manuscripts is one of methods to preserve and legate the wealth of literature in the past for the present generation in Indonesia. The transliteration manual process commonly requires philologists and takes a relatively long time. The automatic transliteration process is expected to shorten the time so as to help the works of philologists. The preprocessing and segmentation stage firstly done is used to manage the document images, thus obtaining image script units that will compile input document images free from noise and have the similarity in properties in the thickness, size, and slope. The next stage of characteristic extraction is used to find unique characteristics that will distinguish each Javanese script image. One of characteristics that is used in this research is the number of black pixels in each image units. Each image of Java scripts contained in the data training will undergo the same process similar to the input characters. The system testing was performed with the data of the book Hamong Tani. The book Hamong Tani was selected due to its content, age and number of pages. Those were considered sufficient as a model experimental input. Based on the results of random page automatic transliteration process testing, it was determined that the maximum percentage correctness obtained was 81.53%. The percentage of success was obtained in 32x32 pixel input image size with the 5x5 image window. With regard to the results, it can be concluded that the automatic transliteration model offered is relatively good.

Keywords: Javanese script, character recognition, statistical, automatic transliteration

Procedia PDF Downloads 322
1872 Integrated Intensity and Spatial Enhancement Technique for Color Images

Authors: Evan W. Krieger, Vijayan K. Asari, Saibabu Arigela

Abstract:

Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image.

Keywords: dynamic range compression, multi-level Fourier features, nonlinear enhancement, super resolution

Procedia PDF Downloads 534
1871 Control of Belts for Classification of Geometric Figures by Artificial Vision

Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez

Abstract:

The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.

Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB

Procedia PDF Downloads 360
1870 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: chirp signals, image multiplexing, image transformation, linear canonical transform, polynomial approximation

Procedia PDF Downloads 396
1869 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 445
1868 3D Images Representation to Provide Information on the Type of Castella Beams Hole

Authors: Cut Maisyarah Karyati, Aries Muslim, Sulardi

Abstract:

Digital image processing techniques to obtain detailed information from an image have been used in various fields, including in civil engineering, where the use of solid beam profiles in buildings and bridges has often been encountered since the early development of beams. Along with this development, the founded castellated beam profiles began to be more diverse in shape, such as the shape of a hexagon, triangle, pentagon, circle, ellipse and oval that could be a practical solution in optimizing a construction because of its characteristics. The purpose of this research is to create a computer application to edge detect the profile of various shapes of the castella beams hole. The digital image segmentation method has been used to obtain the grayscale images and represented in 2D and 3D formats. This application has been successfully made according to the desired function, which is to provide information on the type of castella beam hole.

Keywords: digital image, image processing, edge detection, grayscale, castella beams

Procedia PDF Downloads 122
1867 Artificial Intelligence-Generated Previews of Hyaluronic Acid-Based Treatments

Authors: Ciro Cursio, Giulia Cursio, Pio Luigi Cursio, Luigi Cursio

Abstract:

Communication between practitioner and patient is of the utmost importance in aesthetic medicine: as of today, images of previous treatments are the most common tool used by doctors to describe and anticipate future results for their patients. However, using photos of other people often reduces the engagement of the prospective patient and is further limited by the number and quality of pictures available to the practitioner. Pre-existing work solves this issue in two ways: 3D scanning of the area with manual editing of the 3D model by the doctor or automatic prediction of the treatment by warping the image with hand-written parameters. The first approach requires the manual intervention of the doctor, while the second approach always generates results that aren’t always realistic. Thus, in one case, there is significant manual work required by the doctor, and in the other case, the prediction looks artificial. We propose an AI-based algorithm that autonomously generates a realistic prediction of treatment results. For the purpose of this study, we focus on hyaluronic acid treatments in the facial area. Our approach takes into account the individual characteristics of each face, and furthermore, the prediction system allows the patient to decide which area of the face she wants to modify. We show that the predictions generated by our system are realistic: first, the quality of the generated images is on par with real images; second, the prediction matches the actual results obtained after the treatment is completed. In conclusion, the proposed approach provides a valid tool for doctors to show patients what they will look like before deciding on the treatment.

Keywords: prediction, hyaluronic acid, treatment, artificial intelligence

Procedia PDF Downloads 92
1866 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: magnetic resonance image (MRI), c-means model, image segmentation, information entropy

Procedia PDF Downloads 211
1865 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 112
1864 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery

Procedia PDF Downloads 566
1863 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers

Authors: Mohamed Gouda

Abstract:

Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.

Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing

Procedia PDF Downloads 310